[1]

Zhang XC, Zhang M, Wang MQ, Chang L, Li L, et al. 2024. Metal single-atoms toward electromagnetic wave-absorbing materials: insights and perspective. Advanced Functional Materials 34:2405972

doi: 10.1002/adfm.202405972
[2]

Tang Z, Xu L, Xie C, Guo L, Zhang L, et al. 2023. Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nature Communications 14:5951

doi: 10.1038/s41467-023-41697-6
[3]

Tao J, Xu L, Pei C, Gu Y, He Y, et al. 2023. Catfish effect induced by anion sequential doping for microwave absorption. Advanced Functional Materials 33:2211996

doi: 10.1002/adfm.202211996
[4]

Cao MS, Shu JC, Wen B, Wang XX, Cao WQ. 2021. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Structures 2:2100104

doi: 10.1002/sstr.202100104
[5]

Yuan M, Li B, Du Y, Liu J, Zhou X, et al. 2025. Programmable electromagnetic wave absorption via tailored metal single atom-support interactions. Advanced Materials 37:2417580

doi: 10.1002/adma.202417580
[6]

Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, et al. 2024. Expanding the horizons of machine learning in nanomaterials to chiral nanostructures. Advanced Materials 36:2308912

doi: 10.1002/adma.202308912
[7]

Nguyen TH, Vuong HT, Shiau J, Nguyen-Thoi T, Nguyen DH, et al. 2024. Optimizing flexural strength of RC beams with recycled aggregates and CFRP using machine learning models. Scientific Reports 14:28621

doi: 10.1038/s41598-024-79287-1
[8]

Zong Y, Nian Y, Zhang C, Tang X, Wang L, et al. 2025. Hybrid Grid Search and Bayesian optimization-based random forest regression for predicting material compression pressure in manufacturing processes. Engineering Applications of Artificial Intelligence 141:109580

doi: 10.1016/j.engappai.2024.109580
[9]

Zhu C, Bamidele EA, Shen X, Zhu G, Li B. 2024. Machine learning aided design and optimization of thermal metamaterials. Chemical Reviews 124:4258−331

doi: 10.1021/acs.chemrev.3c00708
[10]

Li C, Bao L, Ji Y, Tian Z, Cui M, et al. 2024. Combining machine learning and metal–organic frameworks research: novel modeling, performance prediction, and materials discovery. Coordination Chemistry Reviews 514:215888

doi: 10.1016/j.ccr.2024.215888
[11]

Ding Z, Su W, Luo Y, Ye L, Wu H, et al. 2023. Design of an ultra-broadband terahertz absorber based on a patterned graphene metasurface with machine learning. Journal of Materials Chemistry C 11:5625−33

doi: 10.1039/D3TC00102D
[12]

Gao R, Shang H, Zhou Q, Tan BF, Wei XS, et al. 2025. Machine learning-guided conductivity prediction in 2D organic metal chalcogenides for accelerated electromagnetic wave absorber design. ACS Applied Materials & Interfaces 17:38379−88

doi: 10.1021/acsami.5c07554
[13]

Xu C, Dong H, Yan Z, Wang L, Ning M, et al. 2025. Micromagnetic and quantitative prediction of hardness and impact energy in martensitic stainless steels using mutual information parameter screening and random forest modeling methods. Materials 18:1685

doi: 10.3390/ma18071685
[14]

Lai WWL, Chang RKW, Völker C, Cheung BWY. 2021. GPR wave dispersion for material characterization. Construction and Building Materials 282:122597

doi: 10.1016/j.conbuildmat.2021.122597
[15]

Kim EA, Park JH, Han SH, Lim YY, Kong KJ, et al. 2017. Exploratory factor analysis of fluoride removal efficiency associated with the chemical properties of geomaterials. Journal of Hazardous Materials 334:178−84

doi: 10.1016/j.jhazmat.2017.03.059
[16]

Zhai G, Chen J, Wang S, Li K, Zhang L. 2015. Material identification of loose particles in sealed electronic devices using PCA and SVM. Neurocomputing 148:222−28

doi: 10.1016/j.neucom.2013.10.043
[17]

Rao ARM, Lakshmi K, Kumar SK. 2015. Detection of delamination in laminated composites with limited measurements combining PCA and dynamic QPSO. Advances in Engineering Software 86:85−106

doi: 10.1016/j.advengsoft.2015.04.005
[18]

