[1]

Wang W, Khalil-Ur-Rehman M, Feng J, Tao J. 2017. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds. Journal of Plant Physiology 218:155−66

doi: 10.1016/j.jplph.2017.08.004
[2]

Wu Y, Zhang W, Song S, Xu W, Zhang C, et al. 2020. Evolution of volatile compounds during the development of Muscat grape 'Shine Muscat' (Vitis labrusca × V. vinifera). Food Chemistry 309:125778

doi: 10.1016/j.foodchem.2019.125778
[3]

Yang C, Li Y, He L, Song Y, Zhang P, et al. 2024. Metabolomic and transcriptomic analyses of monoterpene biosynthesis in Muscat and Neutral grape hybrids. Scientia Horticulturae 336:113434

doi: 10.1016/j.scienta.2024.113434
[4]

Panighel A, Flamini R. 2014. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds. Molecules 19:21291−309

doi: 10.3390/molecules191221291
[5]

Liu S, Shan B, Zhou X, Gao W, Liu Y, et al. 2022. Transcriptome and metabolomics integrated analysis reveals terpene synthesis genes controlling linalool synthesis in grape berries. Journal of Agricultural and Food Chemistry 70:9084−94

doi: 10.1021/acs.jafc.2c00368
[6]

Capone S, Tufariello M, Siciliano P. 2013. Analytical characterisation of Negroamaro red wines by "Aroma Wheels". Food Chemistry 141:2906−15

doi: 10.1016/j.foodchem.2013.05.105
[7]

Fenoll J, Manso A, Hellín P, Ruiz L, Flores P. 2009. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry 114:420−28

doi: 10.1016/j.foodchem.2008.09.060
[8]

Xie S, Wu G, Ren R, Xie R, Yin H, et al. 2023. Transcriptomic and metabolic analyses reveal differences in monoterpene profiles and the underlying molecular mechanisms in six grape varieties with different flavors. LWT 174:114442

doi: 10.1016/j.lwt.2023.114442
[9]

Zhou X, Liu S, Gao W, Hu B, Zhu B, et al. 2022. Monoterpenoids evolution and MEP pathway gene expression profiles in seven table grape varieties. Plants 11:2143

doi: 10.3390/plants11162143
[10]

Luan F, Mosandl A, Gubesch M, Wüst M. 2006. Enantioselective analysis of monoterpenes in different grape varieties during berry ripening using stir bar sorptive extraction-and solid phase extraction-enantioselective-multidimensional gas chromatography-mass spectrometry. Journal of Chromatography A 1112:369−74

doi: 10.1016/j.chroma.2005.12.056
[11]

Yang C, Wang Y, Wu B, Fang J, Li S. 2011. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chemistry 128:823−30

doi: 10.1016/j.foodchem.2010.11.029
[12]

Wu Y, Duan S, Zhao L, Gao Z, Luo M, et al. 2016. Aroma characterization based on aromatic series analysis in table grapes. Scientific Reports 6:31116

doi: 10.1038/srep31116
[13]

Wei L, Wang W, Zheng H, Tao J. 2019. Effect of different fruit loads per cluster on fruit quality and aroma accumulation in 'Shine Muscat' grape. Journal of Nanjing Agricultural University 42:818−26

[14]

Tyagi K, Maoz I, Kochanek B, Sela N, Lerno L, et al. 2021. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research 8:51

doi: 10.1038/s41438-021-00488-0
[15]

Wu Y, Li X, Zhang W, Wang L, Li B, et al. 2023. Aroma profiling of Shine Muscat grape provides detailed insights into the regulatory effect of gibberellic acid and N-(2-chloro-4-pyridinyl)-N-phenylurea applications on aroma quality. Food Research International 170:112950

doi: 10.1016/j.foodres.2023.112950
[16]

Wang J, Feng J, Hou X, TAO J. 2016. Effects of CPPU on aroma components and biosynthetic genes expression in 'Shine Muscat' grapes. Journal of Nanjing Agricultural University 39:915−23

[17]

Wang W, Khalil-Ur-Rehman M, Wei LL, Nieuwenhuizen NJ, Zheng H, et al. 2020. Effect of thidiazuron on terpene volatile constituents and terpenoid biosynthesis pathway gene expression of Shine Muscat (Vitis labrusca × V. vinifera) grape berries. Molecules 25:2578

doi: 10.3390/molecules25112578
[18]

Chen H, Cheng J, Huang Y, Kong Q, Bie Z. 2023. Comparative analysis of sugar, acid, and volatile compounds in CPPU-treated and honeybee-pollinated melon fruits during different developmental stages. Food Chemistry 401:134072

doi: 10.1016/j.foodchem.2022.134072
[19]

Shahab M, Roberto SR, Ahmed S, Colombo RC, Silvestre JP, et al. 2020. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Scientia Horticulturae 259:108859

doi: 10.1016/j.scienta.2019.108859
[20]

Koyama R, Marinho de Assis A, Yamamoto LY, Borges WF, de Sá Borges R, et al. 2014. Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from 'Isabel' grapes (Vitis labrusca L.). HortScience 49:460−64

doi: 10.21273/HORTSCI.49.4.460
[21]

de Sá Borges R, Almeida da Silva G, Roberto SR, de Assis AM, Yamamoto LY. 2013. Phenolic compounds, favorable oxi-redox activity and juice color of 'Concord' grapevine clones. Scientia Horticulturae 161:188−92

doi: 10.1016/j.scienta.2013.07.011
[22]

