[1]

Chen Z, Li Y, Cai Y, Wang S, Hu B, et al. 2023. Application of covalent organic frameworks and metal-organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. Carbon Research 2:8

doi: 10.1007/s44246-023-00041-9
[2]

Cheng N, Wang B, Feng Q, Zhang X, Chen M. 2021. Co-adsorption performance and mechanism of nitrogen and phosphorus onto Eupatorium adenophorum biochar in water. Bioresource Technology 340:125696

doi: 10.1016/j.biortech.2021.125696
[3]

Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS, et al. 2022. A review on synergistic coexisting pollutants for efficient photocatalytic reaction in wastewater remediation. Environmental Research 209:112748

doi: 10.1016/j.envres.2022.112748
[4]

Zou H, Zhao J, He F, Zhong Z, Huang J, et al. 2021. Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. Journal of Hazardous Materials 413:125252

doi: 10.1016/j.jhazmat.2021.125252
[5]

Jiang Z, Chen M, Lee X, Feng Q, Cheng N, et al. 2023. Enhanced removal of sulfonamide antibiotics from water by phosphogypsum modified biochar composite. Journal of Environmental Sciences 130:174−186

doi: 10.1016/j.jes.2022.10.023
[6]

Novikau R, Lujaniene G. 2022. Adsorption behaviour of pollutants: Heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): A review. Journal of Environmental Management 309:114685

doi: 10.1016/j.jenvman.2022.114685
[7]

Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. 2018. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials 344:146−162

doi: 10.1016/j.jhazmat.2017.09.058
[8]

Aruna, Bagotia N, Sharma AK, Kumar S. 2021. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 268:129309

doi: 10.1016/j.chemosphere.2020.129309
[9]

Gupta VK, Agarwal S, Ahmad R, Mirza A, Mittal J. 2020. Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/ activated carbon nanocomposite. International Journal of Biological Macromolecules 158:1310−1318

doi: 10.1016/j.ijbiomac.2020.05.025
[10]

Ma Y, Liu A, Egodawatta P, McGree J, Goonetilleke A. 2017. Assessment and management of human health risk from toxic metals and polycyclic aromatic hydrocarbons in urban stormwater arising from anthropogenic activities and traffic congestion. Science of The Total Environment 579:202−211

doi: 10.1016/j.scitotenv.2016.11.015
[11]

Chen J, Zhang X, Bi F, Zhang X, Yang Y, et al. 2020. A facile synthesis for uniform tablet-like TiO2/C derived from materials of institut lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. Journal of Colloid and Interface Science 571:275−284

doi: 10.1016/j.jcis.2020.03.055
[12]

Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. 2021. Phenol removal kinetics from synthetic wastewater by activation of persulfate using a catalyst generated from shipping ports sludge. Chemosphere 283:131265

doi: 10.1016/j.chemosphere.2021.131265
[13]

Zhou Y, He Z, Tao Y, Xiao Y, Zhou T, et al. 2016. Preparation of a functional silica membrane coated on Fe3O4 nanoparticle for rapid and selective removal of perfluorinated compounds from surface water sample. Chemical Engineering Journal 303:156−166

doi: 10.1016/j.cej.2016.05.137
[14]

Cheng N, Wang B, Chen M, Feng Q, Zhang X, et al. 2023. Adsorption and photocatalytic degradation of quinolone antibiotics from wastewater using functionalized biochar. Environmental Pollution 336:122409

doi: 10.1016/j.envpol.2023.122409
[15]

Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, et al. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research 69:234−242

doi: 10.1016/j.watres.2014.11.021
[16]

Madureira J, Barros L, Melo R, Cabo Verde S, Ferreira ICFR, et al. 2018. Degradation of phenolic acids by gamma radiation as model compounds of cork wastewaters. Chemical Engineering Journal 341:227−237

doi: 10.1016/j.cej.2018.02.036
[17]

Liu X, Wei W, Xu J, Wang D, Song L, Ni B. 2020. Photochemical decomposition of perfluorochemicals in contaminated water. Water Research 186:116311

doi: 10.1016/j.watres.2020.116311
[18]

Sun S, Yao H, Fu W, Xue S, Zhang W. 2020. Enhanced degradation of antibiotics by photo-fenton reactive membrane filtration. Journal of Hazardous Materials 386:121955

doi: 10.1016/j.jhazmat.2019.121955
[19]

Fu ZJ, Jiang SK, Chao XY, Zhang CX, Shi Q, et al. 2022. Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Research 222:118888

doi: 10.1016/j.watres.2022.118888
[20]

Li H, Tian Y, Liu W, Long Y, Ye J, et al. 2020. Impact of electrokinetic remediation of heavy metal contamination on antibiotic resistance in soil. Chemical Engineering Journal 400:125866

doi: 10.1016/j.cej.2020.125866
[21]

Ma X, Guo N, Ren S, Wang S, Wang Y. 2019. Response of antibiotic resistance to the co-existence of chloramphenicol and copper during bio-electrochemical treatment of antibiotic-containing wastewater. Environment International 126:127−133

doi: 10.1016/j.envint.2019.02.002
[22]

Pan X, Gu Z, Chen W, Li Q. 2021. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Science of The Total Environment 754:142104

doi: 10.1016/j.scitotenv.2020.142104
[23]

Crini G, Lichtfouse E. 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters 17:145−155

doi: 10.1007/s10311-018-0785-9
[24]

Atun G, Ayar N, Kurtoğlu AE, Ortaboy S. 2019. A comparison of sorptive removal of anthraquinone and azo dyes using fly ash from single and binary solutions. Journal of Hazardous Materials 371:94−107

doi: 10.1016/j.jhazmat.2019.03.006
[25]