Li X, Wang S, Hou Q, Dong F. 2024. A stepwise clustering method of rock discontinuities dominated by multivariate parameters based on t-SNE. Rock and Soil Mechanics 45:1540−50

doi: 10.16285/j.rsm.2023.0897
[19]

Emery JM, Grigoriu MD, Field RV Jr. 2016. Bayesian methods for characterizing unknown parameters of material models. Applied Mathematical Modelling 40:6395−411

doi: 10.1016/j.apm.2016.01.046
[20]

Bernstein J, Schmidt K, Rivera D, Barton N, Florando J, et al. 2019. A comparison of material flow strength models using Bayesian cross-validation. Computational Materials Science 169:109098

doi: 10.1016/j.commatsci.2019.109098
[21]

Wang K, Dowling AW. 2022. Bayesian optimization for chemical products and functional materials. Current Opinion in Chemical Engineering 36:100728

doi: 10.1016/j.coche.2021.100728
[22]

Tian Y, Li T, Pang J, Zhou Y, Xue D, et al. 2025. Materials design with target-oriented Bayesian optimization. NPJ Computational Materials 11:209

doi: 10.1038/s41524-025-01704-4
[23]

Pfau D, Jung A. 2024. Engineering trustworthy AI: a developer guide for empirical risk minimization. IEEE Transactions on Artificial Intelligence:Early Access

doi: 10.1109/TAI.2025.3617936
[24]

Kang EH, Yoganarasimhan H, Jain L. 2025. An empirical risk minimization approach for offline inverse RL and dynamic discrete choice model. arXiv:2502.14131

doi: 10.48550/arXiv.2502.14131
[25]

Treder MS, Shock JP, Stein DJ, du Plessis S, Seedat S, et al. 2021. Correlation constraints for regression models: controlling bias in brain age prediction. Frontiers in Psychiatry 12:615754

doi: 10.3389/fpsyt.2021.615754
[26]

Jiang Y, He Y, Zhang H. 2016. Variable selection with prior information for generalized linear models via the prior LASSO method. Journal of the American Statistical Association 111:355−76

doi: 10.1080/01621459.2015.1008363
[27]

Teodorescu V, Obreja Brașoveanu L. 2025. Assessing the validity of k-fold cross-validation for model selection: evidence from bankruptcy prediction using random forest and XGBoost. Computation 13:127

doi: 10.3390/computation13050127
[28]

Mohammadagha M. 2025. Hyperparameter optimization strategies for tree-based machine learning models prediction: a comparative study of AdaBoost, decision trees, and random forest. Open Science Framework:xbkr5_v1

doi: 10.31219/osf.io/xbkr5_v1
[29]

Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, et al. 2021. Gaussian process regression for materials and molecules. Chemical Reviews 121:10073−141

doi: 10.1021/acs.chemrev.1c00022
[30]

Rasmussen CE, Williams CKI. 2005. Gaussian processes for machine learning. US: MIT Press. 266 pp

[31]

Wilson AG, Nickisch H. 2015. Kernel interpolation for scalable structured Gaussian processes (KISS-GP). arXiv:1503.01057

doi: 10.48550/arXiv.1503.01057
[32]

Paun I, Husmeier D, Torney CJ. 2023. Stochastic variational inference for scalable non-stationary Gaussian process regression. Statistics and Computing 33:44

doi: 10.1007/s11222-023-10210-w
[33]

Rossi S, Heinonen M, Bonilla EV, Shen Z, Filippone M. 2021. Sparse Gaussian processes revisited: bayesian approaches to inducing-variable approximations. arXiv:2003.03080

doi: 10.48550/arXiv.2003.03080
[34]

Yadav M, Sheldon DR, Musco C. 2022. Kernel interpolation with sparse grids. Advances in Neural Information Processing Systems 35:22883−94

[35]

Rahaman R. 2021. Uncertainty quantification and deep ensembles. Advances in Neural Information Processing Systems 34:20063−75

[36]

Zhang J, Kailkhura B, Han TYJ. 2021. Leveraging uncertainty from deep learning for trustworthy material discovery workflows. ACS Omega 6:12711−21

doi: 10.1021/acsomega.1c00975
[37]

