[1]

Udall JA, Wendel JF. 2006. Polyploidy and crop improvement. Crop Science 46:S-3−S-14

doi: 10.2135/cropsci2006.07.0489tpg
[2]

Levin DA. 2004. The role of chromosomal change in plant evolution by Donald A. Levin. Systematic Botany 29:460−61

doi: 10.1600/036364404774195656
[3]

Shewry PR. 2009. Wheat. Journal of Experimental Botany 60:1537−53

doi: 10.1093/jxb/erp058
[4]

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950−53

doi: 10.1126/science.1253435
[5]

International Wheat Genome Sequencing Consortium (IWGSC). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

doi: 10.1126/science.1251788
[6]

Schiessl SV, Katche E, Ihien E, Chawla HS, Mason AS. 2019. The role of genomic structural variation in the genetic improvement of polyploid crops. The Crop Journal 7:127−40

doi: 10.1016/j.cj.2018.07.006
[7]

Schiavinato M, Marcet-Houben M, Dohm JC, Gabaldón T, Himmelbauer H. 2020. Parental origin of the allotetraploid tobacco Nicotiana benthamiana. The Plant Journal 102:541−54

doi: 10.1111/tpj.14648
[8]

Ding M, Chen ZJ. 2018. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current Opinion in Plant Biology 42:37−48

doi: 10.1016/j.pbi.2018.02.003
[9]

Madani H, Escrich A, Hosseini B, Sanchez-Muñoz R, Khojasteh A, et al. 2021. Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules 11:899

doi: 10.3390/biom11060899
[10]

Sattler MC, Carvalho CR, Clarindo WR. 2016. The polyploidy and its key role in plant breeding. Planta 243:281−96

doi: 10.1007/s00425-015-2450-x
[11]

Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics 33:589−639

doi: 10.1146/annurev.ecolsys.33.010802.150437
[12]

Baker HG. 1973. Chromosomal evolution in higher plants. G. Ledyard Stebbins. The Quarterly Review of Biology 48:30

doi: 10.1086/407511
[13]

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18:411−24

doi: 10.1038/nrg.2017.26
[14]

Schaart JG, van de Wiel CCM, Smulders MJM. 2021. Genome editing of polyploid crops: prospects, achievements and bottlenecks. Transgenic Research 30:337−51

doi: 10.1007/s11248-021-00251-0
[15]

Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, et al. 2017. Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America 114:E913−E921

doi: 10.1073/pnas.1619268114
[16]

Weeks DP. 2017. Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus. Progress in Molecular Biology and Translational Science 149:65−80

doi: 10.1016/bs.pmbts.2017.05.002
[17]

Van Montagu M, Schell J, Holsters M, De Greve H, Leemans J, et al. 1981. Transfer, maintenance and expression of genes introduced into plant cells via the Ti plasmid. In Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids, eds. Levy SB, Clowes RC, Koenig EL. Boston, MA: Springer. pp. 477−86 doi: 10.1007/978-1-4684-3983-0_46

[18]

Singh S, Chaudhary R, Deshmukh R, Tiwari S. 2023. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Molecular Biology 111:1−20

doi: 10.1007/s11103-022-01321-5
[19]

Puchta H, Dujon B, Hohn B. 1993. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research 21:5034−40

doi: 10.1093/nar/21.22.5034
[20]

Stoddard BL. 2005. Homing endonuclease structure and function. Quarterly Reviews of Biophysics 38:49−95

doi: 10.1017/S0033583505004063
[21]

Hoy MA. 2019. Transposable-element vectors and other methods to genetically modify Drosophila and other insects. In Insect Molecular Genetics. ed. Hoy MA. Amsterdam: Elsevier. pp. 315−44 doi: 10.1016/b978-0-12-815230-0.00008-x

[22]

Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, et al. 2007. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. Journal of Molecular Biology 371:49−65

doi: 10.1016/j.jmb.2007.04.079
[23]

