[1]

Carballa M, Omil F, Lema JM, Llompart M, Garcı́a-Jares C, et al. 2004. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research 38(12):2918−2926

doi: 10.1016/j.watres.2004.03.029
[2]

Zhao W, Bi X, Peng Y, Bai M. 2022. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: metabolic mechanisms, applications and influencing factors. Chemosphere 307:135675

doi: 10.1016/j.chemosphere.2022.135675
[3]

Birošová L, Mackuľak T, Bodík I, Ryba J, Škubák J, et al. 2014. Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Science of The Total Environment 490:440−444

doi: 10.1016/j.scitotenv.2014.05.030
[4]

Guerra P, Kim M, Kinsman L, Ng T, Alaee M, et al. 2014. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment. Journal of Hazardous Materials 272:148−154

doi: 10.1016/j.jhazmat.2014.03.016
[5]

Gracia-Lor E, Sancho JV, Serrano R, Hernández F. 2012. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere 87(5):453−462

doi: 10.1016/j.chemosphere.2011.12.025
[6]

Loos R, Carvalho R, António DC, Comero S, Locoro, G, et al. 2013. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research 47(17):6475−6487

doi: 10.1016/j.watres.2013.08.024
[7]

Mohapatra S, Huang CH, Mukherji S, Padhye LP. 2016. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere 159:526−535

doi: 10.1016/j.chemosphere.2016.06.047
[8]

Phonsiri V, Choi S, Nguyen C, Tsai YL, Coss R, et al. 2019. Monitoring occurrence and removal of selected pharmaceuticals in two different wastewater treatment plants. SN Applied Sciences 1(7):798

doi: 10.1007/s42452-019-0774-z
[9]

Tran NH, Chen H, Reinhard M, Mao F, Gin KY. 2016. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research 104:461−472

doi: 10.1016/j.watres.2016.08.040
[10]

Zhou LJ, Ying GG, Liu S, Zhao JL, Yang B, et al. 2013. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of The Total Environment 452:365−376

doi: 10.1016/j.scitotenv.2013.03.010
[11]

Al-Maadheed S, Goktepe I, Latiff ABA, Shomar B. 2019. Antibiotics in hospital effluent and domestic wastewater treatment plants in Doha, Qatar. Journal of Water Process Engineering 28:60−68

doi: 10.1016/j.jwpe.2019.01.005
[12]

Hu J, Zhou J, Zhou S, Wu P, Tsang YF. 2018. Occurrence and fate of antibiotics in a wastewater treatment plant and their biological effects on receiving waters in Guizhou. Process Safety and Environmental Protection 113:483−490

doi: 10.1016/j.psep.2017.12.003
[13]

Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, et al. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research 69:234−242

doi: 10.1016/j.watres.2014.11.021
[14]

Stamatis NK, Konstantinou IK. 2013. Occurrence and removal of emerging pharmaceutical, personal care compounds and caffeine tracer in municipal sewage treatment plant in Western Greece. Journal of Environmental Science and Health, Part B 48(9):800−813

doi: 10.1080/03601234.2013.781359
[15]

Andreozzi R, Raffaele M, Nicklas P. 2003. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10):1319−1330

doi: 10.1016/S0045-6535(02)00769-5
[16]

Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, et al. 2005. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research 39(19):4797−4807

doi: 10.1016/j.watres.2005.09.015
[17]

Duan YP, Meng XZ, Wen ZH, Chen L. 2013. Acidic pharmaceuticals in domestic wastewater and receiving water from hyper-urbanization city of China (Shanghai): environmental release and ecological risk. Environmental Science and Pollution Research 20(1):108−116

doi: 10.1007/s11356-012-1000-3
[18]

Gómez MJ, Martínez Bueno MJ, Lacorte S, Fernández-Alba AR, Agüera A. 2007. Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66(6):993−1002

doi: 10.1016/j.chemosphere.2006.07.051
[19]

Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA. 2007. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research 41(5):1013−1021

doi: 10.1016/j.watres.2006.06.034
[20]

Kuster M, López de Alda MJ, Hernando MD, Petrovic M, Martín-Alonso J, et al. 2008. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). Journal of Hydrology 358(1−2):112−123

doi: 10.1016/j.jhydrol.2008.05.030
[21]

Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E. 2012. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of Hazardous Materials 239:40−47

doi: 10.1016/j.jhazmat.2012.04.068
[22]

Nam SW, Jo BI, Yoon Y, Zoh KD. 2014. Occurrence and removal of selected micropollutants in a water treatment plant. Chemosphere 95:156−165

doi: 10.1016/j.chemosphere.2013.08.055
[23]

Sim WJ, Lee JW, Lee ES, Shin SK, Hwang SR, et al. 2011. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82(2):179−186

doi: 10.1016/j.chemosphere.2010.10.026
[24]

Sui Q, Huang J, Deng S, Chen W, Yu G. 2011. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environmental Science & Technology 45(8):3341−3348

doi: 10.1021/es200248d
[25]

Vieno N. 2007. Occurrence of pharmaceuticals in finnish sewage treatment plants, surface waters, and their elimination in drinking water treatment processes. Doctoral thesis. Publication Vol. 666. Tampere University of Technology, Tampere University of Technology, Finland. http://urn.fi/URN:NBN:fi:tty-200810021012

[26]

Yan Q, Gao X, Chen YP, Peng XY, Zhang YX, et al. 2014. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area. Science of The Total Environment 470:618−630

doi: 10.1016/j.scitotenv.2013.09.032
[27]

Yu Y, Wu L, Chang AC. 2013. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. Science of The Total Environment 442:310−316

doi: 10.1016/j.scitotenv.2012.10.001
[28]

Dris R, Gasperi J, Rocher V, Saad M, Renault N, et al. 2015. Microplastic contamination in an urban area: a case study in Greater Paris. Environmental Chemistry 12(5):592−599

doi: 10.1071/EN14167
[29]

Hongprasith N, Kittimethawong C, Lertluksanaporn R, Eamchotchawalit T, Kittipongvises S, et al. 2020. IR microspectroscopic identification of microplastics in municipal wastewater treatment plants. Environmental Science and Pollution Research 27(15):18557−18564

doi: 10.1007/s11356-020-08265-7
[30]

Hidayaturrahman H, Lee TG. 2019. A study on characteristics of microplastic in wastewater of South Korea: identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin 146:696−702

doi: 10.1016/j.marpolbul.2019.06.071
[31]

Michielssen MR, Michielssen ER, Ni J, Duhaime MB. 2016. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Research & Technology 2(6):1064−1073

doi: 10.1039/C6EW00207B
[32]

Murphy F, Ewins C, Carbonnier F, Quinn B. 2016. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology 50(11):5800−5808

doi: 10.1021/acs.est.5b05416
[33]

Chen H, Zhang C, Han J, Yu Y, Zhang P. 2012. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments. Environmental Pollution 170:26−31

doi: 10.1016/j.envpol.2012.06.016
[34]

Guo R, Sim WJ, Lee ES, Lee JH, Oh JE. 2010. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Research 44(11):3476−3486

doi: 10.1016/j.watres.2010.03.028
[35]

Lin AY, Panchangam SC, Ciou PS. 2010. High levels of perfluorochemicals in Taiwan's wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere 80(10):1167−1174

doi: 10.1016/j.chemosphere.2010.06.018
[36]

Murakami M, Shinohara H, Takada H. 2009. Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (PFSs). Chemosphere 74(4):487−493

doi: 10.1016/j.chemosphere.2008.10.018
[37]

Schultz MM, Higgins CP, Huset CA, Luthy RG, Barofsky DF, et al. 2006. Fluorochemical mass flows in a municipal wastewater treatment facility. Environmental Science & Technology 40(23):7350−7357

doi: 10.1021/es061025m
[38]

Yu J, Hu J, Tanaka S, Fujii S. 2009. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Research 43(9):2399−2408

doi: 10.1016/j.watres.2009.03.009
[39]

Wu L, Wei Q, Zhang Y, Fan Y, Li M, et al. 2021. Effects of antibiotics on enhanced biological phosphorus removal and its mechanisms. Science of The Total Environment 774:145571

doi: 10.1016/j.scitotenv.2021.145571
[40]