Zhang Y, Cao YF, Huo HL, Xu JY, Tian LM, et al. 2022. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits. Journal of Integrative Agriculture 21:2275−90

doi: 10.1016/S2095-3119(21)63885-6
[23]

Chen K, Hu Y, Chen L, Zhang J, Qiao H, et al. 2022. Role of dehydration temperature on flavonoids composition and free-form volatile profile of raisins during the drying process. Food Chemistry 374:131747

doi: 10.1016/j.foodchem.2021.131747
[24]

Choi S, Ban S, Choi C. 2023. The impact of plant growth regulators and floral cluster thinning on the fruit quality of 'Shine Muscat' grape. Horticulturae 9:392

doi: 10.3390/horticulturae9030392
[25]

Li Y, Tang X, Feng W, Wan S, Bian Y, et al. 2024. Differential regulation of xylem and phloem differentiation in grape berries by GA3 and CPPU. Scientia Horticulturae 337:113582

doi: 10.1016/j.scienta.2024.113582
[26]

Han DH, Lee CH. 2004. The effects of GA3, CPPU and ABA applications on the quality of Kyoho (Vitis Vinifera L. × Labrusca L.) grape. Acta Horticulturae 653:193−97

doi: 10.17660/ActaHortic.2004.653.27
[27]

Peppi MC, Fidelibus MW. 2008. Effects of forchlorfenuron and abscisic acid on the quality of 'Flame Seedless' grapes. HortScience 43:173−76

doi: 10.21273/HORTSCI.43.1.173
[28]

do Amarante CVT, Megguer CA, Blum LEB. 2003. Effect of preharvest spraying with thidiazuron on fruit quality and maturity of apples. Revista Brasileira de Fruticultura 25:59−62

doi: 10.1590/S0100-29452003000100018
[29]

Famiani F, Proietti P, Pilli M, Battistelli A, Moscatello S. 2007. Effects of application of thidiazuron (TDZ), gibberellic acid (GA3), and 2,4-dichlorophenoxyacetic acid (2,4-D) on fruit size and quality of Actinidia deliciosa 'Hayward'. New Zealand Journal of Crop and Horticultural Science 35:341−47

doi: 10.1080/01140670709510200
[30]

Patil HG, Ravindran C, Jayachandran KS, Jaganath S. 2006. Influence of CPPU, TDZ and GA on the post harvest quality of grape (Vitis vinifera L.) cultivars Anab-e-Shahi and Dilkush. Acta Horticulturae 727:489−94

doi: 10.17660/actahortic.2006.727.60
[31]

Lv K, Zhang J, Dong X, Hu X, Liu S, et al. 2020. Effects of GA3 and CPPU on berry enlargement and quality of 'Wuhe Cuibao' grape. Sino-Overseas Grapevine & Wine 231:24−27 (in Chinese)

doi: 10.13414/j.cnki.zwpp.2020.03.005
[32]

Wang S, Cheng D, Gu H, Li M, He S, et al. 2019. Effects of plant growth regulators on the seedless rate and fruit quality of 'Shine Muscat' grape. Journal of Fruit Science 36:1675−82 (in Chinese)

doi: 10.13925/j.cnki.gsxb.20190359
[33]

Jiang P, Zhu G, Zheng D. 2017. The effects of GA3 and CPPU on fruit quality of Shine Mascut. Sino-Overseas Grapevine & Wine 4:44−47 (in Chinese)

doi: 10.13414/j.cnki.zwpp.2017.04.009
[34]

Li L, Yan W, Yao H, Li H, Guo X, et al. 2023. Influences of two plant growth regulators on the fruit quality of the 'Crimson Seedless' grapes. Journal of Plant Growth Regulation 42:771−79

doi: 10.1007/s00344-022-10585-6
[35]

Zheng T, Zhao P, Xiang J, Wei L, Shen W, et al. 2024. Integrated transcriptomic and metabolomic analysis reveals the effects of forchlorfenuron and thidiazuron on flavonoid biosynthesis in table grape skins. Current Plant Biology 40:100417

doi: 10.1016/j.cpb.2024.100417
[36]

Park SK, Morrison JC, Adams DO, Noble AC. 1991. Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. Journal of Agricultural and Food Chemistry 39:514−18

doi: 10.1021/jf00003a017
[37]

Mateo JJ, Jiménez M. 2000. Monoterpenes in grape juice and wines. Journal of Chromatography A 881:557−67

doi: 10.1016/S0021-9673(99)01342-4
[38]

Xue H, Sekozawa Y, Sugaya S. 2023. Investigating the aromatic compound changes in table grape varieties during growth and development, using HS-SPME-GC/MS. Horticulturae 9:85

doi: 10.3390/horticulturae9010085
[39]

Wang J, De Luca V. 2005. The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including 'foxy' methylanthranilate. The Plant Journal 44:606−19

doi: 10.1111/j.1365-313X.2005.02552.x
[40]

Buratti S, Rizzolo A, Benedetti S, Torreggiani D. 2006. Electronic nose to detect strawberry aroma changes during osmotic dehydration. Journal of Food Science 71:E184−E189

doi: 10.1111/j.1750-3841.2006.00007.x
[41]

Bondada B, Keller M. 2012. Morphoanatomical symptomatology and osmotic behavior of grape berry shrivel. Journal of the American Society for Horticultural Science 137:20−30

doi: 10.21273/jashs.137.1.20
[42]

Li J, Lin T, Ren D, Wang T, Tang Y, et al. 2021. Transcriptomic and Metabolomic studies reveal mechanisms of effects of CPPU-mediated fruit-setting on attenuating volatile attributes of melon fruit. Agronomy 11:1007

doi: 10.3390/agronomy11051007