Danilo B, Montes É, Archambeau H, Lodé M, Rousseau-Gueutin M, et al. 2022. I-SceI and customized meganucleases-mediated genome editing in tomato and oilseed rape. Transgenic Research 31:87−105

doi: 10.1007/s11248-021-00287-2
[24]

Dujon B. 1980. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω and rib-1 loci. Cell 20:85−197

doi: 10.1016/0092-8674(80)90237-8
[25]

Youssef D, Nihou A, Partier A, Tassy C, Paul W, et al. 2018. Induction of targeted deletions in transgenic bread wheat (Triticum aestivum L.) using customized meganuclease. Plant Molecular Biology Reporter 36:71−81

doi: 10.1007/s11105-017-1062-y
[26]

Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America 93:1156−60

doi: 10.1073/pnas.93.3.1156
[27]

Tröder SE, Zevnik B. 2022. History of genome editing: from meganucleases to CRISPR. Laboratory Animals 56:60−68

doi: 10.1177/0023677221994613
[28]

Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, et al. 2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442−45

doi: 10.1038/nature07845
[29]

Ran Y, Patron N, Kay P, Wong D, Buchanan M, et al. 2018. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnology Journal 16:2088−101

doi: 10.1111/pbi.12941
[30]

DeFrancesco L. 2011. Move over ZFNs. Nature Biotechnology 29:681−84

doi: 10.1038/nbt.1935
[31]

Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188:773−82

doi: 10.1534/genetics.111.131433
[32]

Hansen K, Coussens MJ, Sago J, Subramanian S, Gjoka M, et al. 2012. Genome editing with CompoZr custom zinc finger nucleases (ZFNs). Journal of Visualized Experiments 2012:e3304

doi: 10.3791/3304
[33]

Li T, Huang S, Jiang WZ, Wright D, Spalding MH, et al. 2011. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research 39:359−72

doi: 10.1093/nar/gkq704
[34]

Zaman QU, Li C, Cheng H, Hu Q. 2019. Genome editing opens a new era of genetic improvement in polyploid crops. The Crop Journal 7:141−50

doi: 10.1016/j.cj.2018.07.004
[35]

Wang Q, Ma X, Qian S, Zhou X, Sun K, et al. 2015. Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. PLoS Pathogens 11:e1005223

doi: 10.1371/journal.ppat.1005223
[36]

Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, et al. 2016. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal 14:169−76

doi: 10.1111/pbi.12370
[37]

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509−12

doi: 10.1126/science.1178811
[38]

Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−97

doi: 10.1146/annurev-arplant-050718-100049
[39]

Abe F, Haque E, Hisano H, Tanaka T, Kamiya Y, et al. 2019. Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Reports 28:1362−1369.e4

doi: 10.1016/j.celrep.2019.06.090
[40]

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32:947−51

doi: 10.1038/nbt.2969
[41]

Li S, Lin D, Zhang Y, Deng M, Chen Y, et al. 2022. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602:455−60

doi: 10.1038/s41586-022-04395-9
[42]

Qiu Y, Li X, Fan M, Tang H, Zhang S, et al. 2025. Modification of starch traits in commercial wheat through TaWaxy gene editing. Carbohydrate Polymers 368:124105

doi: 10.1016/j.carbpol.2025.124105
[43]

Bi W, Liu J, Li Y, He Z, Chen Y, et al. 2024. CRISPR/Cas9-guided editing of a novel susceptibility gene in potato improves Phytophthora resistance without growth penalty. Plant Biotechnology Journal 22:4−6

doi: 10.1111/pbi.14175
[44]

Ramasamy M, Rajkumar MS, Bedre R, Irigoyen S, Berg-Falloure K, et al. 2024. Genome editing of NPR3 confers potato resistance to Candidatus Liberibacter spp. Plant Biotechnology Journal 22:2635−37

doi: 10.1111/pbi.14378
[45]

Arshad R, Razzaq T, Ahmad B, Hou T, Li C, et al. 2025. Banana breeding by genome design. Journal of Integrative Plant Biology

doi: 10.1111/jipb.70025
[46]