Yang Y, Xue T, Xiang F, Zhang S, Hanamoto S, et al. 2021. Toxicity and combined effects of antibiotics and nano ZnO on a phosphorus-removing Shewanella strain in wastewater treatment. Journal of Hazardous Materials 416:125532

doi: 10.1016/j.jhazmat.2021.125532
[41]

Booth A, Aga DS, Wester AL. 2020. Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices. Environment International 141:105796

doi: 10.1016/j.envint.2020.105796
[42]

Fu B, Li E, Yan Y, Jiang S, Wu Y, et al. 2024. Ecological criteria for antibiotics in aquatic environments based on species sensitivity distribution. Ecotoxicology and Environmental Safety 287:117261

doi: 10.1016/j.ecoenv.2024.117261
[43]

Liu H, Yang Y, Sun H, Zhao L, Liu Y, et al. 2018. Effect of tetracycline on microbial community structure associated with enhanced biological N&P removal in sequencing batch reactor. Bioresource Technology 256:414−420

doi: 10.1016/j.biortech.2018.02.051
[44]

Liu H, Yang Y, Ge Y, Zhao L, Long S, et al. 2016. Interaction between common antibiotics and a Shewanella strain isolated from an enhanced biological phosphorus removal activated sludge system. Bioresource Technology 222:114−122

doi: 10.1016/j.biortech.2016.09.096
[45]

Wang J, Chu L, Wojnárovits L, Takács E. 2020. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Science of The Total Environment 744:140997

doi: 10.1016/j.scitotenv.2020.140997
[46]

Yi K, Wang D, Yang Q, Li X, Chen H, et al. 2017. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Science of The Total Environment 605:368−375

doi: 10.1016/j.scitotenv.2017.06.215
[47]

Zhong SF, Yang B, Lei HJ, Xiong Q, Zhang QQ, et al. 2022. Transformation products of tetracyclines in three typical municipal wastewater treatment plants. Science of The Total Environment 830:154647

doi: 10.1016/j.scitotenv.2022.154647
[48]

Huang R, Lan J, Zhan C, Ge Y, Zhao L. 2021. Interaction between β-lactam antibiotic and phosphorus-accumulating organisms. Environmental Science and Pollution Research 28(31):42071−42081

doi: 10.1007/s11356-021-13631-0
[49]

Samandari M, Movahedian Attar H, Ebrahimpour K, Mohammadi F. 2022. Monitoring of amoxicillin and cephalexin antibiotics in municipal WWTPs during covid-19 outbreak: a case study in Isfahan, Iran. Air, Soil and Water Research 15:11786221221103879

doi: 10.1177/11786221221103879
[50]

Yuan Q, Zhang H, Qin C, Zhang H, Wang D, et al. 2023. Impact of emerging pollutant florfenicol on enhanced biological phosphorus removal process: focus on reactor performance and related mechanisms. Science of The Total Environment 859:160316

doi: 10.1016/j.scitotenv.2022.160316
[51]

Freitas EC, Rocha O, Espíndola ELG. 2018. Effects of florfenicol and oxytetracycline on the tropical cladoceran Ceriodaphnia silvestrii: a mixture toxicity approach to predict the potential risks of antimicrobials for zooplankton. Ecotoxicology and Environmental Safety 162:663−672

doi: 10.1016/j.ecoenv.2018.06.073
[52]

Zhao JL, Ying GG, Liu YS, Chen F, Yang JF, et al. 2010. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. Journal of Hazardous Materials 179(1−3):215−222

doi: 10.1016/j.jhazmat.2010.02.082
[53]

Zhao J, Yuan Q, Sun Y, Zhang J, Zhang D, et al. 2021. Effect of fluoxetine on enhanced biological phosphorus removal using a sequencing batch reactor. Bioresource Technology 320:124396

doi: 10.1016/j.biortech.2020.124396
[54]

Duarte C, Di Lorenzo T, Reboleira ASPS. 2024. Environmental risk of diclofenac in European groundwaters and implications for environmental quality standards. Scientific Reports 14(1):20689

doi: 10.1038/s41598-024-71747-y
[55]

Vieno N, Sillanpää M. 2014. Fate of diclofenac in municipal wastewater treatment plant—a review. Environment International 69:28−39

doi: 10.1016/j.envint.2014.03.021
[56]

