[1]

Xiao Y, Han D, Currell M, Song X, Zhang Y. 2023. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: implications for environmental fate, transport and health risks. Water Research 245:120645

doi: 10.1016/j.watres.2023.120645
[2]

Pei J, Peng J, Wu M, Zhan X, Wang D, et al. 2025. Analyzing the potential targets and mechanisms of chronic kidney disease induced by common synthetic Endocrine Disrupting Compounds (EDCs) in Chinese surface water environment using network toxicology and molecular docking techniques. Science of The Total Environment 958:177980

doi: 10.1016/j.scitotenv.2024.177980
[3]

Lerdsuwanrut N, Zamani R, Akrami M. 2025. Environmental and human health risks of estrogenic compounds: a critical review of sustainable management practices. Sustainability 17:491

doi: 10.3390/su17020491
[4]

Bilal M, Barceló D, Iqbal HMN. 2021. Occurrence, environmental fate, ecological issues, and redefining of endocrine disruptive estrogens in water resources. Science of The Total Environment 800:149635

doi: 10.1016/j.scitotenv.2021.149635
[5]

Ting YF, Praveena SM. 2017. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. Environmental Monitoring and Assessment 189:178

doi: 10.1007/s10661-017-5890-x
[6]

Tang Z, Liu ZH, Wang H, Dang Z, Yin H, et al. 2020. Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water. Water Research 182:115976

doi: 10.1016/j.watres.2020.115976
[7]

Kumar AK, Sarma PN, Mohan SRV. 2016. Incidence of selected endocrine disrupting estrogens in water bodies of Hyderabad and its relation to water quality parameters. Environmental Engineering and Management Journal 15:315−325

doi: 10.30638/eemj.2016.032
[8]

Boro D, Chirania M, Verma AK, Chettri D, Verma AK. 2025. Comprehensive approaches to managing emerging contaminants in wastewater: identification, sources, monitoring and remediation. Environmental Monitoring and Assessment 197:456

doi: 10.1007/s10661-025-13809-w
[9]

Bai L, Liu X, Wu Y, Wang C, Wang C, et al. 2024. Ecological determinants of 17α-ethynylestradiol biodegradation: unveiling unique microbial community assemblages in lake sediments under nitrate or sulfate reduction. Journal of Cleaner Production 446:141400

doi: 10.1016/j.jclepro.2024.141400
[10]

Zhang JN, Chen J, Yang L, Zhang M, Yao L, et al. 2021. Occurrence and fate of androgens, progestogens and glucocorticoids in two swine farms with integrated wastewater treatment systems. Water Research 192:116836

doi: 10.1016/j.watres.2021.116836
[11]

Sim WJ, Lee JW, Shin SK, Song KB, Oh JE. 2011. Assessment of fates of estrogens in wastewater and sludge from various types of wastewater treatment plants. Chemosphere 82:1448−1453

doi: 10.1016/j.chemosphere.2010.11.045
[12]

He YJ, Chen W, Zheng XY, Wang XN, Huang X. 2013. Fate and removal of typical pharmaceuticals and personal care products by three different treatment processes. Science of The Total Environment 447:248−254

doi: 10.1016/j.scitotenv.2013.01.009
[13]

Fredj SB, Nobbs J, Tizaoui C, Monser L. 2015. Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid–liquid extraction. Chemical Engineering Journal 262:417−426

doi: 10.1016/j.cej.2014.10.007
[14]

Lalik A, Szreder J, Grymel M, Żabczyński S, Bajkacz S, et al. 2025. Estrogens and progestogens in environmental waters: analytical chemistry and biosensing perspectives on methods, challenges, and trends. Analytical Chemistry 97:8654−8683

doi: 10.1021/acs.analchem.4c06796
[15]

Latosińska J, Grdulska A. 2025. A review of methods for the removal of endocrine-disrupting compounds with a focus on oestrogens and pharmaceuticals found in wastewater. Applied Sciences 15:6514

doi: 10.3390/app15126514
[16]

Yang J, Li H, Ran Y, Chan K. 2014. Distribution and bioconcentration of endocrine disrupting chemicals in surface water and fish bile of the Pearl River Delta, South China. Chemosphere 107:439−446

doi: 10.1016/j.chemosphere.2014.01.048
[17]