Wang L, Han X, Liang T, Yan X, Yang X, et al. 2022. Cosorption of Zn(II) and chlortetracycline onto montmorillonite: pH effects and molecular investigations. Journal of Hazardous Materials 424:127368

doi: 10.1016/j.jhazmat.2021.127368
[26]

Du L, Zhao Y, Wang C, Zhang H, Chen Q, et al. 2020. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. Science of The Total Environment 721:137765

doi: 10.1016/j.scitotenv.2020.137765
[27]

Ai Y, Liu Y, Huo Y, Zhao C, Sun L, et al. 2019. Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials. Environmental Science: Nano 6:3336−3348

doi: 10.1039/C9EN00866G
[28]

Sun Y, Xu Y, Xu Y, Wang L, Liang X, et al. 2016. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials. Environmental Pollution 208:739−746

doi: 10.1016/j.envpol.2015.10.054
[29]

Zhang Y, Zhao M, Cheng Q, Wang C, Li H, et al. 2021. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere 279:130927

doi: 10.1016/j.chemosphere.2021.130927
[30]

Wang F, Jin L, Guo C, Min L, Zhang P, et al. 2021. Enhanced heavy metals sorption by modified biochars derived from pig manure. Science of The Total Environment 786:147595

doi: 10.1016/j.scitotenv.2021.147595
[31]

Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, et al. 2019. Review on heavy metal adsorption processes by carbon nanotubes. Journal of Cleaner Production 230:783−793

doi: 10.1016/j.jclepro.2019.05.154
[32]

Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems-A review. Mitigation and Adaptation Strategies for Global Change 11:403−427

doi: 10.1007/s11027-005-9006-5
[33]

Lehmann J, Joseph S. 2009. Biochar for environmental management: science and technology. London & Sterling: Earthscan, VA. 416 pp

[34]

Jiang T, Wang B, Hassan M. 2025. Green synthesis of natural limonite-modified biochar catalyst for peroxymonosulfate activation in efficient degradation carbamazepine in water. Journal of Environmental Chemical Engineering 13:115522

doi: 10.1016/j.jece.2025.115522
[35]

Wei M, Wang B, Wu P, Zhang X, Chen M, et al. 2024. Electrolytic manganese residue-biochar composite for simultaneous removal of antimony and arsenic from water: adsorption performance and mechanisms. Journal of Cleaner Production 437:140623

doi: 10.1016/j.jclepro.2024.140623
[36]

Xu Q, Liu T, Li L, Liu B, Wang X, et al. 2021. Hydrothermal carbonization of distillers grains with clay minerals for enhanced adsorption of phosphate and methylene blue. Bioresource Technology 340:125725

doi: 10.1016/j.biortech.2021.125725
[37]

Wang B, Zhao C, Feng Q, Lee X, Zhang X, et al. 2024. Biochar supported nanoscale zerovalent iron-calcium alginate composite for simultaneous removal of Mn(II) and Cr(VI) from wastewater: Sorption performance and mechanisms. Environmental Pollution 343:123148

doi: 10.1016/j.envpol.2023.123148
[38]

Zhao R, Wang B, Zhang X, Lee X, Chen M, et al. 2022. Insights into Cr(VI) removal mechanism in water by facile one-step pyrolysis prepared coal gangue-biochar composite. Chemosphere 299:134334

doi: 10.1016/j.chemosphere.2022.134334
[39]

Zhao N, Zhao C, Lv Y, Zhang W, Du Y, et al. 2017. Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar. Chemosphere 186:422−429

doi: 10.1016/j.chemosphere.2017.08.016
[40]

Zhou L, Zhu X, Chi T, Liu B, Du C, et al. 2022. Reutilization of manganese enriched biochar derived from Phytolacca acinosa Roxb. residue after phytoremediation for lead and tetracycline removal. Bioresource Technology 345:126546

doi: 10.1016/j.biortech.2021.126546
[41]

Wang N, Wang B, Zhang X. 2024. TiO2-loaded phosphogypsum-modified biochar for the removal of ofloxacin and Cu2+: Performance, mechanisms, and toxicity assessment. Chemical Engineering Journal 498:155441

doi: 10.1016/j.cej.2024.155441
[42]

Hu B, Ai Y, Jin J, Hayat T, Alsaedi A, et al. 2020. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2:47−64

doi: 10.1007/s42773-020-00044-4
[43]

Akash S, Rameshwar SS, Rajamohan N, Rajasimman M, Vo DN. 2024. Metal oxide nanobiochar materials to remediate heavy metal and dye pollution: a review. Environmental Chemistry Letters 22:2091−2112

doi: 10.1007/s10311-024-01724-4
[44]

Kasera N, Kolar P, Hall SG. 2022. Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: a review. Biochar 4:17

doi: 10.1007/s42773-022-00145-2
[45]

Ravindiran G, Rajamanickam S, Janardhan G, Hayder G, Alagumalai A, et al. 2024. Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review. Biochar 6:62

doi: 10.1007/s42773-024-00350-1
[46]

Huang Q, Song S, Chen Z, Hu B, Chen J, Wang X. 2019. Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar 1:45−73

doi: 10.1007/s42773-019-00006-5
[47]

Steiner T, Schulze K, Scharler R, Anca-Couce A. 2024. Comparison of single particle models for biomass char, chemical looping and metal oxide conversion processes. Chemical Engineering Journal 488:150993

doi: 10.1016/j.cej.2024.150993
[48]

Hong G, Shan R, Gu J, Huhe T, Yuan H, Chen Y. 2024. Fe-Zn bimetallic oxide functionalized biochar for enhanced adsorption of enrofloxacin in water. Journal of Environmental Chemical Engineering 12:112208

doi: 10.1016/j.jece.2024.112208
[49]