Song Z, Li W, Lai X, Chen H, Wang L, et al. 2024. MaC2H2-IDD regulates fruit softening and involved in softening disorder induced by cold stress in banana. The Plant Journal 118:1937−54

doi: 10.1111/tpj.16719
[47]

Chen Y, Fu M, Li H, Wang L, Liu R, et al. 2021. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnology Journal 19:424−26

doi: 10.1111/pbi.13507
[48]

López-Casado G, Sánchez-Raya C, Ric-Varas PD, Paniagua C, Blanco-Portales R, et al. 2023. CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness. Horticulture Research 10:uhad011

doi: 10.1093/hr/uhad011
[49]

Brant EJ, Eid A, Kannan B, Baloglu MC, Altpeter F. 2024. The extent of multiallelic, co-editing of LIGULELESS1 in highly polyploid sugarcane tunes leaf inclination angle and enables selection of the ideotype for biomass yield. Plant Biotechnology Journal 22:2660−71

doi: 10.1111/pbi.14380
[50]

Wang F, Liang S, Wang G, Hu T, Fu C, et al. 2024. CRISPR–Cas9-mediated construction of a cotton CDPK mutant library for identification of insect-resistance genes. Plant Communications 5:101047

doi: 10.1016/j.xplc.2024.101047
[51]

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 31:827−32

doi: 10.1038/nbt.2647
[52]

Li J, Manghwar H, Sun L, Wang P, Wang G, et al. 2019. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnology Journal 17:858−68

doi: 10.1111/pbi.13020
[53]

Anzalone AV, Koblan LW, Liu DR. 2020. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology 38:824−44

doi: 10.1038/s41587-020-0561-9
[54]

Li B, Sun C, Li J, Gao C. 2024. Targeted genome-modification tools and their advanced applications in crop breeding. Nature Reviews Genetics 25:603−22

doi: 10.1038/s41576-024-00720-2
[55]

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, et al. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464−71

doi: 10.1038/nature24644
[56]

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420−24

doi: 10.1038/nature17946
[57]

Zhang R, Liu J, Chai Z, Chen S, Bai Y, et al. 2019. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants 5:480−85

doi: 10.1038/s41477-019-0405-0
[58]

Li C, Zhang R, Meng X, Chen S, Zong Y, et al. 2020. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology 38:875−82

doi: 10.1038/s41587-019-0393-7
[59]

Gaillochet C, Peña Fernández A, Goossens V, D'Halluin K, Drozdzecki A, et al. 2023. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biology 24:6

doi: 10.1186/s13059-022-02836-2
[60]

Zong Y, Wang Y, Li C, Zhang R, Chen K, et al. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology 35:438−40

doi: 10.1038/nbt.3811
[61]

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149−57

doi: 10.1038/s41586-019-1711-4
[62]

Veillet F, Kermarrec MP, Chauvin L, Chauvin JE, Nogué F. 2020. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato. PLoS One 15:e0235942

doi: 10.1371/journal.pone.0235942
[63]

Perroud PF, Guyon-Debast A, Veillet F, Kermarrec MP, Chauvin L, et al. 2022. Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Science 316:111162

doi: 10.1016/j.plantsci.2021.111162
[64]

Lin Q, Zong Y, Xue C, Wang S, Jin S, et al. 2020. Prime genome editing in rice and wheat. Nature Biotechnology 38:582−85

doi: 10.1038/s41587-020-0455-x
[65]

Vats S, Kumar J, Sonah H, Zhang F, Deshmukh R. 2024. Prime editing in plants: prospects and challenges. Journal of Experimental Botany 75:5344−56

doi: 10.1093/jxb/erae053
[66]

Ni P, Zhao Y, Zhou X, Liu Z, Huang Z, et al. 2023. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biology 24:156

doi: 10.1186/s13059-023-02990-1
[67]

Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, et al. 2018. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16:902−10

doi: 10.1111/pbi.12837
[68]

