[1]

Grierson CS, Barnes SR, Chase MW, Clarke M, Grierson D, et al. 2011. One hundred important questions facing plant science research. New Phytologist 192:6−12

doi: 10.1111/j.1469-8137.2011.03859.x
[2]

Wang J, Defrenne C, McCormack ML, Yang L, Tian D, et al. 2021. Fine-root functional trait responses to experimental warming: a global meta-analysis. New Phytologist 230:1856−67

doi: 10.1111/nph.17279
[3]

Chen W, Zhou M, Zhao M, Chen R, Tigabu M, et al. 2021. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. BMC Plant Biology 21:525

doi: 10.1186/s12870-021-03245-6
[4]

Jin X, Zhu J, Wei X, Xiao Q, Xiao J, et al. 2024. Adaptation strategies of seedling root response to nitrogen and phosphorus addition. Plants 13:536

doi: 10.3390/plants13040536
[5]

Su TH, Shen Y, Chiang YY, Liu YT, You HM, et al. 2024. Species selection as a key factor in the afforestation of coastal salt-affected lands: Insights from pot and field experiments. Journal of Environmental Management 360:121126

doi: 10.1016/j.jenvman.2024.121126
[6]

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, et al. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193:30−50

doi: 10.1111/j.1469-8137.2011.03952.x
[7]

Ivković M, Gapare W, Yang H, Dutkowski G, Buxton P, et al. 2015. Pattern of genotype by environment interaction for radiata pine in southern Australia. Annals of Forest Science 72:391−401

doi: 10.1007/s13595-014-0437-6
[8]

Boye C, Nirmalan S, Ranjbaran A, Luca F. 2024. Genotype × environment interactions in gene regulation and complex traits. Nature Genetics 56:1057−68

doi: 10.1038/s41588-024-01776-w
[9]

Guo T, Wei J, Li X, Yu J. 2024. Environmental context of phenotypic plasticity in flowering time in sorghum and rice. Journal of Experimental Botany 75:1004−15

doi: 10.1093/jxb/erad398
[10]

Bardgett RD, Mommer L, De Vries FT. 2014. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology and Evolution 29:692−99

doi: 10.1016/j.tree.2014.10.006
[11]

Chen X, Liu P, Zhao B, Zhang J, Ren B, et al. 2022. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L) and their dependency on phosphorus placement depth. Field Crops Research 276:108378

doi: 10.1016/j.fcr.2021.108378
[12]

Zhao J, Guo B, Hou Y, Yang Q, Feng Z, et al. 2024. Multi-dimensionality in plant root traits: progress and challenges. Journal of Plant Ecology 17:rtae 043

doi: 10.1093/jpe/rtae043
[13]

Lu H, Ren M, Lin R, Jin K, Mao C. 2024. Developmental responses of roots to limited phosphate availability: Research progress and application in cereals. Plant Physiology 196:2162−74

doi: 10.1093/plphys/kiae495
[14]

Zhang Y, Cao J, Lu M, Kardol P, Wang J, et al. 2024. The origin of bi-dimensionality in plant root traits. Trends in Ecology & Evolution 39:78−88

doi: 10.1016/j.tree.2023.09.002
[15]

Han M, Chen Y, Li R, Yu M, Fu L, et al. 2022. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist 234:837−49

doi: 10.1111/nph.17906
[16]

Wang Z, Guo D, Wang X, Gu J, Mei L. 2006. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant and Soil 288:155−71

doi: 10.1007/s11104-006-9101-8
[17]

Kong D, Ma C, Zhang Q, Li L, Chen X, et al. 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist 203:863−72

doi: 10.1111/nph.12842
[18]

Valverde-Barrantes OJ. 2022. Dissecting how fine roots function. New Phytologist 233:1539−41

doi: 10.1111/nph.17896
[19]

Zemunik G, Turner BL, Lambers H, Laliberté E. 2015. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1:15050

doi: 10.1038/nplants.2015.50
[20]

McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, et al. 2017. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytologist 215:27−37

doi: 10.1111/nph.14459
[21]

Wen Z, Li H, Shen Q, Tang X, Xiong C, et al. 2019. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist 223:882−95

doi: 10.1111/nph.15833
[22]

Messier J, Becker-Scarpitta A, Li Y, Violle C, Vellend M. 2024. Root and biomass allocation traits predict changes in plant species and communities over four decades of global change. Ecology 105:e4389

doi: 10.1002/ecy.4389
[23]

