[1]

Prestinaci F, Pezzotti P, Pantosti A. 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health 109:309−318

doi: 10.1179/2047773215Y.0000000030
[2]

Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics 40(4):277−283

[3]

Levy SB, Marshall B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine 10:S122−S129

doi: 10.1038/nm1145
[4]

Zhang L, Kinkelaar D, Huang Y, Li Y, Li X, et al. 2011. Acquired antibiotic resistance: are we born with it? Applied and Environmental Microbiology 77:7134−7141

doi: 10.1128/AEM.05087-11
[5]

Naghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP, et al. 2024. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet 404:1199−1226

doi: 10.1016/S0140-6736(24)01867-1
[6]

Woodford N, Ellington MJ. 2007. The emergence of antibiotic resistance by mutation. Clinical Microbiology and Infection 13:5−18

doi: 10.1111/j.1469-0691.2006.01492.x
[7]

Stevenson C, Hall JPJ, Harrison E, Wood AJ, Brockhurst MA. 2017. Gene mobility promotes the spread of resistance in bacterial populations. The ISME Journal 11:1930−1932

doi: 10.1038/ismej.2017.42
[8]

Mishra S, Klümper U, Voolaid V, Berendonk TU, Kneis D. 2021. Simultaneous estimation of parameters governing the vertical and horizontal transfer of antibiotic resistance genes. Science of The Total Environment 798:149174

doi: 10.1016/j.scitotenv.2021.149174
[9]

Wang H, Hou L, Liu Y, Liu K, Zhang L, et al. 2021. Horizontal and vertical gene transfer drive sediment antibiotic resistome in an urban lagoon system. Journal of Environmental Sciences 102:11−23

doi: 10.1016/j.jes.2020.09.004
[10]

Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299−304

doi: 10.1038/35012500
[11]

Johnston C, Martin B, Fichant G, Polard P, Claverys JP. 2014. Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology 12:181−196

doi: 10.1038/nrmicro3199
[12]

Brabban AD, Hite E, Callaway TR. 2005. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathogens and Disease 2:287−303

doi: 10.1089/fpd.2005.2.287
[13]

Lood R, Ertürk G, Mattiasson B. 2017. Revisiting antibiotic resistance spreading in wastewater treatment plants – bacteriophages as a much neglected potential transmission vehicle. Frontiers in Microbiology 8:2298

doi: 10.3389/fmicb.2017.02298
[14]

von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S, et al. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology 7:173

doi: 10.3389/fmicb.2016.00173
[15]

Li B, Qiu Y, Song Y, Lin H, Yin H. 2019. Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics. Environment International 131:105007

doi: 10.1016/j.envint.2019.105007
[16]

Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology 12:465−478

doi: 10.1038/nrmicro3270
[17]

Serio AW, Keepers T, Andrews L, Krause KM. 2018. Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus 8:10.1128/ecosalplus.ESP-0002-2018

doi: 10.1128/ecosalplus.esp-0002-2018
[18]

Kounatidis D, Dalamaga M, Grivakou E, Karampela I, Koufopoulos P, et al. 2024. Third-generation tetracyclines: current knowledge and therapeutic potential. Biomolecules 14:783

doi: 10.3390/biom14070783
[19]

Begum S, Begum T, Rahman N, Khan RA. 2021. A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biological and Pharmaceutical Sciences 14:87−97

doi: 10.30574/gscbps.2021.14.2.0037
[20]

Ye D, Sun J, Jiang R, Chang J, Liu Y, et al. 2024. β-lactam antibiotics induce metabolic perturbations linked to ROS generation leads to bacterial impairment. Frontiers in Microbiology 15:1514825

doi: 10.3389/fmicb.2024.1514825
[21]

Klein EY, Impalli I, Poleon S, Denoel P, Cipriano M, et al. 2024. Global trends in antibiotic consumption during 2016–2023 and future projections through 2030. Proceedings of the National Academy of Sciences of the United States of America 121:e2411919121

doi: 10.1073/pnas.2411919121
[22]