Oakes KD, Coors A, Escher BI, Fenner K, Garric J, et al. 2010. Environmental risk assessment for the serotonin re-uptake inhibitor fluoxetine: case study using the European risk assessment framework. Integrated Environmental Assessment and Management 6(S1):524−539

doi: 10.1002/ieam.77
[57]

Zindler F, Tisler S, Loerracher AK, Zwiener C, Braunbeck T. 2020. Norfluoxetine is the only metabolite of fluoxetine in zebrafish (Danio rerio) embryos that accumulates at environmentally relevant exposure scenarios. Environmental Science & Technology 54(7):4200−4209

doi: 10.1021/acs.est.9b07618
[58]

Yang Y, Liu J, Xue T, Hanamoto S, Wang H, et al. 2022. Complex behavior between microplastic and antibiotic and their effect on phosphorus-removing Shewanella strain during wastewater treatment. Science of The Total Environment 845:157260

doi: 10.1016/j.scitotenv.2022.157260
[59]

Dai HH, Gao JF, Wang ZQ, Zhao YF, Zhang D. 2020. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. Journal of Cleaner Production 256:120402

doi: 10.1016/j.jclepro.2020.120402
[60]

Iyare PU, Ouki SK, Bond T. 2020. Microplastics removal in wastewater treatment plants: a critical review. Environmental Science: Water Research & Technology 6(10):2664−2675

doi: 10.1039/D0EW00397B
[61]

Mehinto AC, Coffin S, Koelmans AA, Brander SM, Wagner M, et al. 2022. Risk-based management framework for microplastics in aquatic ecosystems. Microplastics and Nanoplastics 2(1):17

doi: 10.1186/s43591-022-00033-3
[62]

Qian X, Huang J, Yan C, Xiao J, Cao C, et al. 2024. Evaluation of ecological impacts with ferrous iron addition in constructed wetland under perfluorooctanoic acid stress. Journal of Hazardous Materials 469:134074

doi: 10.1016/j.jhazmat.2024.134074
[63]

Guerra P, Kim M, Shah A, Alaee M, Smyth SA. 2014. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Science of The Total Environment 473:235−243

doi: 10.1016/j.scitotenv.2013.12.008
[64]

Valsecchi S, Conti D, Crebelli R, Polesello S, Rusconi M, et al. 2017. Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. Journal of Hazardous Materials 323:84−98

doi: 10.1016/j.jhazmat.2016.04.055
[65]

Xu J, Zhang N, Yang G, Xie Z, Yu N, et al. 2023. Revealing the behavior of perfluorooctane sulfonic acid in an aerobic granular sludge system: fate and impact. Chemical Engineering Journal 454:140478

doi: 10.1016/j.cej.2022.140478
[66]

Luo K, Chen L, Du L, Zhao Y, Chen Q. 2022. Response of the aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 to low temperature and zinc oxide nanoparticles stress. Bioresource Technology 354:127162

doi: 10.1016/j.biortech.2022.127162
[67]

Choi S, Johnston M, Wang GS, Huang CP. 2018. A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO. Science of The Total Environment 625:1321−1329

doi: 10.1016/j.scitotenv.2017.12.326
[68]

Hu Z, Sun P, Han J, Wang R, Jiao L, et al. 2018. The acute effects of erythromycin and oxytetracycline on enhanced biological phosphorus removal system: shift in bacterial community structure. Environmental Science and Pollution Research 25(10):9342−9350

doi: 10.1007/s11356-018-1221-1
[69]

Alighardashi A, Pandolfi D, Potier O, Pons MN. 2009. Acute sensitivity of activated sludge bacteria to erythromycin. Journal of Hazardous Materials 172(2−3):685−692

doi: 10.1016/j.jhazmat.2009.07.051
[70]

Fan C, He J. 2011. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O. Water Research 45(10):3098−3106

doi: 10.1016/j.watres.2011.03.025
[71]

Hutchings MI, Truman AW, Wilkinson B. 2019. Antibiotics: past, present and future. Current Opinion in Microbiology 51:72−80

doi: 10.1016/j.mib.2019.10.008
[72]