Bennett JA, Klironomos J. 2019. Mechanisms of plant−soil feedback: interactions among biotic and abiotic drivers. New Phytologist 222:91−96

doi: 10.1111/nph.15603
[24]

Kotula L, Clode PL, Ranathunge K, Lambers H. 2021. Role of roots in adaptation of soil-indifferent Proteaceae to calcareous soils in south-western Australia. Journal of Experimental Botany 72:1490−505

doi: 10.1093/jxb/eraa515
[25]

Steiner FA, Wild AJ, Tyborski N, Tung SY, Koehler T, et al. 2024. Rhizosheath drought responsiveness is variety-specific and a key component of belowground plant adaptation. New Phytologist 242:479−92

doi: 10.1111/nph.19638
[26]

Zhu J, Zhang C, Lynch JP. 2010. The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Functional Plant Biology 37:313−322

doi: 10.1071/fp09197
[27]

Freschet GT, Bellingham PJ, Lyver PO, Bonner KI, Wardle DA. 2013. Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. Ecology and Evolution 3:1065−78

doi: 10.1002/ece3.520
[28]

Wen Z, Pang J, Tueux G, Liu Y, Shen J, et al. 2020. Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates. Functional Ecology 34:1311−24

doi: 10.1111/1365-2435.13562
[29]

Liu N, Ding C, Li B, Ding M, Su X. 2021. Analysis of the genotype interaction of four-year-old Populus euramericana using the BLUP-GGE technique. Forests 12:1759

doi: 10.3390/f12121759
[30]

Poupon V, Gezan SA, Schueler S, Lstibůrek M. 2023. Genotype x environment interaction and climate sensitivity in growth and wood density of European larch. Forest Ecology and Management 545:121259

doi: 10.1016/j.foreco.2023.121259
[31]

Dias PC, Xavier A, de Resende MDV, Barbosa MHP, Biernaski FA, et al. 2018. Genetic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype x environment interaction. Crop Breeding and Applied Biotechnology 18:55−64

doi: 10.1590/1984-70332018v18n1a8
[32]

Li H, Testerink C, Zhang Y. 2021. How roots and shoots communicate through stressful times. Trends in Plant Science 26:940−52

doi: 10.1016/j.tplants.2021.03.005
[33]

Yuan C, Zhang Z, Jin G, Zheng Y, Zhou Z, et al. 2021. Genetic parameters and genotype by environment interactions influencing growth and productivity in Masson pine in east and central China. Forest Ecology and Management 487:118991

doi: 10.1016/j.foreco.2021.118991
[34]

Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F. 2018. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytologist 219:1338−52

doi: 10.1111/nph.15225
[35]

Liao Y, Fan H, Wei X, Wang H, Shen F, et al. 2023. Shifting of the first-order root foraging strategies of Chinese fir (Cunninghamia lanceolata) under varied environmental conditions. Trees 37:921−32

doi: 10.1007/s00468-023-02394-5
[36]

He Y, Zhang Q, Jiang C, Lan Y, Zhang H, et al. 2023. Mixed planting improves soil aggregate stability and aggregate-associated C-N-P accumulation in subtropical China. Frontiers in Forests and Global Change 6:1141953

doi: 10.3389/ffgc.2023.1141953
[37]

Ge H, Song Y, Su X, Zhang D, Zhang X. 2020. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models. Journal of Beijing Forestry University 42:59−70 (in Chinese)

doi: 10.12171/j.1000-1522.20190296
[38]

Braga RC, Paludeto JGZ, Souza BM, Aguiar AV, Pollnow MFM, et al. 2020. Genetic parameters and genotype × environment interaction in Pinus taeda clonal tests. Forest Ecology and Management 474:118342

doi: 10.1016/j.foreco.2020.118342
[39]

Yan W, Kang MS, Ma B, Woods S, Cornelius PL. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47:643−53

doi: 10.2135/cropsci2006.06.0374
[40]

Chmura DJ, Barzdajn W, Kowalkowski W, Guzicka M, Rożkowski R. 2021. Analysis of genotype-by-environment interaction in a multisite progeny test with Scots pine for supporting selection decisions. European Journal of Forest Research 140:1457−67

doi: 10.1007/s10342-021-01417-5
[41]

Conti L, Block S, Parepa M, Münkemüller T, Thuiller W, et al. 2018. Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. Journal of Ecology 106:1607−20

doi: 10.1111/1365-2745.12928
[42]