Dai SJ, Zhao YC, Niu DJ, Li Q, Chen Y. 2019. Preparation and reactivation of magnetic biochar by molten salt method: relevant performance for chlorine-containing pesticides abatement. Journal of the Air & Waste Management Association 69:58−70

doi: 10.1080/10962247.2018.1510441
[50]

Yadav A, Bagotia N, Sharma AK, Kumar S. 2021. Advances in decontamination of wastewater using biomass-basedcomposites: a critical review. Science of The Total Environment 784:147108

doi: 10.1016/j.scitotenv.2021.147108
[51]

Yap MW, Mubarak NM, Sahu JN, Abdullah EC. 2017. Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. Journal of Industrial and Engineering Chemistry 45:287−295

doi: 10.1016/j.jiec.2016.09.036
[52]

Cho DW, Chon CM, Yim GJ, Ryu J, Jo H, et al. 2023. Adsorption of potentially harmful elements by metal-biochar prepared via co-pyrolysis of coffee grounds and Nano Fe(III) oxides. Chemosphere 319:136536

doi: 10.1016/j.chemosphere.2022.136536
[53]

Han H, Rafiq MK, Zhou T, Xu R, Mašek O, et al. 2019. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials 369:780−796

doi: 10.1016/j.jhazmat.2019.02.003
[54]

Gopalan J, Buthiyappan A, Abdul Raman AA. 2022. Insight into metal-impregnated biomass based activated carbon for enhanced carbon dioxide adsorption: a review. Journal of Industrial and Engineering Chemistry 113:72−95

doi: 10.1016/j.jiec.2022.06.026
[55]

Jiang Z, Sun Z, Yang Y, Chen S, Shangguan W, et al. 2017. The role of metal oxide interactions: revisiting Pt growth on the TiO2 surface in the process of impregnation method. Nanoscale 9:14272−14279

doi: 10.1039/C7NR02913F
[56]

Lin L, Gao M, Qiu W, Wang D, Huang Q, et al. 2017. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environmental Pollution 231:479−486

doi: 10.1016/j.envpol.2017.08.001
[57]

Li R, Wang JJ, Gaston LA, Zhou B, Li M, et al. 2018. An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon 129:674−687

doi: 10.1016/j.carbon.2017.12.070
[58]

Fang L, Huang T, Lu H, Wu XL, Chen Z, et al. 2023. Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications. Biochar 5:42

doi: 10.1007/s42773-023-00237-7
[59]

Daud M, Hai A, Banat F, Wazir MB, Habib M, et al. 2019. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) - containing hybrids as promising adsorbents for dyes removal. Journal of Molecular Liquids 288:110989

doi: 10.1016/j.molliq.2019.110989
[60]

Keyikoglu R, Khataee A, Yoon Y. 2022. Layered double hydroxides for removing and recovering phosphate: recent advances and future directions. Advances in Colloid and Interface Science 300:102598

doi: 10.1016/j.cis.2021.102598
[61]

de Souza dos Santos GE, dos Santos Lins PV, de Magalhães Oliveira LMT, da Silva EO, Anastopoulos I, et al. 2021. Layered double hydroxides/biochar composites as adsorbents for water remediation applications: recent trends and perspectives. Journal of Cleaner Production 284:124755

doi: 10.1016/j.jclepro.2020.124755
[62]

Zubair M, Ihsanullah I, Abdul Aziz H, Azmier Ahmad M, Al-Harthi MA. 2021. Sustainable wastewater treatment by biochar/layered double hydroxide composites: progress, challenges, and outlook. Bioresource Technology 319:124128

doi: 10.1016/j.biortech.2020.124128
[63]

Liang X, Su Y, Wang X, Liang C, Tang C, et al. 2023. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: synthesis and application in a combined heavy metal-contaminated environment. Chemosphere 313:137467

doi: 10.1016/j.chemosphere.2022.137467
[64]

Bian H, Shen C, Liu W, Man YB, Wong MH, et al. 2023. An improved method of MgFe-layered double hydroxide/biochar composite synthesis. Journal of Cleaner Production 393:136186

doi: 10.1016/j.jclepro.2023.136186
[65]

Liao W, Zhang X, Shao J, Yang H, Zhang S, et al. 2022. Simultaneous removal of cadmium and lead by biochar modified with layered double hydroxide. Fuel Processing Technology 235:107389

doi: 10.1016/j.fuproc.2022.107389
[66]

Theiss FL, Ayoko GA, Frost RL. 2016. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—a review. Applied Surface Science 383:200−213

doi: 10.1016/j.apsusc.2016.04.150
[67]

Thines KR, Abdullah EC, Mubarak NM, Ruthiraan M. 2017. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renewable and Sustainable Energy Reviews 67:257−276

doi: 10.1016/j.rser.2016.09.057
[68]

Han L, Nie X, Wei J, Gu M, Wu W, et al. 2021. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar. Science of The Total Environment 751:141491

doi: 10.1016/j.scitotenv.2020.141491
[69]

Hassan M, Naidu R, Du J, Qi F, Ahsan MA, et al. 2022. Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions. International Journal of Biological Macromolecules 207:826−840

doi: 10.1016/j.ijbiomac.2022.03.159
[70]

Nasar A, Mashkoor F. 2019. Application of polyaniline-based adsorbents for dye removal from water and wastewater − a review. Environmental Science and Pollution Research 26:5333−5356

doi: 10.1007/s11356-018-3990-y
[71]

Wang B, Wan Y, Zheng Y, Lee X, Liu T, et al. 2019. Alginate-based composites for environmental applications: a critical review. Critical Reviews in Environmental Science and Technology 49:318−356

doi: 10.1080/10643389.2018.1547621
[72]