Spherical Insights & Consulting. 2024. Global antibiotics market size to worth USD 72.01 billion by 2033, with a CAGR of 4.10%. https://www.globenewswire.com/news-release/2024/06/19/2901285/0/en/Global-Antibiotics-Market-Size-To-Worth-USD-72-01-Billion-By-2033-CAGR-of-4-10.html

[23]

Kümmerer K. 2001. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources – a review. Chemosphere 45:957−969

doi: 10.1016/S0045-6535(01)00144-8
[24]

Yuan X, Lv Z, Zhang Z, Han Y, Liu Z, et al. 2023. A review of antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: occurrence, contamination, and transmission. Toxics 11:420

doi: 10.3390/toxics11050420
[25]

Bound JP, Voulvoulis N. 2005. Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environmental Health Perspectives 113:1705−1711

doi: 10.1289/ehp.8315
[26]

Gao H, Zhang L, Lu Z, He C, Li Q, et al. 2018. Complex migration of antibiotic resistance in natural aquatic environments. Environmental Pollution 232:1−9

doi: 10.1016/j.envpol.2017.08.078
[27]

Wang J, Chu L, Wojnárovits L, Takács E. 2020. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Science of The Total Environment 744:140997

doi: 10.1016/j.scitotenv.2020.140997
[28]

Tran NH, Reinhard M, Gin KYH. 2018. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions − a review. Water Research 133:182−207

doi: 10.1016/j.watres.2017.12.029
[29]

Szymańska U, Wiergowski M, Sołtyszewski I, Kuzemko J, Wiergowska G, et al. 2019. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchemical Journal 147:729−740

doi: 10.1016/j.microc.2019.04.003
[30]

Andersson DI, Hughes D. 2012. Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resistance Updates 15:162−172

doi: 10.1016/j.drup.2012.03.005
[31]

Anwar M, Iqbal Q, Saleem F. 2020. Improper disposal of unused antibiotics: an often overlooked driver of antimicrobial resistance. Expert Review of Anti-infective Therapy 18:697−699

doi: 10.1080/14787210.2020.1754797
[32]

Larsson DGJ. 2014. Pollution from drug manufacturing: review and perspectives. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 369:20130571

doi: 10.1098/rstb.2013.0571
[33]

Milaković M, Vestergaard G, González-Plaza JJ, Petrić I, Šimatović A, et al. 2019. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environment International 123:501−511

doi: 10.1016/j.envint.2018.12.050
[34]

Bielen A, Šimatović A, Kosić-Vukšić J, Senta I, Ahel M, et al. 2017. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Research 126:79−87

doi: 10.1016/j.watres.2017.09.019
[35]

Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, et al. 2009. Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry 28:2522−2527

doi: 10.1897/09-073.1
[36]

Larsson DGJ, de Pedro C, Paxeus N. 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials 148:751−755

doi: 10.1016/j.jhazmat.2007.07.008
[37]

Dafale NA, Srivastava S, Purohit HJ. 2020. Zoonosis: an emerging link to antibiotic resistance under "One Health Approach". Indian Journal of Microbiology 60(2):139−152

doi: 10.1007/s12088-020-00860-z
[38]

Gangar T, Patra S. 2023. Antibiotic persistence and its impact on the environment. 3 Biotech 13:401

doi: 10.1007/s13205-023-03806-6
[39]

Lv J, Zhang L, Chen Y, Ye B, Han J, et al. 2019. Occurrence and distribution of pharmaceuticals in raw, finished, and drinking water from seven large river basins in China. Journal of Water and Health 17:477−493

doi: 10.2166/wh.2019.250
[40]

Moratalla Á, Cotillas S, Lacasa E, Fernández-Marchante CM, Ruiz S, et al. 2022. Occurrence and toxicity impact of pharmaceuticals in hospital effluents: simulation based on a case of study. Process Safety and Environmental Protection 168:10−21

doi: 10.1016/j.psep.2022.09.066
[41]

Verlicchi P, Al Aukidy M, Zambello E. 2012. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Science of The Total Environment 429:123−155

doi: 10.1016/j.scitotenv.2012.04.028
[42]

Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, et al. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of The Total Environment 447:345−360

doi: 10.1016/j.scitotenv.2013.01.032
[43]

Baawain MS, Al-Mamun A, Omidvarborna H, Al-Sabti A, Choudri BS. 2020. Public perceptions of reusing treated wastewater for urban and industrial applications: challenges and opportunities. Environment, Development and Sustainability 22:1859−1871

doi: 10.1007/s10668-018-0266-0
[44]

Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334−342

doi: 10.1016/j.talanta.2005.09.037
[45]

Li Z, Li M, Zhang Z, Li P, Zang Y, et al. 2020. Antibiotics in aquatic environments of China: a review and meta-analysis. Ecotoxicology and Environmental Safety 199:110668

doi: 10.1016/j.ecoenv.2020.110668
[46]

Henderson-Begg SK, Livermore DM, Hall LMC. 2006. Effect of subinhibitory concentrations of antibiotics on mutation frequency in Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy 57:849−854

doi: 10.1093/jac/dkl064
[47]

Brown CL, Maile-Moskowitz A, Lopatkin AJ, Xia K, Logan LK, et al. 2024. Selection and horizontal gene transfer underlie microdiversity-level heterogeneity in resistance gene fate during wastewater treatment. Nature Communications 15:5412

doi: 10.1038/s41467-024-49742-8
[48]

Bose B, Auchtung JM, Lee CA, Grossman AD. 2008. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Molecular Microbiology 70:570−582

doi: 10.1111/j.1365-2958.2008.06414.x
[49]

Wu Y, Yan H, Zhu X, Liu C, Chu C, et al. 2022. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via restraining the energy supply for conjugative plasmid transfer. Environmental Science & Technology 56:12573−12583

doi: 10.1021/acs.est.2c02701
[50]

Jia Y, Zheng Z, Yang B, Zhang H, Wang Z, et al. 2024. A broad-spectrum horizontal transfer inhibitor prevents transmission of plasmids carrying multiple antibiotic resistance genes. Transboundary and Emerging Diseases 2024:7063673

doi: 10.1155/2024/7063673
[51]

Bilal M, Mehmood S, Rasheed T, Iqbal HMN. 2020. Antibiotics traces in the aquatic environment: persistence and adverse environmental impact. Current Opinion in Environmental Science & Health 13:68−74

doi: 10.1016/j.coesh.2019.11.005
[52]

Wang Y, Lu J, Engelstädter J, Zhang S, Ding P, et al. 2020. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. The ISME Journal 14:2179−2196

doi: 10.1038/s41396-020-0679-2
[53]

Luo Y, Wang Q, Lu Q, Mu Q, Mao D. 2014. An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class I integrons. Environmental Science & Technology Letters 1:266−270

doi: 10.1021/ez500103v
[54]

Zhang Y, Gu AZ, He M, Li D, Chen J. 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environmental Science & Technology 51:570−580

doi: 10.1021/acs.est.6b03132
[55]

Abou Mourad Ferreira M, Candeias Dos Santos L, Schmidt Castellani LG, Negrelli Brunetti M, Palaci M. 2024. Application of BactTiter-Glo ATP bioluminescence assay for Mycobacterium tuberculosis detection. Diagnostic Microbiology and Infectious Disease 109:116275

doi: 10.1016/j.diagmicrobio.2024.116275
[56]

Hu X, Wang X, Ren H, Li C, Zhang B, et al. 2024. Preliminary study of the characterization of the viable but noncultivable state of Yersinia enterocolitica induced by chloride and UV irradiation. Microorganisms 12:1778

doi: 10.3390/microorganisms12091778
[57]

Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, et al. 2016. 2016 update of the PRIDE database and its related tools. Nucleic Acids Research 44:D447−D456

doi: 10.1093/nar/gkv1145
[58]

Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews 65:232−260

doi: 10.1128/MMBR.65.2.232-260.2001
[59]

Grossman TH. 2016. Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine 6:a025387

doi: 10.1101/cshperspect.a025387
[60]

