[1]

Waring B, Neumann M, Prentice IC, Adams M, Smith P, et al. 2020. Forests and decarbonization–roles of natural and planted forests. Frontiers in Forests and Global Change 3:58

doi: 10.3389/ffgc.2020.00058
[2]

Aakala T, Remy CC, Arseneault D, Morin H, Girardin MP, et al. 2023. Millennial-scale disturbance history of the boreal zone. In Boreal Forests in the Face of Climate Change, ed. Girona MM. Canada: Springer Cham. pp. 53−87 doi: 10.1007/978-3-031-15988-6_2

[3]

Pugh TAM, Seidl R, Liu D, Lindeskog M, Chini LP, et al. 2024. The anthropogenic imprint on temperate and boreal forest demography and carbon turnover. Global Ecology and Biogeography 33:100−15

doi: 10.1111/geb.13773
[4]

Girona MM, Aakala T, Aquilué N, Bélisle AC, Chaste E, et al. 2023. Challenges for the sustainable management of the boreal forest under climate change. In Boreal Forests in the Face of Climate Change, ed. Girona MM. Canada: Springer Cham. pp. 773−837 doi: 10.1007/978-3-031-15988-6_31

[5]

Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, et al. 2018. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environmental Science & Technology 52:1908−18

doi: 10.1021/acs.est.7b05389
[6]

Dangal SP, Das AK, Paudel SK. 2017. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal. Journal of Environmental Management 196:511−17

doi: 10.1016/j.jenvman.2017.03.056
[7]

Giammarchi F, Vacchiano G, Bertagnolli A, Ventura M, Panzacchi P, et al. 2017. Effects of the lack of forest management on spatiotemporal dynamics of a subalpine Pinus cembra forest. Scandinavian Journal of Forest Research 32:142−53

doi: 10.1080/02827581.2016.1207802
[8]

Pretzsch H, Zenner EK. 2017. Toward managing mixed-species stands: from parametrization to prescription. Forest Ecosystems 4:19

doi: 10.1186/s40663-017-0105-z
[9]

Zhang L, Feng H, Du M, Wang Y, Lai G, et al. 2022. Dynamic effects of structure-based forest management on stand spatial structure in a Platycladus orientalis plantation. Forests 13:852

doi: 10.3390/f13060852
[10]

Hui G, Hu Y, Zhao Z. 2018. Research progress of structure-based forest management. Forest Research 31:85−93

doi: 10.13275/j.cnki.lykxyj.2018.01.011
[11]

Hui G, Zhang G, Zhao Z, Yang A. 2019. Methods of forest structure research: a review. Current Forestry Reports 5:142−54

doi: 10.1007/s40725-019-00090-7
[12]

Hui G, Gadow Kv, Hu Y, Xu H. 2007. Structure-based forest management. Beijing: China Forestry Press

[13]

Hui G, Pommerening A. 2014. Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. Forest Ecology and Management 316:125−38

doi: 10.1016/j.foreco.2013.07.029
[14]

Sheng Q, Dong L, Chen Y, Liu Z. 2023. Selection of the optimal timber harvest based on optimizing stand spatial structure of broadleaf mixed forests. Forests 14:2046

doi: 10.3390/f14102046
[15]

Guo K, Wang B, Niu X. 2023. A review of research on forest ecosystem quality assessment and prediction methods. Forests 14:317

doi: 10.3390/f14020317
[16]

Raymond P, Löf M, Comeau P, Rytter L, Girona MM, et al. 2023. Silviculture of mixed-species and structurally complex boreal stands. In Boreal Forests in the Face of Climate Change, ed. Girona MM. Canada: Springer Cham. pp. 403−16 doi: 10.1007/978-3-031-15988-6_15

[17]

Huuskonen S, Hynynen J, Ojansuu R. 2008. Stand characteristics and external quality of young Scots pine stands in Finland. Silva Fennica 42:245

doi: 10.14214/sf.245
[18]

Pastorella F, Paletto A. 2013. Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). Journal of Forest Science 59:159−68

doi: 10.17221/75/2012-JFS
[19]