Gao N, Du W, Zhang M, Ling G, Zhang P. 2022. Chitosan-modified biochar: Preparation, modifications, mechanisms and applications. International Journal of Biological Macromolecules 209:31−49

doi: 10.1016/j.ijbiomac.2022.04.006
[73]

Liu Y, Shan H, Pang Y, Zhan H, Zeng C. 2023. Iron modified chitosan/coconut shell activated carbon composite beads for Cr(VI) removal from aqueous solution. International Journal of Biological Macromolecules 224:156−169

doi: 10.1016/j.ijbiomac.2022.10.112
[74]

Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, et al. 2014. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydrate Polymers 113:115−130

doi: 10.1016/j.carbpol.2014.07.007
[75]

Zhou L, Liu J, Liu Z. 2009. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Journal of Hazardous Materials 172:439−446

doi: 10.1016/j.jhazmat.2009.07.030
[76]

Rafique MI, Usman ARA, Ahmad M, Al-Wabel MI. 2021. Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Chemosphere 266:129198

doi: 10.1016/j.chemosphere.2020.129198
[77]

Yap PL, Nine MJ, Hassan K, Tung TT, Tran DNH, et al. 2021. Graphene-based sorbents for multipollutants removal in water: a review of recent progress. Advanced Functional Materials 31:2007356

doi: 10.1002/adfm.202007356
[78]

Fang Z, Gao Y, Bolan N, Shaheen SM, Xu S, et al. 2020. Conversion of biological solid waste to graphene-containing biochar for water remediation: A critical review. Chemical Engineering Journal 390:124611

doi: 10.1016/j.cej.2020.124611
[79]

Ashraf A, Liu G, Arif M, Mian MM, Rashid A, et al. 2022. Insights into the synthesis and application of biochar assisted graphene-based materials in antibiotic remediation. Journal of Cleaner Production 361:132211

doi: 10.1016/j.jclepro.2022.132211
[80]

Fu T, Zhang B, Gao X, Cui S, Guan CY, et al. 2023. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. Science of The Total Environment 856:158810

doi: 10.1016/j.scitotenv.2022.158810
[81]

Duan C, Ma T, Wang J, Zhou Y. 2020. Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. Journal of Water Process Engineering 37:101339

doi: 10.1016/j.jwpe.2020.101339
[82]

Samaraweera H, Pittman CU, Thirumalai RVKG, Hassan EB, Perez F, et al. 2021. Characterization of graphene/pine wood biochar hybrids: potential to remove aqueous Cu2+. Environmental Research 192:110283

doi: 10.1016/j.envres.2020.110283
[83]

Karunaratne TN, Oshani Nayanathara RM, Navarathna CM, Rodrigo PM, Thirumalai RVKG, et al. 2022. Pyrolytic synthesis of graphene-encapsulated zero-valent iron nanoparticles supported on biochar for heavy metal removal. Biochar 4:70

doi: 10.1007/s42773-022-00196-5
[84]

Yamada S. 2018. Cation-π interactions in organic synthesis. Chemical Reviews 118:11353−11432

doi: 10.1021/acs.chemrev.8b00377
[85]

Kundu D, Sharma P, Bhattacharya S, Gupta K, Sengupta S, et al. 2024. Study of methylene blue dye removal using biochar derived from leaf and stem of Lantana camara L. Carbon Research 3:22

doi: 10.1007/s44246-024-00108-1
[86]

Sun T, Pei P, Sun Y, Xu Y, Jia H. 2022. Performance and mechanism of As(III/V) removal from aqueous solution by novel positively charged animal-derived biochar. Separation and Purification Technology 290:120836

doi: 10.1016/j.seppur.2022.120836
[87]

Jiang T, Wang B, Gao B, Cheng N, Feng Q, et al. 2023. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: mechanisms and applications. Journal of Hazardous Materials 442:130075

doi: 10.1016/j.jhazmat.2022.130075
[88]

Zhai M, Fu B, Zhai Y, Wang W, Maroney A, et al. 2023. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: a critical review. Water Research 236:119924

doi: 10.1016/j.watres.2023.119924
[89]

Zhao R, Ding W, Sun M, Yang L, Liu B, et al. 2022. Insight into the co-removal of Cu(II) and ciprofloxacin by calcite-biochar composite: enhancement and competition. Separation and Purification Technology 287:120487

doi: 10.1016/j.seppur.2022.120487
[90]

Wang B, Gao B, Fang J. 2018. Recent advances in engineered biochar productions and applications. Critical Reviews in Environmental Science and Technology 47:2158−2207

doi: 10.1080/10643389.2017.1418580
[91]

Xia X, Wang J, Hu Y, Liu J, Darma AI, et al. 2022. Molecular insights into roles of dissolved organic matter in Cr(III) immobilization by coprecipitation with Fe(III) probed by STXM-ptychography and XANES spectroscopy. Environmental Science & Technology 56:2432−2442

doi: 10.1021/acs.est.1c07528
[92]

Zhou Z, Zhang C, Xi M, Ma H, Jia H. 2023. Multi-scale modeling of natural organic matter–heavy metal cations interactions: Aggregation and stabilization mechanisms. Water Research 238:120007

doi: 10.1016/j.watres.2023.120007
[93]

Mo Z, Shi Q, Zeng H, Lu Z, Bi J, et al. 2024. Efficient removal of Cd(II) from aqueous environment by potassium permanganate-modified eucalyptus biochar. Biomass Conversion and Biorefinery 14:77−89

doi: 10.1007/s13399-021-02079-4
[94]