Piper BJ, Alinea AA, Wroblewski JR, Graham SM, Chung DY, et al. 2020. A quantitative and narrative evaluation of Goodman and Gilman's Pharmacological Basis of Therapeutics. Pharmacy 8(1):1

doi: 10.3390/pharmacy8010001
[73]

Geddes AM, Klugman KP, Rolinson GN. 2007. Introduction: historical perspective and development of amoxicillin/clavulanate. International Journal of Antimicrobial Agents 30:109−112

doi: 10.1016/j.ijantimicag.2007.07.015
[74]

Igwegbe CA, Oba SN, Aniagor CO, Adeniyi AG, Ighalo JO. 2021. Adsorption of ciprofloxacin from water: a comprehensive review. Journal of Industrial and Engineering Chemistry 93:57−77

doi: 10.1016/j.jiec.2020.09.023
[75]

Rossi A, Barraco A, Donda P. 2004. Fluoxetine: a review on evidence based medicine. Annals of General Hospital Psychiatry 3(1):2

doi: 10.1186/1475-2832-3-2
[76]

Chakraborty A, Adhikary S, Bhattacharya S, Dutta S, Chatterjee S, et al. 2023. Pharmaceuticals and personal care products as emerging environmental contaminants: prevalence, toxicity, and remedial approaches. ACS Chemical Health & Safety, 30(6):362−388

doi: 10.1021/acs.chas.3c00071
[77]

Liu N, Jin X, Johnson AC, Zhou S, Liu Y, et al. 2025. Pharmaceutical and personal care products (PPCPs) in global surface waters: risk and drivers. Environmental Science & Technology 59:19146−19159

doi: 10.1021/acs.est.5c05659
[78]

Dong X, He Y, Peng X, Jia X. 2021. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community. Bioresource Technology 319:124134

doi: 10.1016/j.biortech.2020.124134
[79]

Ma J, Wang F, Tian W, Cai Y, Zhong J, et al. 2022. Effects of long-term exposure to ciprofloxacin on the performance of an enhanced biological phosphorus removal (EBPR) and its microbial structure. Journal of Environmental Chemical Engineering 10(3):108016

doi: 10.1016/j.jece.2022.108016
[80]

Kolakovic S, Salgado R, Freitas EB, Bronze MR, Sekulic MT, et al. 2022. Diclofenac biotransformation in the enhanced biological phosphorus removal process. Science of The Total Environment 806:151232

doi: 10.1016/j.scitotenv.2021.151232
[81]

Wu L, Wu Q, Xu J, Rong L, Yu X, et al. 2023. Responses of antibiotic resistance genes in the enhanced biological phosphorus removal system under various antibiotics: mechanisms and implications. Science of The Total Environment 905:167247

doi: 10.1016/j.scitotenv.2023.167247
[82]

Ali W, Ali H, Gillani S, Zinck P, Souissi S. 2023. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters 21(3):1761−1786

doi: 10.1007/s10311-023-01564-8
[83]

Mulder K, Knot M. 2001. PVC plastic: a history of systems development and entrenchment. Technology in Society 23(2):265−286

doi: 10.1016/S0160-791X(01)00013-6
[84]

Echte A, Haaf F, Hambrecht J. 1981. Half a century of polystyrene—a survey of the chemistry and physics of a pioneering material. Angewandte Chemie International Edition in English 20(4):344−361

doi: 10.1002/anie.198103441
[85]

Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, et al. 2004. Lost at sea: where is all the plastic? Science 304(5672):838−838

doi: 10.1126/science.1094559
[86]

Browne MA, Galloway T, Thompson R. 2007. Microplastic—an emerging contaminant of potential concern? Integrated Environmental Assessment and Management 3(4):559−561

doi: 10.1002/ieam.5630030411
[87]

Ryan PG, Moore CJ, van Franeker JA, Moloney CL. 2009. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 364(1526):1999−2012

doi: 10.1098/rstb.2008.0207
[88]

Smeets W, van Pull A, Eerens H, Sluyter R, de Hollander, G. 2001. Technical report on chemicals, particulate matter and human health, air quality and noise. RIVM Report 481505015. RIVM, Bilthoven, Netherlands. http://hdl.handle.net/10029/9518