Yan X, Feng L, Sharma RP, Duan G, Pang L, et al. 2024. Evaluating forest site quality using the biomass potential productivity approach. Forests 15:23

doi: 10.3390/f15010023
[20]

de Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, et al. 2003. Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. Forest Ecology and Management 174:77−95

doi: 10.1016/S0378-1127(02)00029-4
[21]

Mandal M, Chatterjee ND. 2021. Forest landscape and its ecological quality: a stepwise spatiotemporal evaluation through patch-matrix model in Jhargram District, West Bengal State, India. Regional Sustainability 2:164−76

doi: 10.1016/j.regsus.2021.06.002
[22]

Schlaepfer R, Iorgulescu I, Glenz C. 2002. Management of forested landscapes in mountain areas: an ecosystem-based approach. Forest Policy and Economics 4:89−99

doi: 10.1016/S1389-9341(02)00009-6
[23]

Wang N, Bao Y. 2011. Modeling forest quality at stand level: a case study of Loess Plateau in China. Forest Policy and Economics 13:488−95

doi: 10.1016/j.forpol.2011.05.012
[24]

Plybour C, Laosuwan T, Uttaruk Y, Awichin P, Rotjanakusol T, Itsarawisut J, Singharath M, et al. 2025. An investigation of plant species diversity, above-ground biomass, and carbon stock: insights from a dry dipterocarp forest case study. Diversity 17:428

doi: 10.3390/d17060428
[25]

Burger JA, Kelting DL. 1999. Using soil quality indicators to assess forest stand management. Forest Ecology and Management 122:155−66

doi: 10.1016/S0378-1127(99)00039-0
[26]

Zhou J, Wang X, Wang X, Yao W, Tu Y, et al. 2024. Evaluation of ecosystem quality and stability based on key indicators and ideal reference frame: a case study of the Qinghai-Tibet Plateau. Journal of Environmental Management 370:122460

doi: 10.1016/j.jenvman.2024.122460
[27]

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

doi: 10.1136/bmj.n71
[28]

Bramer WM, Giustini D, De Jonge GB, Holland L, Bekhuis T. 2016. De-duplication of database search results for systematic reviews in EndNote. Journal of the Medical Library Association 104:240−43

doi: 10.3163/1536-5050.104.3.014
[29]

Li Y, Hui G, Zhao Z, Hu Y. 2012. The bivariate distribution characteristics of spatial structure in natural Korean pine broad‐leaved forest. Journal of Vegetation Science 23:1180−90

doi: 10.1111/j.1654-1103.2012.01431.x
[30]

Churchill DJ, Larson AJ, Dahlgreen MC, Franklin JF, Hessburg PF, et al. 2013. Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring. Forest Ecology and Management 291:442−57

doi: 10.1016/j.foreco.2012.11.007
[31]

Baskent EZ, Borges JG, Kašpar J. 2024. An updated review of spatial forest planning: approaches, techniques, challenges, and future directions. Current Forestry Reports 10:299−321

doi: 10.1007/s40725-024-00222-8
[32]

Pommerening A. 2002. Approaches to quantifying forest structures. Forestry 75:305−24

doi: 10.1093/forestry/75.3.305
[33]

Pommerening A, Stoyan D. 2008. Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows. Canadian Journal of Forest Research 38:1110−22

doi: 10.1139/X07-222
[34]

Hui G, von Gadow K, Albert M. 1999. The neighbourhood pattern-a new structure parameter for describing distribution of forest tree position. Scientia Silvae Sinicae 35:37−42 (in Chinese)

doi: 10.3321/j.issn:1001-7488.1999.01.006
[35]

Hui GY, Hu YB. 2001. Measuring species spatial isolation in mixed forests. Forest Research 14:23−27 (in Chinese)

doi: 10.3321/j.issn:1001-1498.2001.01.004
[36]

Hui G, von Gadow K, Albert M. 1999. A new parameter for stand spatial structure—neighbourhood comparison. Forest Research 12:1−6 (in Chinese)

doi: 10.3321/j.issn:1001-1498.1999.01.001
[37]