Møller TSB, Overgaard M, Nielsen SS, Bortolaia V, Sommer MOA, et al. 2016. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiology 16:39

doi: 10.1186/s12866-016-0649-z
[61]

Olivares Pacheco J, Alvarez-Ortega C, Alcalde Rico M, Martínez JL. 2017. Metabolic compensation of fitness costs is a general outcome for antibiotic-resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps. mBio 8:10.1128/mbio.00500-17

doi: 10.1128/mBio.00500-17
[62]

Li Z, Xu K, Liang B, Li Y. 2013. Determination of trace tetracyclines in surface water by aluminum hydroxide coprecipitation coupled with high-performance liquid chromatography. Analytical Methods 5:3516−3522

doi: 10.1039/C3AY40395E
[63]

Jones S. 2004. Magnaporthe blasts into roots. Nature Reviews Microbiology 2:852

doi: 10.1038/nrmicro1040
[64]

Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. 2012. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proceedings of the National Academy of Sciences of the United States of America 109:12147−12152

doi: 10.1073/pnas.1203735109
[65]

Van Acker H, Coenye T. 2017. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends in Microbiology 25:456−466

doi: 10.1016/j.tim.2016.12.008
[66]

Nikaido H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382−388

doi: 10.1126/science.8153625
[67]

Putman M, Van Veen HW, Konings WN. 2000. Molecular properties of bacterial multidrug transporters. Microbiology and Molecular Biology Reviews 64:672−693

doi: 10.1128/MMBR.64.4.672-693.2000
[68]

Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, et al. 2009. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Particle and Fibre Toxicology 6:1

doi: 10.1186/1743-8977-6-1
[69]

Gunawan C, Faiz MB, Mann R, Ting SRS, Sotiriou GA, et al. 2020. Nanosilver targets the bacterial cell envelope: the link with generation of reactive oxygen radicals. ACS Applied Materials & Interfaces 12:5557−5568

doi: 10.1021/acsami.9b20193
[70]

Pomposiello PJ, Bennik MHJ, Demple B. 2001. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. Journal of Bacteriology 183:3890−3902

doi: 10.1128/JB.183.13.3890-3902.2001
[71]

San Millan A, MacLean RC. 2017. Fitness costs of plasmids: a limit to plasmid transmission. Microbiology Spectrum 5:10.1128/microbiolspec.mtbp-0016-2017

doi: 10.1128/microbiolspec.MTBP-0016-2017
[72]

Löffler D, Ternes TA. 2003. Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography–electrospray-tandem mass spectrometry. Journal of Chromatography A 1000:583−588

doi: 10.1016/S0021-9673(03)00059-1
[73]

De Oliveira Demarco J, Hutchinson SL, Parameswaran P, Hettiarachchi G, Moore T. 2025. Removal of antibiotics from swine wastewater using an environmentally friendly biochar: performance and mechanisms. ACS Omega 10:7711−7721

doi: 10.1021/acsomega.4c07266
[74]

Samandari M, Movahedian Attar, H, Ebrahimpour K, Mohammadi F, Ghodsi S. 2022. Measurement of ampicillin and penicillin G antibiotics in wastewater treatment plants during the COVID-19 pandemic: a case study in Isfahan. Environmental Health Engineering and Management 9:201−211

doi: 10.34172/EHEM.2022.21
[75]

Chen I, Christie PJ, Dubnau D. 2005. The ins and outs of DNA transfer in bacteria. Science 310:1456−1460

doi: 10.1126/science.1114021
[76]

Onami, K, Kimura, Y, Ito, Y, Yamauchi, T, Yamasaki, K, et al. 2014. Nonmetal haptens induce ATP release from keratinocytes through opening of pannexin hemichannels by reactive oxygen species. Journal of Investigative Dermatology 134:1951−1960

doi: 10.1038/jid.2014.93
[77]