Cui H, Dong T, Hu L, Xia R, Zhou J, et al. 2022. Adsorption and immobilization of soil lead by two phosphate-based biochars and phosphorus release risk assessment. Science of The Total Environment 824:153957

doi: 10.1016/j.scitotenv.2022.153957
[95]

Yea Y, Kim G, Wang D, Kim S, Yoon Y, et al. 2022. Selective sequestration of perfluorinated compounds using polyaniline decorated activated biochar. Chemical Engineering Journal 430:132837

doi: 10.1016/j.cej.2021.132837
[96]

Shao N, Li S, Yan F, Su Y, Liu F, et al. 2020. An all-in-one strategy for the adsorption of heavy metal ions and photodegradation of organic pollutants using steel slag-derived calcium silicate hydrate. Journal of Hazardous Materials 382:121120

doi: 10.1016/j.jhazmat.2019.121120
[97]

Ma Y, Li M, Li P, Yang L, Wu L, et al. 2021. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Bioresource Technology 319:124199

doi: 10.1016/j.biortech.2020.124199
[98]

Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, et al. 2017. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresource Technology 245:266−273

doi: 10.1016/j.biortech.2017.08.178
[99]

Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, et al. 2022. Recent advances in bioremediation of heavy metals and persistent organic pollutants: a review. Science of The Total Environment 850:157961

doi: 10.1016/j.scitotenv.2022.157961
[100]

Lee ME, Park JH, Chung JW. 2019. Comparison of the lead and copper adsorption capacities of plant source materials and their biochars. Journal of Environmental Management 236:118−124

doi: 10.1016/j.jenvman.2019.01.100
[101]

Pap S, Paunovic O, Prosen H, Kraševec I, Trebše P, et al. 2023. Removal of benzotriazole derivatives by biochar: Potential environmental applications. Environmental Pollution 334:122205

doi: 10.1016/j.envpol.2023.122205
[102]

Zhou H, Meng H, Zhao L, Shen Y, Hou Y, et al. 2018. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresource Technology 258:279−286

doi: 10.1016/j.biortech.2018.02.086
[103]

Trakal L, Veselská V, Šafařík I, Vítková M, Číhalová S, et al. 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology 203:318−324

doi: 10.1016/j.biortech.2015.12.056
[104]

Tan Z, Yuan S, Hong M, Zhang L, Huang Q. 2020. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. Journal of Hazardous Materials 384:121370

doi: 10.1016/j.jhazmat.2019.121370
[105]

Li B, Liu X, Wang A, Tan C, Sun K, et al. 2022. Biochar with inherited negative surface charges derived from Enteromorpha prolifera as a promising cathode material for capacitive deionization technology. Desalination 539:115955

doi: 10.1016/j.desal.2022.115955
[106]

Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, et al. 2020. Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar. Journal of Hazardous Materials 384:121470

doi: 10.1016/j.jhazmat.2019.121470
[107]

Kumar R, Verma A, Rakib MRJ, Gupta PK, Sharma P, et al. 2023. Adsorptive behavior of micro(nano)plastics through biochar: co-existence, consequences, and challenges in contaminated ecosystems. Science of The Total Environment 856:159097

doi: 10.1016/j.scitotenv.2022.159097
[108]

Tang W, Zanli BLGL, Chen J. 2021. O/N/P-doped biochar induced to enhance adsorption of sulfonamide with coexisting Cu2+/Cr(VI) by air pre-oxidation. Bioresource Technology 341:125794

doi: 10.1016/j.biortech.2021.125794
[109]

Choudhary M, Kumar R, Neogi S. 2020. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu2+ and Ni2+ from water. Journal of Hazardous Materials 392:122441

doi: 10.1016/j.jhazmat.2020.122441
[110]

Li F, Dai Y, Gong M, Yu T, Chen X. 2015. Synthesis, characterization of magnetic-sepiolite supported with TiO2, and the photocatalytic performance over Cr(VI) and 2,4-dichlorophenol co-existed wastewater. Journal of Alloys and Compounds 638:435−442

doi: 10.1016/j.jallcom.2015.03.070
[111]

Konaganti VK, Kota R, Patil S, Madras G. 2010. Adsorption of anionic dyes on chitosan grafted poly(alkyl methacrylate)s. Chemical Engineering Journal 158:393−401

doi: 10.1016/j.cej.2010.01.003
[112]

Cai H, Ma K, Zhang Y, Li X, Wang W, et al. 2023. Carbonizing hollow metal-organic framework/layered double hydroxide (MOF/LDH) nanocomposite with excellent adsorption capacity for removal of Pb(II) and organic dyes from wastewater. Carbon Research 2:23

doi: 10.1007/s44246-023-00058-0
[113]

Zhao F, Repo E, Yin D, Meng Y, Jafari S, et al. 2015. EDTA-cross-linked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environmental Science & Technology 49:10570−10580

doi: 10.1021/acs.est.5b02227
[114]

Hou H, Zhou R, Wu P, Wu L. 2012. Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chemical Engineering Journal 211−212:336−342

doi: 10.1016/j.cej.2012.09.100
[115]

Skold ME, Thyne GD, Drexler JW, Macalady DL, McCray JE. 2008. Enhanced solubilization of a metal-organic contaminant mixture (Pb, Sr, Zn, and Perchloroethylene) by cyclodextrin. Environmental Science & Technology 42:8930−8934

doi: 10.1021/es801835x
[116]

Zhang H, Li R, Zhang Z. 2022. A versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar for simultaneous removal of methyl orange and heavy metals from complex wastewater. Environmental Pollution 293:118517

doi: 10.1016/j.envpol.2021.118517
[117]