Mumford MH, Forknall CR, Rodriguez D, Eyre JX, Kelly AM. 2023. Incorporating environmental covariates to explore genotype × environment × management (G × E × M) interactions: A one-stage predictive model. Field Crops Research 304:109133

doi: 10.1016/j.fcr.2023.109133
[43]

Ren K, Xu M, Li R, Zheng L, Wang H, et al. 2023. Achieving high yield and nitrogen agronomic efficiency by coupling wheat varieties with soil fertility. Science of The Total Environment 881:163531

doi: 10.1016/j.scitotenv.2023.163531
[44]

Zhang YJ, Si YL, Ju SB, Jiang WY, Zhao MZ, et al. 2025. Synergistic effects of nitrogen deposition and phosphorus distribution patterns on root morphological and chemical traits, and nutrient efficiency in Chinese fir. Journal of Plant Ecology 18:rtaf062

doi: 10.1093/jpe/rtaf062
[45]

Yan P, He N, Fernández-Martínez M, Yang X, Zuo Y, et al. 2025. Plant acquisitive strategies promote resistance and temporal stability of semiarid grasslands. Ecology Letters 28:e70110

doi: 10.1111/ele.70110
[46]

Zou X, Wu P, Jia Y Ma J, Ma X. 2016. Periodical response of Chinese fir root to the phosphorus concentrations in patches and heterogeneous distribution in different growing stages. Journal of Plant Nutrition and Fertilizers, 22:1056−63 (in Chinese)

doi: 10.11674/zwyf.15076
[47]

Zheng G, Su X, Chen X, Hu M, Ju W, et al. 2024. Variations in fine root biomass, morphology, and vertical distribution in both trees and understory vegetation among Chinese fir plantations. Forest Ecology and Management 557:121748

doi: 10.1016/j.foreco.2024.121748
[48]

Zhu L, Yao X, Chen W, Robinson D, Wang X, et al. 2023. Plastic responses of below-ground foraging traits to soil phosphorus-rich patches across 17 coexisting AM tree species in a subtropical forest. Journal of Ecology 111:830−44

doi: 10.1111/1365-2745.14064
[49]

Che J, Wang Y, Dong A, Cao Y, Wu S, et al. 2024. A nested reciprocal experimental design to map the genetic architecture of transgenerational phenotypic plasticity. Horticulture Research 11:uhae172

doi: 10.1093/hr/uhae172
[50]

Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, et al. 2023. Species phylogeny, ecology, and root traits as predictors of root exudate composition. New Phytologist 239:1212−24

doi: 10.1111/nph.19060
[51]

Hayashi R, Maie N, Wagai R, Hirano Y, Matsuda Y, et al. 2023. An increase of fine-root biomass in nutrient-poor soils increases soil organic matter but not soil cation exchange capacity. Plant and Soil 482:89−110

doi: 10.1007/s11104-022-05675-z
[52]

Turner SC, Schweitzer JA. 2024. Plant neighbors differentially alter a focal species' biotic interactions through changes to resource allocation. Ecology 105:e4395

doi: 10.1002/ecy.4395
[53]

Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, et al. 2016. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180:923−31

doi: 10.1007/s00442-016-3549-x
[54]

Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, et al. 2015. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115:293−301

doi: 10.1038/hdy.2015.8
[55]

Wang Z, Zhang X, Chhin S, Zhang J, Duan A. 2021. Disentangling the effects of stand and climatic variables on forest productivity of Chinese fir plantations in subtropical China using a random forest algorithm. Agricultural and Forest Meteorology 304–305:108412

doi: 10.1016/j.agrformet.2021.108412
[56]

Carmona CP, Bueno CG, Toussaint A, Träger S, Díaz S, et al. 2021. Fine-root traits in the global spectrum of plant form and function. Nature 597:683−87

doi: 10.1038/s41586-021-03871-y
[57]

Yan Y, Li B, Huang Z, Zhang H, Wu X, et al. 2021. Characteristics and driving factors of rhizosphere bacterial communities of Chinese fir provenances. Forests 12:1362

doi: 10.3390/f12101362
[58]

Zou X, Wei D, Wu P, Zhang Y, Hu Y, et al. 2018. Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees 32:897−912

doi: 10.1007/s00468-018-1683-2
[59]

Xiong D, Huang J, Yang Z, Cai Y, Lin TC et al. 2020. The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand. Forest Ecology and Management 458:117793

doi: 10.1016/j.foreco.2019.117793