Chang Y, Tang H, Wang S, Li X, Huang P, et al. 2024. Efficient induction and rapid identification of haploid grains in tetraploid wheat by editing genes TtMTL and pyramiding anthocyanin markers. Frontiers in Plant Science 15:1346364

doi: 10.3389/fpls.2024.1346364
[69]

D'Halluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Van Den Brande I, et al. 2013. Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnology Journal 11:933−41

doi: 10.1111/pbi.12085
[70]

Jøhansen IE, Liu Y, Jorgensen B, Bennett EP, Andreasson E, et al. 2019. High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Scientific Reports 9:17715

doi: 10.1038/s41598-019-54126-w
[71]

Ly DNP, Iqbal S, Fosu-Nyarko J, Milroy S, Jones MGK. 2023. Multiplex CRISPR-Cas9 gene-editing can deliver potato cultivars with reduced browning and acrylamide. Plants 12:379

doi: 10.3390/plants12020379
[72]

Decima Oneto CA, Massa GA, Echarte L, Rey Burusco MF, Gonzalez MN, et al. 2025. CRISPR/Cas9 editing of CBP80 enhances drought tolerance in potato (Solanum tuberosum). Frontiers in Plant Science 16:1598947

doi: 10.3389/fpls.2025.1598947
[73]

Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, et al. 2023. Targeted genome editing in polyploids: lessons from Brassica. Frontiers in Plant Science 14:1152468

doi: 10.3389/fpls.2023.1152468
[74]

Grewal S, Yang CY, Scholefield D, Ashling S, Ghosh S, et al. 2024. Chromosome-scale genome assembly of bread wheat's wild relative Triticum timopheevii. Scientific Data 11:420

doi: 10.1038/s41597-024-03260-w
[75]

Zhang Z, Zhang J, Kang L, Qiu X, Xu S, et al. 2024. Structural variation discovery in wheat using PacBio high-fidelity sequencing. The Plant Journal 120:687−98

doi: 10.1111/tpj.17011
[76]

Wang M, Tu L, Yuan D, Zhu D, Shen C, et al. 2019. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetic 51:224−29

doi: 10.1038/s41588-018-0282-x
[77]

Li B, Yang Q, Yang L, Zhou X, Deng L, et al. 2023. A gap-free reference genome reveals structural variations associated with flowering time in rapeseed (Brassica napus). Horticulture Research 10:uhad171

doi: 10.1093/hr/uhad171
[78]

Sakthivel SK, Vennapusa AR, Melmaiee K. 2025. Enhancing quality and climate resilient traits in vegetatively propagated polyploids: transgenic and genome editing advancements, challenges and future directions. Frontiers in Genetics 16:1599242

doi: 10.3389/fgene.2025.1599242
[79]

Selma S, Gianoglio S, Uranga M, Vázquez-Vilar M, Espinosa-Ruiz A, et al. 2022. Potato virus X-delivered CRISPR activation programs lead to strong endogenous gene induction and transient metabolic reprogramming in Nicotiana benthamiana. The Plant Journal 111:1550−64

doi: 10.1111/tpj.15906
[80]

Tiwari JK, Buckseth T, Challam C, Zinta R, Bhatia N, et al. 2022. CRISPR/Cas genome editing in potato: current status and future perspectives. Frontiers in Genetics 13:827808

doi: 10.3389/fgene.2022.827808
[81]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut−dip−budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345

doi: 10.1016/j.xinn.2022.100345
[82]

Qiao JH, Zang Y, Gao Q, Liu S, Zhang XW, et al. 2025. Transgene- and tissue culture-free heritable genome editing using RNA virus-based delivery in wheat. Nature Plants 11:1252−59

doi: 10.1038/s41477-025-02023-8
[83]

Wolter F, Schindele P, Puchta H. 2019. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology 19:176

doi: 10.1186/s12870-019-1775-1
[84]

Bai M, Lin W, Peng C, Song P, Kuang H, et al. 2024. Expressing a human RNA demethylase as an assister improves gene-editing efficiency in plants. Molecular Plant 17:363−66

doi: 10.1016/j.molp.2024.02.010