Yu D, Wang L, Wu M. 2018. Simultaneous removal of dye and heavy metal by banana peels derived hierarchically porous carbons. Journal of the Taiwan Institute of Chemical Engineers 93:543−553

doi: 10.1016/j.jtice.2018.08.038
[118]

Khurana P, Pulicharla R, Kaur Brar S. 2021. Antibiotic-metal complexes in wastewaters: Fate and treatment trajectory. Environment International 157:106863

doi: 10.1016/j.envint.2021.106863
[119]

Ling C, Liu FQ, Xu C, Chen TP, Li AM. 2013. An integrative technique based on synergistic coremoval and sequential recovery of copper and tetracycline with dual-functional chelating resin: Roles of amine and carboxyl groups. ACS Applied Materials & Interfaces 5:11808−11817

doi: 10.1021/am403491b
[120]

Turel I. 2002. The interactions of metal ions with quinolone antibacterial agents. Coordination Chemistry Reviews 232:27−47

doi: 10.1016/S0010-8545(02)00027-9
[121]

Zhou L, Li N, Owens G, Chen Z. 2019. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical Engineering Journal 362:628−637

doi: 10.1016/j.cej.2019.01.068
[122]

Li Y, Deng M, Wang X, Wang Y, Li J, et al. 2021. In-situ remediation of oxytetracycline and Cr(VI) co-contaminated soil and groundwater by using blast furnace slag-supported nanosized Fe0/FeSx. Chemical Engineering Journal 412:128706

doi: 10.1016/j.cej.2021.128706
[123]

Azad H, Mohsennia M, Cheng C, Amini A. 2022. Cross-linked poly(vinyl butyral)/ amine-functionalized polyacrylonitrile adsorptive membrane nano-composited with CeO2 nanoparticles for simultaneous aqueous removal of heavy metals and cefotaxime. Chemical Engineering Journal 435:134849

doi: 10.1016/j.cej.2022.134849
[124]

Yan L, Liu Y, Zhang Y, Liu S, Wang C, et al. 2020. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology 297:122381

doi: 10.1016/j.biortech.2019.122381
[125]

Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E. 2017. Biochar modification to enhance sorption of inorganics from water. Bioresource Technology 246:34−47

doi: 10.1016/j.biortech.2017.07.082
[126]

Cao X, Meng Z, Song E, Sun X, Hu X, et al. 2022. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere 299:134414

doi: 10.1016/j.chemosphere.2022.134414
[127]

Yan J, Zuo X, Yang S, Chen R, Cai T, et al. 2022. Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: competitive versus synergistic. Journal of Hazardous Materials 424:127435

doi: 10.1016/j.jhazmat.2021.127435
[128]

Eeshwarasinghe D, Loganathan P, Vigneswaran S. 2019. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 223:616−627

doi: 10.1016/j.chemosphere.2019.02.033
[129]

Lu L, Lin Y, Chai Q, He S, Yang C. 2018. Removal of acenaphthene by biochar and raw biomass with coexisting heavy metal and phenanthrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects 558:103−109

doi: 10.1016/j.colsurfa.2018.08.057
[130]

Chen C, Zhou W, Lin D. 2015. Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution. Bioresource Technology 179:359−366

doi: 10.1016/j.biortech.2014.12.059
[131]

Bautista-Toledo MI, Rivera-Utrilla J, Ocampo-Pérez R, Carrasco-Marín F, Sánchez-Polo M. 2014. Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste. Carbon 73:338−350

doi: 10.1016/j.carbon.2014.02.073
[132]

Liu S, Huang J, Zhang W, Shi L, Yi K, et al. 2022. Microplastics as a vehicle of heavy metals in aquatic environments: a review of adsorption factors, mechanisms, and biological effects. Journal of Environmental Management 302:113995

doi: 10.1016/j.jenvman.2021.113995
[133]

Gao F, Li J, Sun C, Zhang L, Jiang F, et al. 2019. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Marine Pollution Bulletin 144:61−67

doi: 10.1016/j.marpolbul.2019.04.039
[134]

Ahmad Ganie Z, Khandelwal N, Choudhary A, Darbha GK. 2023. Clean water production from plastic and heavy metal contaminated waters using redox-sensitive iron nanoparticle-loaded biochar. Environmental Research 235:116605

doi: 10.1016/j.envres.2023.116605
[135]

Elanchezhiyan SS, Muthu Prabhu S, Karthikeyan P, Park CM. 2021. Efficient and selective sequestration of perfluorinated compounds and hexavalent chromium ions using a multifunctional spinel matrix decorated carbon backbone N-rich polymer and their mechanistic investigations. Journal of Molecular Liquids 326:115336

doi: 10.1016/j.molliq.2021.115336
[136]

Badruddoza AZM, Bhattarai B, Suri RPS. 2017. Environmentally friendly β-cyclodextrin–ionic liquid polyurethane-modified magnetic sorbent for the removal of PFOA, PFOS, and Cr(VI) from water. ACS Sustainable Chemistry & Engineering 5:9223−9232

doi: 10.1021/acssuschemeng.7b02186
[137]

Alsawy T, Rashad E, El-Qelish M, Mohammed RH. 2022. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. NPJ Clean Water 5:29

doi: 10.1038/s41545-022-00172-3
[138]

Maiti P, Mangsatabam M, Chatterjee A, Siddiqi H, Mishra A, et al. 2024. In-situ synthesis of efficient ZnCl2 doped pyrolyzed biochar for adsorptive remediation of organic dyes: performance evaluation, mass transfer and mechanism. Separation and Purification Technology 329:125096

doi: 10.1016/j.seppur.2023.125096
[139]

Singh M, Ahsan M, Pandey V, Singh A, Mishra D, et al. 2022. Comparative assessment for removal of anionic dye from water by different waste-derived biochar vis a vis reusability of generated sludge. Biochar 4:13

doi: 10.1007/s42773-022-00140-7
[140]