[89]

Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR. 2013. New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin 70(1−2):227−233

doi: 10.1016/j.marpolbul.2013.03.009
[90]

Desforges JW, Galbraith M, Dangerfield N, Ross PS. 2014. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Marine Pollution Bulletin 79(1−2):94−99

doi: 10.1016/j.marpolbul.2013.12.035
[91]

Hartmann N, Nolte T, Sørensen M, Jensen P, Baun A. 2015. Aquatic ecotoxicity testing of nanoplastics: lessons learned from nanoecotoxicology. SETAC Europe 26th Annual Meeting, 22–26 May 2016, Nantes, France. Brussels, Belgium: SETAC Europe. pp. 43−44 https://backend.orbit.dtu.dk/ws/portalfiles/portal/127839714/SETAC_Europe_Abstractbook_Nantes.pdf

[92]

Liu H, Zhou X, Ding W, Zhang Z, Nghiem LD, et al. 2019. Do microplastics affect biological wastewater treatment performance? Implications from bacterial activity experiments. ACS Sustainable Chemistry & Engineering 7(24):20097−20101

doi: 10.1021/acssuschemeng.9b05960
[93]

Huang M, Wang D, Zhang S, Weng Y, Li K, et al. 2023. Impacts of polylactic acid microplastics on performance and microbial dynamics in activated sludge system. Sustainability 15(19):14332

doi: 10.3390/su151914332
[94]

Yang G, Zhang N, Yang J, Fu Q, Wang Y, et al. 2020. Interaction between perfluorooctanoic acid and aerobic granular sludge. Water Research 169:115249

doi: 10.1016/j.watres.2019.115249
[95]

Yan W, Qian T, Zhang L, Wang L, Zhou Y. 2021. Interaction of perfluorooctanoic acid with extracellular polymeric substances − role of protein. Journal of Hazardous Materials 401:123381

doi: 10.1016/j.jhazmat.2020.123381
[96]

Zheng X, Wei Y, Chen Y, Wan R, Tang S, et al. 2015. Mitigation of adverse effects of zinc oxide nanoparticles on enhanced biological phosphorus removal: role of carbon source concentration. Fresenius Environmental Bulletin 24(5):1699−1706

[97]

Hu Z, Sun P, Hu Z, Han J, Wang R, et al. 2016. Short-term performance of enhanced biological phosphorus removal (EBPR) system exposed to erythromycin (ERY) and oxytetracycline (OTC). Bioresource Technology 221:15−25

doi: 10.1016/j.biortech.2016.08.102
[98]

Zhao J, Xin M, Zhang J, Sun Y, Luo S, et al. 2020. Diclofenac inhibited the biological phosphorus removal: performance and mechanism. Chemosphere 243:125380

doi: 10.1016/j.chemosphere.2019.125380
[99]

Zou X, Xiao X, Zhou H, Chen F, Zeng J, et al. 2018. Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism. Journal of Hazardous Materials 359:365−372

doi: 10.1016/j.jhazmat.2018.04.036
[100]

McMurry LM, Oethinger M, Levy SB. 1998. Triclosan targets lipid synthesis. Nature 394(6693):531−532

doi: 10.1038/28970
[101]

Schweizer HP. 2001. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiology Letters 202(1):1−7

doi: 10.1111/j.1574-6968.2001.tb10772.x
[102]

Liu Q, Li L, Zhao X, Song K. 2021. An evaluation of the effects of nanoplastics on the removal of activated-sludge nutrients and production of short chain fatty acid. Process Safety and Environmental Protection 148:1070−1076

doi: 10.1016/j.psep.2021.02.029
[103]

Ohore OE, Zhang S, Guo S, Addo FG, Manirakiza B, et al. 2021. Ciprofloxacin increased abundance of antibiotic resistance genes and shaped microbial community in epiphytic biofilm on Vallisneria spiralis in mesocosmic wetland. Bioresource Technology 323:124574

doi: 10.1016/j.biortech.2020.124574
[104]

Liu H. 2017. Research on the mechanism of interaction between common antibiotics and the microorganisms in biological N&P removal process. Thesis. Tian Jin University, Tianjin, China.