Zhang Z, Feng Y, Liu Y, Sun Q, Gao P, et al. 2010. Kinetic degradation model and estrogenicity changes of EE2 (17α-ethinylestradiol) in aqueous solution by UV and UV/H2O2 technology. Journal of Hazardous Materials 181:1127−1133

doi: 10.1016/j.jhazmat.2010.05.132
[18]

Liu X, Wang Z, Wang X, Liu J, Waigi MG. 2024. Conversion of estriol to estrone: a bacterial strategy for the catabolism of estriol. Ecotoxicology and Environmental Safety 280:116564

doi: 10.1016/j.ecoenv.2024.116564
[19]

Abouhend AS, McNair A, Kuo-Dahab WC, Watt C, Butler CS, et al. 2018. The oxygenic photogranule process for aeration-free wastewater treatment. Environmental Science & Technology 52:3503−3511

doi: 10.1021/acs.est.8b00403
[20]

Ji B, Zhang M, Gu J, Ma Y, Liu Y. 2020. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Research 179:115884

doi: 10.1016/j.watres.2020.115884
[21]

Sun XL, Wang Y, Xiong HQ, Wang ST, Fang YC, et al. 2023. Removal of environmental estrogens from wastewater by microalgae under the influence of bacteria. Journal of Cleaner Production 414:137635

doi: 10.1016/j.jclepro.2023.137635
[22]

Chen B, Liang H, Li A, Ji B, Zhang X, et al. 2025. Impact of ibuprofen on microalgal-bacterial granular sludge: metabolic pathways, functional gene responses and biodegradation mechanisms. Journal of Hazardous Materials 492:138180

doi: 10.1016/j.jhazmat.2025.138180
[23]

Chen YL, Yu CP, Lee TH, Goh KS, Chu KH, et al. 2017. Biochemical mechanisms and catabolic enzymes involved in bacterial estrogen degradation pathways. Cell Chemical Biology 24:712−724.e7

doi: 10.1016/j.chembiol.2017.05.012
[24]

Zhao K, Si T, Liu S, Liu G, Li D, et al. 2024. Co-metabolism of microorganisms: a study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. Science of The Total Environment 954:176561

doi: 10.1016/j.scitotenv.2024.176561
[25]

Kong L, Feng Y, Du W, Zheng R, Sun J, et al. 2023. Cross-feeding between filamentous Cyanobacteria and symbiotic bacteria favors rapid photogranulation. Environmental Science & Technology 57:16953−16963

doi: 10.1021/acs.est.3c04867
[26]

Shi Y, Ji B, Li A, Zhang X, Liu Y. 2024. Enhancing the performance of microalgal-bacterial systems with sodium bicarbonate: a step forward to carbon neutrality of municipal wastewater treatment. Water Research 266:122345

doi: 10.1016/j.watres.2024.122345
[27]

Li SN, Zhang C, Li F, Ren NQ, Ho SH. 2023. Recent advances of algae-bacteria consortia in aquatic remediation. Critical Reviews in Environmental Science and Technology 53:315−339

doi: 10.1080/10643389.2022.2052704
[28]

Ren Z, Li H, Sun P, Fu R, Bai Z, et al. 2024. Development and challenges of emerging biological technologies for algal-bacterial symbiosis systems: a review. Bioresource Technology 413:131459

doi: 10.1016/j.biortech.2024.131459
[29]

Shi Y, Xu C, Xu K, Chen C, Li A, et al. 2025. Metabolic responses of microalgal-bacterial granular sludge to enrofloxacin and sulfamethoxazole exposure. Bioresource Technology 429:132516

doi: 10.1016/j.biortech.2025.132516
[30]

APHA. 2005. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, USA

[31]

Wang C, Xu C, Chen F, Tang X. 2011. Simultaneous determination of three naturally occurring estrogens in environmental waters by high-performance liquid chromatography. Journal of Separation Science 34:2371−2375

doi: 10.1002/jssc.201100445
[32]

EPA. 2022. Toxicity Estimation Software Tool (TEST) The United States Environmental Protection Agency's Center for Computational Toxicology and Exposure. Durham, NC, USA

[33]

Huang W, Gong B, Wang Y, Lin Z, He L, et al. 2020. Metagenomic analysis reveals enhanced nutrients removal from low C/N municipal wastewater in a pilot-scale modified AAO system coupling electrolysis. Water Research 173:115530

doi: 10.1016/j.watres.2020.115530
[34]