Chakhtouna H, Benzeid H, Zari N, Qaiss Aek, Bouhfid R. 2023. Microwave-assisted synthesis of MIL–53(Fe)/biochar composite from date palm for ciprofloxacin and ofloxacin antibiotics removal. Separation and Purification Technology 308:122850

doi: 10.1016/j.seppur.2022.122850
[141]

Gao J, Zhou Y, Yang X, Yao Y, Qi J, et al. 2024. Dyeing sludge-derived biochar for efficient removal of antibiotic from water. Science of The Total Environment 912:169035

doi: 10.1016/j.scitotenv.2023.169035
[142]

Li H, Hu J, Meng Y, Su J, Wang X. 2017. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather. Science of The Total Environment 603−604:39−48

doi: 10.1016/j.scitotenv.2017.06.006
[143]

Hassan M, Wang B, Wu P, Wang S. 2024. Engineered biochar for in-situ and ex-situ remediation of contaminants from soil and water. Science of The Total Environment 957:177384

doi: 10.1016/j.scitotenv.2024.177384
[144]

Ifthikar J, Jiao X, Ngambia A, Wang T, Khan A, et al. 2018. Facile one-pot synthesis of sustainable carboxymethyl chitosan-sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresource Technology 262:22−31

doi: 10.1016/j.biortech.2018.04.053
[145]

Wu Y, Wang Z, Yan Y, Zhou Y, Huma B, et al. 2024. Recovery and regeneration of water-hardened magnetic composite biochar sphere for the removal of multiple heavy metals in contaminated soils. Journal of Cleaner Production 450:141906

doi: 10.1016/j.jclepro.2024.141906
[146]

Li Y, Yu H, Liu L, Yu H. 2021. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. Journal of Hazardous Materials 420:126655

doi: 10.1016/j.jhazmat.2021.126655
[147]

Janković B, Manić N, Dodevski V, Radović I, Pijović M, et al. 2019. Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization. Journal of Cleaner Production 236:117614

doi: 10.1016/j.jclepro.2019.117614
[148]

Chen J, Bao C, Chen M, Wang Y, Xu X, et al. 2023. β-cyclodextrin-scaffolded crosslinked poly(ionic liquid)s for ultrafast removal of multiple pollutants: insight into adsorption performance and mechanism. Chemical Engineering Journal 464:142526

doi: 10.1016/j.cej.2023.142526
[149]

Shaheen SM, Natasha, Mosa A, El-Naggar A, Faysal Hossain M, et al. 2022. Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments − a review. Bioresource Technology 346:126581

doi: 10.1016/j.biortech.2021.126581
[150]

Balakrishnan A, Chinthala M. 2022. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere 297:134190

doi: 10.1016/j.chemosphere.2022.134190
[151]

Gautam RK, Goswami M, Mishra RK, Chaturvedi P, Awashthi MK, et al. 2021. Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review. Chemosphere 272:129917

doi: 10.1016/j.chemosphere.2021.129917
[152]

Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, et al. 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118:536−544

doi: 10.1016/j.biortech.2012.05.042
[153]

Norberto J, Zoroufchi Benis K, McPhedran KN, Soltan J. 2023. Microwave activated and iron engineered biochar for arsenic adsorption: Life cycle assessment and cost analysis. Journal of Environmental Chemical Engineering 11:109904

doi: 10.1016/j.jece.2023.109904
[154]

Meng X, Song T, Zhang C, Wang H, Ge M, et al. 2023. Magnetic MnFe2O4 nanoparticles anchored on sludge-derived biochar in activating peroxydisulfate for levofloxacin degradation: Mechanism, degradation pathways and cost analysis. Journal of Environmental Chemical Engineering 11:110241

doi: 10.1016/j.jece.2023.110241
[155]

Biard PF, Coudon A, Couvert A, Giraudet S. 2016. A simple and timesaving method for the mass-transfer assessment of solvents used in physical absorption. Chemical Engineering Journal 290:302−311

doi: 10.1016/j.cej.2016.01.046
[156]

Das S, Rudra Paul S, Debnath A. 2023. Fabrication of biochar from jarul (Lagerstroemia speciosa) seed hull for ultrasound aided sequestration of ofloxacin from water: Phytotoxic assessments and cost analysis. Journal of Molecular Liquids 387:122610

doi: 10.1016/j.molliq.2023.122610
[157]

Gutkoski JP, Schneider EE, Michels C. 2024. How effective is biological activated carbon in removing micropollutants? A comprehensive review. Journal of Environmental Management 349:119434

doi: 10.1016/j.jenvman.2023.119434
[158]

Alam MS, Gorman-Lewis D D, Chen N, Flynn SL, Ok YS, et al. 2018. Thermodynamic analysis of Nickel(II) and Zinc(II) adsorption to biochar. Environmental Science & Technology 52:6246−6255

doi: 10.1021/acs.est.7b06261
[159]

Amir Afshar H, Ghaee A. 2016. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Carbohydrate Polymers 151:1120−1131

doi: 10.1016/j.carbpol.2016.06.063
[160]

Pandit NR, Mulder J, Hale SE, Zimmerman AR, Pandit BH, et al. 2018. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. Science of The Total Environment 637−638:1333−1341

doi: 10.1016/j.scitotenv.2018.05.107
[161]

Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA. 2019. Quantifying ecological risks of aquatic micro-and nanoplastic. Critical Reviews in Environmental Science and Technology 49:32−80

doi: 10.1080/10643389.2018.1531688
[162]