[105]

Chou CC, Yang CC, Lu MS, Hu LY, Chen KF, et al. 2019. The influence of temperature on metabolisms of phosphorus accumulating organisms in biological wastewater treatment plants in the presence of Cu (II) toxicity. Applied Sciences 9(6):1126

doi: 10.3390/app9061126
[106]

Guo Q, Liu L, Hu Z, Chen G. 2013. Biological phosphorus removal inhibition by roxarsone in batch culture systems. Chemosphere 92(1):138−142

doi: 10.1016/j.chemosphere.2013.02.029
[107]

Katsou E, Alvarino T, Malamis S, Suarez S, Frison N, et al. 2016. Effects of selected pharmaceuticals on nitrogen and phosphorus removal bioprocesses. Chemical Engineering Journal 295:509−517

doi: 10.1016/j.cej.2016.01.012
[108]

Liu H, Yang Y, Sun H, Zhao L, Liu Y, et al. 2018. Fate of tetracycline in enhanced biological nutrient removal process. Chemosphere 193:998−1003

doi: 10.1016/j.chemosphere.2017.11.136
[109]

Li WW, Zhang HL, Sheng GP, Yu HQ. 2015. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Water Research 86:85−95

doi: 10.1016/j.watres.2015.06.034
[110]

Fernandes ÍA, Resende DB, Ramalho TC, Kuca K, da Cunha EFF. 2020. Theoretical studies aimed at finding FLT3 inhibitors and a promising compound and molecular pattern with dual aurora B/FLT3 activity. Molecules 25(7):1726

doi: 10.3390/molecules25071726
[111]

Xia S, Jia R, Feng F, Xie K, Li H, et al. 2012. Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresource Technology 106:36−43

doi: 10.1016/j.biortech.2011.11.112
[112]

Moreira IS, Amorim CL, Ribeiro AR, Mesquita RBR, Rangel AOSS, et al. 2015. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor. Journal of Hazardous Materials 287:93−101

doi: 10.1016/j.jhazmat.2015.01.020
[113]

Wei W, Huang QS, Sun J, Dai X, Ni BJ. 2019. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge. Environmental Science & Technology 53(16):9604−9613

doi: 10.1021/acs.est.9b02971
[114]

Sun C, Wei S, Tan H, Huang Y, Zhang Y. 2022. Progress in upcycling polylactic acid waste as an alternative carbon source: a review. Chemical Engineering Journal 446:136881

doi: 10.1016/j.cej.2022.136881
[115]

Zaaba NF, Jaafar M. 2020. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science 60(9):2061−2075

doi: 10.1002/pen.25511
[116]

Zhou CS, Wu JW, Liu BF, Ma WL, Yang SS, et al. 2022. (Micro) nanoplastics promote the risk of antibiotic resistance gene propagation in biological phosphorus removal system. Journal of Hazardous Materials 431:128547

doi: 10.1016/j.jhazmat.2022.128547
[117]

Li X, He E, Xia B, Van Gestel CAM, Peijnenburg WJGM, et al. 2020. Impact of CeO2 nanoparticles on the aggregation kinetics and stability of polystyrene nanoplastics: importance of surface functionalization and solution chemistry. Water Research 186:116324

doi: 10.1016/j.watres.2020.116324
[118]

Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, et al. 2022. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology 23(7):499−515

doi: 10.1038/s41580-022-00456-z
[119]

Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, et al. 2017. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nature Microbiology 2(2):16231

doi: 10.1038/nmicrobiol.2016.231
[120]

Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273−285

doi: 10.1016/j.cell.2017.09.021
[121]

Wen J, Chen H, Ren Z, Zhang P, Chen J, et al. 2021. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway. Nano Convergence 8(1):10

doi: 10.1186/s40580-021-00260-z
[122]

Oldham ML, Chen S, Chen J. 2013. Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proceedings of the National Academy of Sciences of the United States of America 110(45):18132−18137

doi: 10.1073/pnas.1311407110
[123]

Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, et al. 2008. Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. Journal of Biological Chemistry 283(10):6347−6358

doi: 10.1074/jbc.M705884200
[124]