Hu Y, Hui G. 2015. How to describe the crowding degree of trees based on the relationship of neighboring trees. Journal of Beijing Forestry University 37:1−8

doi: 10.13332/j.1000-1522.20150125
[38]

Hui GY, Zhao ZH, Hu YB, Zhang GQ, Cheng SP, et al. 2023. Comprehensive evaluation of forest spatial structure based on the mean values of structural parameters. Forest Research 36:12−21

doi: 10.12403/j.1001-1498.20220432
[39]

Gao Q, Kan J. 2022. Automatic forest DBH measurement based on structure from motion photogrammetry. Remote Sensing 14:2064

doi: 10.3390/rs14092064
[40]

Großmann J, Carlson L, Kändler G, Pyttel P, Kleinschmit JRG, et al. 2023. Evaluating retention forestry 10 years after its introduction in temperate forests regarding the provision of tree-related microhabitats and dead wood. European Journal of Forest Research 142:1125−47

doi: 10.1007/s10342-023-01581-w
[41]

Ge Z, Yuan M, Shan B, Huang X, Zhang Z. 2020. Evaluation of Management Modes on Larix principis-rupprechtii Plantations in Saihanba of Hebei Province, China. Forest Research 33:38−47

doi: 10.13275/j.cnki.lykxyj.2020.05.005
[42]

Zhang Y. 2022. Analysis of mixed larch forest management in North China based on structured-based forest management theory. Contemporary Horticulture 45:180−82 (in Chinese)

doi: 10.14051/j.cnki.xdyy.2022.10.031
[43]

Chen M. 2021. Effects of Structure-Based Forest Management on Forest State of Broad-leaved Korean Pine Forests in Jiaohe Jilin. Thesis. Chinese Academy of Forestry, Beijing, China. doi: 10.27625/d.cnki.gzlky.2021.000039 (in Chinese)

[44]

Wan P. 2018. Impacts of Forest Management Methods on Stand Quality of Natural Quercus aliena var. acuteserrata Forest in Xiaolongshan, Gansu Province. Thesis. Chinese Academy of Forestry, Beijing, China

[45]

Chen M, Hui G, Hu Y, Zhang G, Zhang G, et al. 2019. Impacts of structure-based forest management on forest quality of broadleaved Korean pine forests in northeastern China. Journal of Beijing Forestry University 41:19−30

doi: 10.13332/j.1000-1522.20190032
[46]

Mäkelä H, Pekkarinen A. 2004. Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management 196:245−55

doi: 10.1016/j.foreco.2004.02.049
[47]

Zhang YD, Liu YC, Liu SR, Zhang XH. 2012. Dynamics of stand biomass and volume of the tree layer in forests with different restoration approaches based on tree-ring analysis. Chinese Journal of Plant Ecology 36:117−25

doi: 10.3724/SP.J.1258.2012.00117
[48]

Jiang X, Zeng S, He D, Long S, Gong Z. 2019. Structure-based management technology of Phoebe zhennan secondary forest in Hunan province based on thinning adjustment. Journal of Central South University of Forestry & Technology 39:48−54, 70 (in Chinese)

doi: 10.14067/j.cnki.1673-923x.2019.10.008
[49]

Xin Y, Ou Z, Xie P, Lv X, Liu W, et al. 2025. Decomposition dynamics and driving factors of leaf litter and fine roots decomposition in secondary oak forests following different management practices in Northwestern China. Plant and Soil

doi: 10.1007/s11104-025-07394-7
[50]

Xie P, Su Q, Xin Y, von Gadow K, Lv X, et al. 2025. Effects of stand structure and soil nutrient status on tree growth and forest production: evidence from a forest management experiment in a mixed oak forest. Trees 39:52

doi: 10.1007/s00468-025-02627-9
[51]

Parresol BR. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45:573−93

doi: 10.1093/forestscience/45.4.573
[52]

Ameray A, Bergeron Y, Valeria O, Montoro Girona M, Cavard X. 2021. Forest carbon management: a review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Current Forestry Reports 7:245−66

doi: 10.1007/s40725-021-00151-w
[53]