Tapia-Orozco N, Santiago-Toledo G, Barrón V, Espinosa-García AM, García-García JA, et al. 2017. Environmental epigenomics: current approaches to assess epigenetic effects of endocrine disrupting compounds (EDC's) on human health. Environmental Toxicology and Pharmacology 51:94−99

doi: 10.1016/j.etap.2017.02.004
[163]

Wu Y, Song S, Chen X, Shi Y, Cui H, et al. 2023. Source-specific ecological risks and critical source identification of PPCPs in surface water: Comparing urban and rural areas. Science of The Total Environment 854:158792

doi: 10.1016/j.scitotenv.2022.158792
[164]

Zhang Y, Chen Z, Xu W, Liao Q, Zhang H, et al. 2020. Pyrolysis of various phytoremediation residues for biochars: Chemical forms and environmental risk of Cd in biochar. Bioresource Technology 299:122581

doi: 10.1016/j.biortech.2019.122581
[165]

Zong Y, Chen H, Malik Z, Xiao Q, Lu S. 2022. Comparative study on the potential risk of contaminated-rice straw, its derived biochar and phosphorus modified biochar as an amendment and their implication for environment. Environmental Pollution 293:118515

doi: 10.1016/j.envpol.2021.118515
[166]

Odinga ES, Waigi MG, Gudda FO, Wang J, Yang B, et al. 2020. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. Environment International 134:105172

doi: 10.1016/j.envint.2019.105172
[167]

Yang YY, Toor GS, Wilson PC, Williams CF. 2017. Micropollutants in groundwater from septic systems: transformations, transport mechanisms, and human health risk assessment. Water Research 123:258−267

doi: 10.1016/j.watres.2017.06.054
[168]

Mahmud R, Moni SM, High K, Carbajales-Dale M. 2021. Integration of techno-economic analysis and life cycle assessment for sustainable process design − a review. Journal of Cleaner Production 317:128247

doi: 10.1016/j.jclepro.2021.128247
[169]

Hussin F, Hazani NN, Khalil M, Aroua MK. 2023. Environmental life cycle assessment of biomass conversion using hydrothermal technology: a review. Fuel Processing Technology 246:107747

doi: 10.1016/j.fuproc.2023.107747
[170]

Moreira MT, Noya I, Feijoo G. 2017. The prospective use of biochar as adsorption matrix − a review from a lifecycle perspective. Bioresource Technology 246:135−141

doi: 10.1016/j.biortech.2017.08.041
[171]

Ren B, Shi X, Jin X, Wang XC, Jin P. 2021. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in urban sewers: Degradation, intermediate products and environmental risk. Chemical Engineering Journal 404:127024

doi: 10.1016/j.cej.2020.127024
[172]

Piccirillo C, Moreira IS, Novais RM, Fernandes AJS, Pullar RC, et al. 2017. Biphasic apatite-carbon materials derived from pyrolysed fish bones for effective adsorption of persistent pollutants and heavy metals. Journal of Environmental Chemical Engineering 5:4884−4894

doi: 10.1016/j.jece.2017.09.010
[173]

Dutta DP, Nath S. 2018. Low cost synthesis of SiO2/C nanocomposite from corn cobs and its adsorption of uranium (VI), chromium (VI) and cationic dyes from wastewater. Journal of Molecular Liquids 269:140−151

doi: 10.1016/j.molliq.2018.08.028
[174]

Le Minh Tri N, Thang PQ, Van Tan L, Huong PT, Kim J, et al. 2020. Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering 33:101070

doi: 10.1016/j.jwpe.2019.101070
[175]

Deng J, Li X, Wei X, Liu Y, Liang J, et al. 2020. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: coadsorption and mechanism. Chemical Engineering Journal 387:124097

doi: 10.1016/j.cej.2020.124097
[176]

Yao B, Zeng W, Núñez-Delgado A, Zhou Y. 2023. Simultaneous adsorption of ciprofloxacin and Cu2+ using Fe and N co-doped biochar: competition and selective separation. Waste Management 168:386−395

doi: 10.1016/j.wasman.2023.06.014
[177]

Song Z, Liu Y, Liu L, Yang C, Tian W, et al. 2024. Reusable magnetically-modified Enteromorpha prolifera-based biochar hydrogels: competitive removal mechanism for metal-organic dye composite contaminants. Carbon Research 3:18

doi: 10.1007/s44246-023-00098-6
[178]

da Rocha HD, Reis ES, Ratkovski GP, da Silva RJ, Gorza FDS, et al. 2020. Use of PMMA/(rice husk ash)/polypyrrole membranes for the removal of dyes and heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers 110:8−20

doi: 10.1016/j.jtice.2020.03.003
[179]

Li R, Wen Y, Liu M, Su L, Wang Y, et al. 2022. Simultaneous removal of organic inorganic composite contaminants by in situ double modified biochar: performance and mechanisms. Journal of the Taiwan Institute of Chemical Engineers 139:104523

doi: 10.1016/j.jtice.2022.104523
[180]

Yin Z, Liu Y, Liu S, Jiang L, Tan X, et al. 2018. Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper. Science of The Total Environment 639:1530−1542

doi: 10.1016/j.scitotenv.2018.05.130
[181]

Qian L, Long Y, Li H, Wei Z, Liang C, et al. 2023. Unveiling the role of biochar in simultaneous removal of hexavalent chromium and trichloroethylene by biochar supported nanoscale zero-valent iron. Science of The Total Environment 889:164243

doi: 10.1016/j.scitotenv.2023.164243
[182]

Li R, Zhang Y, Deng H, Zhang Z, Wang JJ, et al. 2020. Removing tetracycline and Hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. Journal of Hazardous Materials 384:121095

doi: 10.1016/j.jhazmat.2019.121095