Chen H, Zheng X, Chen Y, Mu H. 2013. Long-term performance of enhanced biological phosphorus removal with increasing concentrations of silver nanoparticles and ions. RSC Advances 3(25):9835−9842

doi: 10.1039/C3RA40989A
[125]

Ma TF, Chen YP, Yan P, Fang F, Shen Y, et al. 2021. Adaptation mechanism of aerobic denitrifier Enterobacter cloacae strain HNR to short-term ZnO nanoparticle stresses. Environmental Research 197:111178

doi: 10.1016/j.envres.2021.111178
[126]

Wang J, Li Q, Li MM, Chen TH, Zhou YF, et al. 2014. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresource Technology 163:374−376

doi: 10.1016/j.biortech.2014.04.073
[127]

Huang H, Dong L, Wu Y, Zhou S, Zheng X, et al. 2023. Long-term exposure to zinc oxide nanoparticles improves PAOs function in enhanced biological phosphorus removal. Environmental Technology 44(17):2503−2511

doi: 10.1080/09593330.2022.2034982
[128]

Lv J, Zhang S, Luo L, Han W, Zhang J, et al. 2012. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environmental Science & Technology 46(13):7215−7221

doi: 10.1021/es301027a
[129]

Fu SF, Ding JN, Zhang Y, Li YF, Zhu R, et al. 2018. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Science of The Total Environment 625:64−70

doi: 10.1016/j.scitotenv.2017.12.158
[130]

Pan X, Qin P, Liu R, Yu W, Dong X. 2018. Effects of carbon chain length on the perfluoroalkyl acids-induced oxidative stress of erythrocytes in vitro. Journal of Agricultural and Food Chemistry 66(25):6414−6420

doi: 10.1021/acs.jafc.8b02197
[131]

Blotevogel J, Giraud RJ, Borch T. 2018. Reductive defluorination of perfluorooctanoic acid by zero-valent iron and zinc: a DFT-based kinetic model. Chemical Engineering Journal 335:248−254

doi: 10.1016/j.cej.2017.10.131
[132]

Hu Z, Lu X, Sun P, Hu Z, Wang R, et al. 2017. Understanding the performance of microbial community induced by ZnO nanoparticles in enhanced biological phosphorus removal system and its recoverability. Bioresource Technology 225:279−285

doi: 10.1016/j.biortech.2016.11.080
[133]

Fan Z, Zeng W, Wang B, Chang S, Peng Y. 2019. Analysis of microbial community in a continuous flow process at gene and transcription level to enhance biological nutrients removal from municipal wastewater. Bioresource Technology 286:121374

doi: 10.1016/j.biortech.2019.121374
[134]

Lötter LH. 1985. The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process. Water Science and Technology 17(11−12):127−138

doi: 10.2166/wst.1985.0227
[135]

Gao D, Yin H, Liu L, Li X, Liang H. 2013. Effects of idle time on biological phosphorus removal by sequencing batch reactors. Journal of Environmental Sciences 25(12):2396−2402

doi: 10.1016/S1001-0742(12)60294-0
[136]

Weerasekara AW, Jenkins S, Abbott LK, Waite I, McGrath JW, et al. 2016. Microbial phylogenetic and functional responses within acidified wastewater communities exhibiting enhanced phosphate uptake. Bioresource Technology 220:55−61

doi: 10.1016/j.biortech.2016.08.037
[137]

Ge H, Batstone DJ, Keller J. 2015. Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. Water Research 69:173−182

doi: 10.1016/j.watres.2014.11.026
[138]

Kong Y, Nielsen JL, Nielsen PH. 2005. Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Applied and Environmental Microbiology 71(7):4076−4085

doi: 10.1128/AEM.71.7.4076-4085.2005
[139]

Xu Y, Wang C, Hou J, Wang P, You G, et al. 2016. Influence of CeO2 NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen. Environmental Research 151:21−29

doi: 10.1016/j.envres.2016.07.008
[140]

Zhang X, Bahtiar F, Wang Y, Xu L, Wang X, et al. 2020. Achieving simultaneous biological nutrient removal and sludge minimization from marine ship sewage based on an innovative Landscape Integrated Ecological Treatment System (LIETS). Ecological Engineering 156:105989

doi: 10.1016/j.ecoleng.2020.105989