Bradford JB. 2011. Potential influence of forest management on regional carbon stocks: an assessment of alternative scenarios in the northern Lake States, USA. Forest Science 57:479−88

doi: 10.1093/forestscience/57.6.479
[54]

Wang Z, Yang H, Wang D, Zhao Z. 2019. Response of height growth of regenerating trees in a Pinus tabulaeformis Carr. plantation to different thinning intensities. Forest Ecology and Management 444:280−89

doi: 10.1016/j.foreco.2019.04.042
[55]

Wan P, Zhang G, Wang H, Zhao Z, Hu Y, et al. 2019. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecological Informatics 50:86−94

doi: 10.1016/j.ecoinf.2019.01.007
[56]

Wan P, Zhao X, Ou Z, He R, Wang P, et al. 2023. Forest management practices change topsoil carbon pools and their stability. Science of The Total Environment 902:166093

doi: 10.1016/j.scitotenv.2023.166093
[57]

Guo R, Chen Y, Xiang M, Yang S, Wang F, et al. 2024. Soil nutrients drive changes in the structure and functions of soil bacterial communities in a restored forest soil chronosequence. Applied Soil Ecology 195:105247

doi: 10.1016/j.apsoil.2023.105247
[58]

Wang K, She D, Zhang X, Wang Y, Wen H, et al. 2024. Tree richness increased biomass carbon sequestration and ecosystem stability of temperate forests in China: Interacted factors and implications. Journal of Environmental Management 368:122214

doi: 10.1016/j.jenvman.2024.122214
[59]

Miao Y, Tong R, Zhu N, Chen S, Zhou F, et al. 2025. Effects of stand structural diversity on carbon storage of Masson pine forests in Fengyang Mountain Nature Reserve, China. Forestry Research 5:e011

doi: 10.48130/forres-0025-0010
[60]

Zhang J, Yang H, Zeng Y, Al Hassan S, Jui MA, et al. 2025. Preliminary comparative effects of close-to-nature and structure-based forest management on carbon sequestration in Pinus tabuliformis plantations of the Loess Plateau, China. Ecology and Evolution 15:e71809

doi: 10.1002/ece3.71809
[61]

Pretzsch H. 2005. Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.): evidence from long-term experimental plots. European Journal of Forest Research 124:193−205

doi: 10.1007/s10342-005-0068-4
[62]

Binkley D, Campoe OC, Gspaltl M, Forrester DI. 2013. Light absorption and use efficiency in forests: Why patterns differ for trees and stands. Forest Ecology and Management 288:5−13

doi: 10.1016/j.foreco.2011.11.002
[63]

Jing Y, Tian P, Wang Q, Li W, Sun Z, et al. 2021. Effects of root dominate over aboveground litter on soil microbial biomass in global forest ecosystems. Forest Ecosystems 8:38

doi: 10.1186/s40663-021-00318-8
[64]

Fournier RA, Mailly D, Walter JN, Soudani K. 2003. Indirect measurement of forest canopy structure from in situ optical sensors. In Remote sensing of forest environments, ed. Wulder MA, Franklin SE. Canada: Springer, Boston, MA. pp. 77−113 doi: 10.1007/978-1-4615-0306-4_4

[65]

Chanthorn W, Hartig F, Brockelman WY. 2017. Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. Forest Ecology and Management 404:100−7

doi: 10.1016/j.foreco.2017.08.001
[66]

Popa I, Nechita C, Hofgaard A. 2017. Stand structure, recruitment and growth dynamics in mixed subalpine spruce and Swiss stone pine forests in the Eastern Carpathians. Science of The Total Environment 598:1050−57

doi: 10.1016/j.scitotenv.2017.04.169
[67]

Sun J, Yu X, Wang H, Jia G, Zhao Y, et al. 2018. Effects of forest structure on hydrological processes in China. Journal of Hydrology 561:187−99

doi: 10.1016/j.jhydrol.2018.04.003
[68]