Li X, Su M, Zhu Y, Ma S, Liu S, et al. 2025. Evidential interpretation approach for deep neural networks in high-frequency electromagnetic wave processing. Electronics 14:3277

doi: 10.3390/electronics14163277
[38]

Varivoda D, Dong R, Omee SS, Hu J. 2023. Materials property prediction with uncertainty quantification: a benchmark study. Applied Physics Reviews 10:021409

doi: 10.1063/5.0133528
[39]

Novick A, Cai D, Nguyen Q, Garnett R, Adams R, et al. 2024. Probabilistic prediction of material stability: integrating convex hulls into active learning. Materials Horizons 11:5381−93

doi: 10.1039/D4MH00432A
[40]

Mamun O, Taufique MFN, Wenzlick M, Hawk J, Devanathan R. 2022. Uncertainty quantification for Bayesian active learning in rupture life prediction of ferritic steels. Scientific Reports 12:2083

doi: 10.1038/s41598-022-06051-8
[41]

Koizumi A, Deffrennes G, Terayama K, Tamura R. 2024. Performance of uncertainty-based active learning for efficient approximation of black-box functions in materials science. Scientific Reports 14:27019

doi: 10.1038/s41598-024-76800-4
[42]

Sain SR. 1996. The nature of statistical learning theory. Technometrics 38:409

doi: 10.1080/00401706.1996.10484565
[43]

Cristianini N, Scholkopf B. 2002. Support vector machines and kernel methods: the new generation of learning machines. AI Magazine 23:31−31

[44]

Du J, Li T, Xu Z, Tang J, Qi Q, et al. 2023. Structure–activity relationship in microstructure design for electromagnetic wave absorption applications. Small Structures 4:2300152

doi: 10.1002/sstr.202300152
[45]

Jolliffe IT, Cadima J. 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374:20150202

doi: 10.1098/rsta.2015.0202
[46]

Maaten Lvd, Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9:2579−605

[47]

Sarmina BG, Sun GH, Dong SH. 2023. Principal component analysis and t-distributed stochastic neighbor embedding analysis in the study of quantum approximate optimization algorithm entangled and non-entangled mixing operators. Entropy 25:1499

doi: 10.3390/e25111499
[48]

Arora S, Hu W, Kothari PK. 2018. An analysis of the t-sne algorithm for data visualization. Proceedings of the 31st Conference On Learning Theory 75:1455−62

[49]

Nascimento GM, Ogoshi E, Fazzio A, Acosta CM, Dalpian GM. 2022. High-throughput inverse design and Bayesian optimization of functionalities: spin splitting in two-dimensional compounds. Scientific Data 9:195

doi: 10.1038/s41597-022-01292-8
[50]

Frazier PI. 2018. A tutorial on Bayesian optimization. arXiv:11807.02811

doi: 10.48550/arXiv.1807.02811
[51]

Zuo Y, Qin M, Chen C, Ye W, Li X, et al. 2021. Accelerating materials discovery with Bayesian optimization and graph deep learning. Materials Today 51:126−35

doi: 10.1016/j.mattod.2021.08.012
[52]

Grandis H, Menvielle M, Roussignol M. 1999. Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case. Geophysical Journal International 138:757−68

doi: 10.1046/j.1365-246x.1999.00904.x
[53]

Malinverno A. 2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International 151:675−88

doi: 10.1046/j.1365-246X.2002.01847.x
[54]

De Iaco S. 2022. New spatio-temporal complex covariance functions for vectorial data through positive mixtures. Stochastic Environmental Research and Risk Assessment 36:2769−87

doi: 10.1007/s00477-022-02171-9
[55]

Zhang R, Yuan Y, Wang X, Sun X, Wang S, et al. 2025. Machine learning-assisted rapid electromagnetic design of flexible graphene-based absorptive composites. Chemical Engineering Journal 511:161634

doi: 10.1016/j.cej.2025.161634
[56]

Wang Q, Wang G, Lu X, Su L, Wang H. 2024. Prediction of broadband and highly-efficient electromagnetic wave-absorbing SiC@SiO2 nanowire aerogel by genetic algorithm. ACS Applied Materials & Interfaces 16:57972−80

doi: 10.1021/acsami.4c13946
[57]

Bora PJ, Mahanta B, Raghavan N. 2024. Revolutionizing electromagnetic materials: machine learning enabled optimization of polymer nanocomposites for enhanced performance. Advanced Engineering Materials 26:2301518

doi: 10.1002/adem.202301518
[58]