Li H, Song R, Wang Y, Zhong R, Wang T, et al. 2022. Environmental free radicals efficiently inhibit the conjugative transfer of antibiotic resistance by altering cellular metabolism and plasmid transfer. Water Research 209:117946

doi: 10.1016/j.watres.2021.117946
[78]

Huang H, Lin L, Bu F, Su Y, Zheng X, et al. 2022. Reductive stress boosts the horizontal transfer of plasmid-borne antibiotic resistance genes: the neglected side of the intracellular redox spectrum. Environmental Science & Technology 56:15594−15606

doi: 10.1021/acs.est.2c04276
[79]

Bingle LEH, Thomas CM. 2001. Regulatory circuits for plasmid survival. Current Opinion in Microbiology 4:194−200

doi: 10.1016/S1369-5274(00)00188-0
[80]

Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. 2010. Mobility of Plasmids. Microbiology and Molecular Biology Reviews 74:434−452

doi: 10.1128/MMBR.00020-10
[81]

Zhao Y, Hu X, Liu Y, Dong S, Wen Z, et al. 2017. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Molecular Cancer 16:79

doi: 10.1186/s12943-017-0648-1
[82]

Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. 2007. Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research 6:37−53

doi: 10.1051/ebr:2007031
[83]

Engelstädter J, Moradigaravand D. 2014. Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation. Proceedings of the Royal Society B: Biological Sciences 281:20132609

doi: 10.1098/rspb.2013.2609
[84]

Bushra R, Aslam N. 2010. An overview of clinical pharmacology of ibuprofen. Oman Medical Journal 25:155−161

doi: 10.5001/omj.2010.49
[85]

Bengtsson-Palme J, Larsson DGJ. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environment International 86:140−149

doi: 10.1016/j.envint.2015.10.015
[86]

Guo X, Long X, Li J, Wu J, Zhu X, et al. 2025. Effects of antibiotics and heavy metals on antibiotic resistance genes and mobile gene elements in agricultural activity. Environmental Sciences Europe 37:87

doi: 10.1186/s12302-025-00987-2
[87]

Wang D, Zhou X, Fu Q, Li Y, Ni BJ, et al. 2025. Understanding bacterial ecology to combat antibiotic resistance dissemination. Trends in Biotechnology 43:1566−1582

doi: 10.1016/j.tibtech.2024.12.011
[88]

Halawa EM, Fadel M, Al-Rabia MW, Behairy A, Nouh NA, et al. 2024. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Frontiers in Pharmacology 14:1305294

doi: 10.3389/fphar.2023.1305294
[89]

Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology 8:423−435

doi: 10.1038/nrmicro2333
[90]

Chan CL, Wai HKF, Wu P, Lai SW, Chan OSK, et al. 2022. A universal LC-MS/MS method for simultaneous detection of antibiotic residues in animal and environmental samples. Antibiotics 11:845

doi: 10.3390/antibiotics11070845
[91]

Dörr T, Lewis K, Vulić M. 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics 5:e1000760

doi: 10.1371/journal.pgen.1000760
[92]

Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797−810

doi: 10.1016/j.cell.2007.06.049
[93]

Wan M, Zhu N, Yang G, Guo X, Sun S, et al. 2023. The function of the gene loiP in transformation efficiency and outer membrane permeability change of Escherichia coli treated by Ca2+ ions. Letters in Applied Microbiology 76:ovac076

doi: 10.1093/lambio/ovac076
[94]

Poole K. 2007. Efflux pumps as antimicrobial resistance mechanisms. Annals of Medicine 39:162−176

doi: 10.1080/07853890701195262
[95]

Martindale JL and Holbrook NJ. 2002. Cellular response to oxidative stress: signaling for suicide and survival. Journal of Cellular Physiology 192:1−15

doi: 10.1002/jcp.10119
[96]

Wang Q, Wang P, Yang Q. 2018. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Science of The Total Environment 621:990−999

doi: 10.1016/j.scitotenv.2017.10.128
[97]

Jutkina J, Marathe NP, Flach CF, Larsson DGJ. 2018. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Science of The Total Environment 616–617:172−178

doi: 10.1016/j.scitotenv.2017.10.312