Zhang L, Hui G, Hu Y, Zhao Z. 2018. Spatial structural characteristics of forests dominated by Pinus tabulaeformis Carr. PLoS One 13:e0194710

doi: 10.1371/journal.pone.0194710
[69]

Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, et al. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155:399−423

doi: 10.1016/S0378-1127(01)00575-8
[70]

O’Hara KL. 1998. Silviculture for structural diversity: a new look at multiaged systems. Journal of Forestry 96:4−10

doi: 10.1093/jof/96.7.4a
[71]

Zeide B. 2005. How to measure stand density. Trees 19:1−14

doi: 10.1007/s00468-004-0343-x
[72]

Newton PF. 1997. Stand density management diagrams: Review of their development and utility in stand-level management planning. Forest Ecology and Management 98:251−65

doi: 10.1016/S0378-1127(97)00086-8
[73]

Chen Y, Wu B, Min Z. 2019. Stand diameter distribution modeling and prediction based on maximum entropy principle. Forests 10:859

doi: 10.3390/f10100859
[74]

Zhao ZH, Hui GY, Hu YB, Li YF, Li YH. 2013. Application of structure-based forest management in broadleaved Korean pine mixed forest. Forest Research 26:467−72 (in Chinese)

doi: 10.3969/j.issn.1001-1498.2013.04.012
[75]

de Castro Nunes Santos Terra M, do Prado-Júnior JA, de Souza CR, Pinto LOR, de Oliveira Silveira EM, et al. 2021. Tree species dominance in neotropical savanna aboveground biomass and productivity. Forest Ecology and Management 496:119430

doi: 10.1016/j.foreco.2021.119430
[76]

Valbuena R, Packalén P, Martín-Fernández S, Maltamo M. 2012. Diversity and equitability ordering profiles applied to study forest structure. Forest Ecology and Management 276:185−95

doi: 10.1016/j.foreco.2012.03.036
[77]

Singh JS. 2012. Biodiversity: an overview. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 82:239−50

doi: 10.1007/s40011-012-0112-3
[78]

Sanmartín-Villar I, Cordero-Rivera A. 2023. Biodiversity and the importance of insect diversity. In Biological Invasions and Global Insect Decline, eds. Rodríguez J, Pyšek P, Novoa A. Amsterdam: Academic Press. pp. 19−46 doi: 10.1016/C2021-0-00548-4

[79]

Li Y. 2021. Study on the Effect of Structure Regulation on the Productivity and Stability of Pinus tabulaeformispo pulation. Northwest Agriculture and Forestry University, Yangling doi: 10.27409/d.cnki.gxbnu.2021.002802 (in Chinese)

[80]

Zhang Y, Qi S, Zhang L, Guo Y, Zhang D, et al. 2024. Optimizing Pinus tabuliformis forest spatial structure and function in Beijing, China. Forests 15:1963

doi: 10.3390/f15111963
[81]

Hardiman BS, LaRue EA, Atkins JW, Fahey RT, Wagner FW, et al. 2018. Spatial variation in canopy structure across forest landscapes. Forests 9:474

doi: 10.3390/f9080474
[82]

Leiterer R, Furrer R, Schaepman ME, Morsdorf F. 2015. Forest canopy-structure characterization: a data-driven approach. Forest Ecology and Management 358:48−61

doi: 10.1016/j.foreco.2015.09.003
[83]

Ou Y, Su Z. 2012. Dynamics of canopy structure and understory light in montane evergreen broadleaved forest following a natural disturbance in North Guangdong. Acta Ecologica Sinica 32:5637−45

doi: 10.5846/stxb201108191221
[84]

Wan P, He R. 2020. Canopy structure and understory light characteristics of a natural Quercus aliena var. acuteserrata forest in China northwest: Influence of different forest management methods. Ecological Engineering 153:105901

doi: 10.1016/j.ecoleng.2020.105901
[85]

Zhang Y, Kang F, Han H, Yin X, Cheng X, et al. 2014. Measurement and analysis on understory light environment and canopy structure of Pinus tabulaeformis plantation in the Taiyue Mountain. Journal of Nanjing Forestry University (Natural Sciences Edition) 38:169−74

doi: 10.3969/j.issn.1000-2006.2014.02.033
[86]