Liu P, Cui Z, Sun Y, Yuan W, Qu L, et al. 2024. Research on high-entropy spinel microwave absorption materials: exploration of machine learning and experimental integration. Ceramics International 50:49906−14

doi: 10.1016/j.ceramint.2024.09.335
[59]

Zhou H, Li X, Xi Z, Li M, Zhang J, et al. 2025. Machine learning-driven interface engineering for enhanced microwave absorption in MXene films. Materials Today Physics 51:101640

doi: 10.1016/j.mtphys.2024.101640
[60]

Waseer WI, Baqir MA, Saqlain M, Mughal MJ, Khan S. 2025. Predictive modeling of MXene-based solar absorbers using a deep neural network. Journal of the Optical Society of America B 42:763−72

doi: 10.1364/JOSAB.550317
[61]

Lu S, Zhou Q, Guo Y, Zhang Y, Wu Y, et al. 2020. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metals. Advanced Materials 32:2002658

doi: 10.1002/adma.202002658
[62]

Li X, Qiu J, Cui H, Chen X, Yu J, et al. 2024. Machine learning accelerated discovery of functional MXenes with giant piezoelectric coefficients. ACS Applied Materials & Interfaces 16:12731−43

doi: 10.1021/acsami.3c14610
[63]

Cao M, Wang X, Cao W, Fang X, Wen B, et al. 2018. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14:1800987

doi: 10.1002/smll.201800987
[64]

Cao MS, Wang XX, Zhang M, Cao WQ, Fang XY, et al. 2020. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Advanced Materials 32:1907156

doi: 10.1002/adma.201907156
[65]

Wang H, Meng F, Huang F, Jing C, Li Y, et al. 2019. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Applied Materials & Interfaces 11:12142−53

doi: 10.1021/acsami.9b01122
[66]

Shi M, Feng CP, Tu YL, Shi GS, He PY, et al. 2023. Visualization of deep convolutional neural networks to investigate porous nanocomposites for electromagnetic interference shielding. ACS Applied Materials & Interfaces 15:22602−15

doi: 10.1021/acsami.3c04557
[67]

Sun W, Li LS, Yin HC, Chen W. 2024. Study of permeability and permittivity of α-Fe2O3 using computer simulation method. Computational Materials Science 233:112756

doi: 10.1016/j.commatsci.2023.112756
[68]

Liu W, McLeod E. 2023. Fast and accurate electromagnetic field calculation for substrate-supported metasurfaces using the discrete dipole approximation. Nanophotonics 12:4157−73

doi: 10.1515/nanoph-2023-0423
[69]

Feng N, Wang H, Zhang Y, Huang Z, Elsherbeni AZ. 2024. Alternative implementation of EM propagation for 3-D layered lossy media by SMM method. IEEE Transactions on Antennas and Propagation 72:6599−613

doi: 10.1109/TAP.2024.3416053
[70]

Abouelyazied A, Dupré L. 2015. A unified electromagnetic inverse problem algorithm for the identification of the magnetic material characteristics of electromagnetic devices including uncertainty analysis: a review and application. IEEE Transactions on Magnetics 51:7300210

doi: 10.1109/TMAG.2014.2332978
[71]

Xu J, Xu P, Yang Z, Liu F, Xu L, et al. 2024. Freeform metasurface design with a conditional generative adversarial network. Applied Physics A 130:530

doi: 10.1007/s00339-024-07694-2
[72]

Zhu R, Wang J, Fu X, Liu X, Liu T, et al. 2022. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude. ACS Applied Materials & Interfaces 14:48303−10

doi: 10.1021/acsami.2c15362
[73]

Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE. 2021. Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica 37:1727−38

doi: 10.1007/s10409-021-01148-1
[74]

Melching D, Paysan F, Strohmann T, Breitbarth E. 2024. An iterative crack tip correction algorithm discovered by physical deep symbolic regression. International Journal of Fatigue 187:108432

doi: 10.1016/j.ijfatigue.2024.108432
[75]

Liu L, Liu S, Yang Y, Guo X, Sun J. 2024. A generalized grey model with symbolic regression algorithm and its application in predicting aircraft remaining useful life. Engineering Applications of Artificial Intelligence 136:108986

doi: 10.1016/j.engappai.2024.108986