Shi Y, Xu C, Ji B, Li A, Zhang X, et al. 2024. Microalgal-bacterial granular sludge can remove complex organics from municipal wastewater with algae-bacteria interactions. Communications Earth & Environment 5:347

doi: 10.1038/s43247-024-01499-0
[35]

Zhang Y, Hong Y, Wang X. 2023. Recent advances on using functional materials to increase the pollutant removal capabilities of microalgae and bacteria: especially for their symbiotic systems. Current Pollution Reports 9:272−291

doi: 10.1007/s40726-023-00259-6
[36]

Flemming HC, Neu TR, Wingender J. 2016. The perfect slime: microbial extracellular polymeric substances (EPS). Volume 15. London, UK: IWA Publishing doi: 10.2166/9781780407425

[37]

Gao JF, Zhang Q, Wang JH, Wu XL, Wang SY, et al. 2011. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules. Bioresource Technology 102:805−813

doi: 10.1016/j.biortech.2010.08.119
[38]

Wang S, Zhang Y, Ge H, Hou H, Zhang H, et al. 2023. Cultivation of algal-bacterial granular sludge and degradation characteristics of tetracycline. Water Environment Research 95:e10846

doi: 10.1002/wer.10846
[39]

Ji B, Zhang M, Wang L, Wang S, Liu Y. 2020. Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process. Bioresource Technology 312:123531

doi: 10.1016/j.biortech.2020.123531
[40]

Jia H, Yuan Q. 2018. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light. Biodegradation 29:105−115

doi: 10.1007/s10532-017-9816-7
[41]

Yu CP, Roh H, Chu KH. 2007. 17β-estradiol-degrading bacteria isolated from activated sludge. Environmental Science & Technology 41:486−492

doi: 10.1021/es060923f
[42]

Kurisu F, Ogura M, Saitoh S, Yamazoe A, Yagi O. 2010. Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. Journal of Bioscience and Bioengineering 109:576−582

doi: 10.1016/j.jbiosc.2009.11.006
[43]

Qiu Q, Wang P, Kang H, Wang Y, Tian K, et al. 2019. Genomic analysis of a new estrogen-degrading bacterial strain, Acinetobacter sp. DSSKY-A-001. International Journal of Genomics 2019:2804134

doi: 10.1155/2019/2804134
[44]

Bukato K, Kostrzewa T, Gammazza AM, Gorska-Ponikowska M, Sawicki S. 2024. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers. Cell Communication and Signaling 22:205

doi: 10.1186/s12964-024-01583-0
[45]

Wang C, Li J, Zhao B, Wang Y, Liu G. 2014. Isolation and characteristics of 17β-estradiol-degrading Dyella spp. strains from activated sludge. Nature Environment and Pollution Technology 13:437−440

[46]

Qin H, Ji B, Zhang S, Kong Z. 2018. Study on the bacterial and archaeal community structure and diversity of activated sludge from three wastewater treatment plants. Marine Pollution Bulletin 135:801−807

doi: 10.1016/j.marpolbul.2018.08.010
[47]

Liao X, Chen C, Chang CH, Wang Z, Zhang X, et al. 2012. Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering 17:881−886

doi: 10.1007/s12257-012-0127-x
[48]

Sato N, Endo M, Nishi H, Fujiwara S, Tsuzuki M. 2024. Polyphosphate-kinase-1 dependent polyphosphate hyperaccumulation for acclimation to nutrient loss in the cyanobacterium, Synechocystis sp. PCC 6803. Frontiers in Plant Science 15:1441626

doi: 10.3389/fpls.2024.1441626
[49]

Pratush A, Yang Q, Peng T, Huang T, Hu Z. 2020. Identification of non-accumulating intermediate compounds during estrone (E1) metabolism by a newly isolated microbial strain BH2-1 from mangrove sediments of the South China Sea. Environmental Science and Pollution Research 27:5097−5107

doi: 10.1007/s11356-019-06894-1
[50]

Fokina V, Lobastova T, Tarlachkov S, Shutov A, Kazantsev A, et al. 2025. Degradation of C19-steroids and effect of androstenedione on gene expression in Nocardioides simplex. Current Microbiology 82:143

doi: 10.1007/s00284-025-04105-4