Vepakomma U, Kneeshaw DD, De Grandpré L. 2018. Influence of natural and anthropogenic linear canopy openings on forest structural patterns investigated using LiDAR. Forests 9:540

doi: 10.3390/f9090540
[87]

Peng H, Zhao C, Feng Z, Xu Z. 2011. Extracting the canopy structure parameters using hemispherical photography method. Acta Ecologica Sinica 31:3376−83 (in Chinese)

doi: 10.20103/j.stxb.2011.12.015
[88]

Running SW, Coughlan JC. 1988. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological modelling 42:125−54

doi: 10.1016/0304-3800(88)90112-3
[89]

Gholz HL. 1982. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63:469−81

doi: 10.2307/1938964
[90]

Feng H, Zhang L, Du M, Sun C, Wu D. 2017. Effect on Canopy Characteristic of Platycladus orientalis Plantation in Different Forest Management. Journal of Northeast Forestry University 45:12−15, 37

doi: 10.3969/j.issn.1000-5382.2017.12.003
[91]

Pommerening A. 2006. Evaluating structural indices by reversing forest structural analysis. Forest Ecology and Management 224:266−77

doi: 10.1016/j.foreco.2005.12.039
[92]

Liu H, Dong X, Meng Y, Gao T, Mao L, et al. 2023. A novel model to evaluate spatial structure in thinned conifer-broadleaved mixed natural forests. Journal of Forestry Research 34:1881−98

doi: 10.1007/s11676-023-01647-w
[93]

Gadow KV, Zhang CY, Wehenkel C, Pommerening A, Corral-Rivas J, et al. 2011. Forest structure and diversity. In Continuous cover forestry, ed. Pukkala T. Dordrecht, Netherlands: Springer. pp. 29−83 doi: 10.1007/978-94-007-2202-6_2

[94]

Chen YN, Yang H, Ma SY, Ren MM. 2015. Spatial structure diversity of semi-natural and plantation stands of larix gmelini in Changbai Mountains, northeastern China. Journal of Beijing Forestry University 37:48−58

doi: 10.13332/j.1000-1522.20150171
[95]

Zhu J. 2023. Spatial Characteristics And Structure-Based Management Of Picea wilsonii Forest In DaTong River Basin Of QingHai Province, CHINA. Thesis. College of Forestry Northwest A&F University, Yangling, China. doi: 10.27409/d.cnki.gxbnu.2023.001071 (in Chinese)

[96]

Tang M, Lou M, Chen Y, Xu W, Zhao M. 2012. Comparative analyses on different mingling indices. Scientia Silvae Sinicae 48:46−53 https://d.wanfangdata.com.cn/periodical/lykx201208008 (in Chinese)

[97]

Pommerening A, Uria-Diez J. 2017. Do large forest trees tend towards high species mingling? Ecological Informatics 42:139−47

doi: 10.1016/j.ecoinf.2017.10.009
[98]

Wang H. 2017. Analysis of Second-order Characteristics of Stand Spatial Structure of Natural Forests. Thesis. Chinese Academy of Forestry, Beijing, China https://d.wanfangdata.com.cn/thesis/Y3513723 (in Chinese)

[99]

Wang H, Peng H, Hui G, Hu Y, Zhao Z. 2018. Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Scientific Reports 8:9149

doi: 10.1038/s41598-018-27140-7
[100]

Li Y. 2013. The Bivariate Distribution of Forest Stand Spatial Structural Parameters. Thesis. Chinese Academy of Forestry, Beijing doi: 10.7666/d.Y2405391 (in Chinese)

[101]

Perry D. 1985. The competition process in forest stands. In Attributes of trees as crop plants, eds. Cannell MGR, Jackson JE. Hunts, England: Institute of Terrestrial Ecology. pp. 481−506 https://andrewsforest.oregonstate.edu/pubs/pdf/pub1331.pdf

[102]

de S Magalhães JG, Amoroso MM, Larson BC. 2021. What evidence exists on the effects of competition on trees’ responses to climate change? A systematic map protocol. Environmental Evidence 10:34

doi: 10.1186/s13750-021-00249-5
[103]

Marqués L, Camarero JJ, Zavala MA, Stoffel M, Ballesteros-Cánovas JA, et al. 2021. Evaluating tree-to-tree competition during stand development in a relict Scots pine forest: how much does climate matter? Trees 35:1207−19

doi: 10.1007/s00468-021-02109-8
[104]

Hui G, Wang Y, Zhang G, Zhao Z, Bai C, et al. 2018. A novel approach for assessing the neighborhood competition in two different aged forests. Forest Ecology and Management 422:49−58

doi: 10.1016/j.foreco.2018.03.045
[105]

Ledermann T, Eckmüllner O. 2004. A method to attain uniform resolution of the competition variable Basal-Area-in-Larger Trees (BAL) during forest growth projections of small plots. Ecological modelling 171:195−206

doi: 10.1016/j.ecolmodel.2003.08.005
[106]

Radtke PJ, Westfall JA, Burkhart HE. 2003. Conditioning a distance-dependent competition index to indicate the onset of inter-tree competition. Forest Ecology and Management 175:17−30

doi: 10.1016/S0378-1127(02)00118-4
[107]

Dang P, Gao Y, Liu J, Yu S, Zhao Z. 2018. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Science of The Total Environment 630:171−80

doi: 10.1016/j.scitotenv.2018.02.197
[108]

Richter A, Schöning I, Kahl T, Bauhus J, Ruess L. 2018. Regional environmental conditions shape microbial community structure stronger than local forest management intensity. Forest Ecology and Management 409:250−59

doi: 10.1016/j.foreco.2017.11.027
[109]

Wei X, Shao M, Gale W, Li L. 2014. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports 4:4062

doi: 10.1038/srep04062
[110]

Ou Z, Peng Z, Wang Y, Zhang X, Rao F, et al. 2022. Effects of Management Methods on Soil Organic Carbon, Nitrogen and Phosphorus in Oak Secondary Forests. Forest and Grassland Resources Research 3:96−103 (in Chinese)

doi: 10.13466/j.cnki.lyzygl.2022.03.015
[111]

Zhou T, Wang C, Zhou Z. 2021. Thinning promotes the nitrogen and phosphorous cycling in forest soils. Agricultural and Forest Meteorology 311:108665

doi: 10.1016/j.agrformet.2021.108665
[112]

Kong T, Wu X, Zhao X, Liu M, Huang J, Zhang D. 2014. Soil microbial quantity and soil enzyme activity characteristics of riparian zone in upper reachesof Hunhe river. Bulletin of Soil and Water Conservation 34:123−28

doi: 10.13961/j.cnki.stbctb.2014.01.004
[113]

Wan P, He R, Wang P, Cao A. 2022. Implementation of different forest management methods in a natural forest: Changes in soil microbial biomass and enzyme activities. Forest Ecology and Management 520:120409

doi: 10.1016/j.foreco.2022.120409
[114]

Wan P, Zhang G, Zhao Z, Hu Y, Liu W, et al. 2019. Short-term effects of different forest management methods on soil microbial communities of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Forests 10:161

doi: 10.3390/f10020161
[115]

Ma Y, Halik Ü, Eziz A, Mijit M, Wei Z, et al. 2024. Dynamic changes in stand structure, diversity, and stability of desert riparian forests in Northwestern China over nearly 20 years. Journal of Forestry Research 36:11

doi: 10.1007/s11676-024-01806-7
[116]

Hui G, Zhang G, Zhao Z, Hu Y, Liu W, et al. 2016. A new rule of π value of natural mixed forest optimal stand state. Scientia Silvae Sinicae 52:1−8 (in Chinese)

[117]

Zhang G, Hui G, Zhang G, Hu Y, Zhao Z. 2018. A novel comprehensive evaluation method of forest state based on unit circle. Forests 10:5

doi: 10.3390/f10010005
[118]

Wan P, Liu W, Liu R, Wang P, Wang H, et al. 2020. Effects of structure-based forest management on stand space structure and its stability of mixed oak-pine forest. Scientia Silvae Sinicae 56:35−45 (in Chinese)

doi: 10.11707/j.1001-7488.20200404
[119]

Ouyang S, Xiang W, Gou M, Chen L, Lei P, et al. 2021. Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio‐economic conditions. Global Ecology and Biogeography 30:500−13

doi: 10.1111/geb.13235
[120]

Feng J, Wang L, Zhai C, Jiang L, Yang Y, et al. 2024. Root carbon inputs outweigh litter in shaping grassland soil microbiomes and ecosystem multifunctionality. NPJ Biofilms and Microbiomes 10:150

doi: 10.1038/s41522-024-00616-3
[121]

Zhang G, Hui G, Zhao Z, Hu Y, Wang H, et al. 2018. Composition of basal area in natural forests based on the uniform angle index. Ecological Informatics 45:1−8

doi: 10.1016/j.ecoinf.2018.01.002
[122]

Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM, Balvanera P, et al. 2016. Biomass resilience of Neotropical secondary forests. Nature 530:211−14

doi: 10.1038/nature16512
[123]

Zhang G, Hui G, Hu Y, Zhao Z, Guan X, et al. 2019. Designing near-natural planting patterns for plantation forests in China. Forest Ecosystems 6:28

doi: 10.1186/s40663-019-0187-x
[124]

Santosh M, Groves DI, Yang CX. 2024. Habitable planet to sustainable civilization: global climate change with related clean energy transition reliant on declining critical metal resources. Gondwana Research 130:220−33

doi: 10.1016/j.gr.2024.01.013
[125]

Liang S, Ziegler AD, Reich PB, Zhu K, Wang D, et al. 2025. Climate mitigation potential for targeted forestation after considering climate change, fires, and albedo. Science Advances 11:eadn7915

doi: 10.1126/sciadv.adn7915
[126]

Prescott CE, Grayston SJ. 2013. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. Forest Ecology and Management 309:19−27

doi: 10.1016/j.foreco.2013.02.034
[127]

Huang C, Fu S, Tong Y, Ma X, Yuan F, et al. 2023. Impacts of forest management on the biodiversity and sustainability of Carya dabieshanensis forests. Forests 14:1331

doi: 10.3390/f14071331
[128]

Yu R, Luo Y, Zhou Q, Zhang X, Wu D, et al. 2021. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. International Journal of Applied Earth Observation and Geoinformation 101:102363

doi: 10.1016/j.jag.2021.102363
[129]

Wu X, Shen X, Cao L, Wang G, Cao F. 2019. Assessment of individual tree detection and canopy cover estimation using unmanned aerial vehicle based light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sensing 11:908

doi: 10.3390/rs11080908
[130]

Zhang J, Zhou C, Zhang G, Yang Z, Pang Z, et al. 2024. A novel framework for forest above-ground biomass inversion using multi-source remote sensing and deep learning. Forests 15:456

doi: 10.3390/f15030456
[131]

Dainelli R, Toscano P, Di Gennaro SF, Matese A. 2021. Recent advances in unmanned aerial vehicles forest remote sensing—a systematic review. Part II: research applications. Forests 12:397

doi: 10.3390/f12040397
[132]

Liang X, Yang T, Niu J, Zhang L, Wang D, et al. 2022. Quality assessment and rehabilitation of mountain forest in the Chongli Winter Olympic Games Area, China. Forests 13:783

doi: 10.3390/f13050783
[133]

Wang X. 2021. Recent advances in nondestructive evaluation of wood: in-forest wood quality assessments. Forests 12:949

doi: 10.3390/f12070949
[134]

Liu J, Chen Z, Zhao Z. 2025. Assessing the accuracy of forest above-ground biomass and carbon storage estimation by meta-analysis based close-range remote sensing. Forestry Research 5:e017

doi: 10.48130/forres-0025-0017
[135]

Han H, Wan R. 2021. Research progress of forest ecological quality assessment methods. Sustainable Forestry 4:1−13

doi: 10.24294/sf.v4i2.1606