[1]

Spicer R, Groover A. 2010. Evolution of development of vascular cambia and secondary growth. New Phytologist 186:577−92

doi: 10.1111/j.1469-8137.2010.03236.x
[2]

Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11

doi: 10.48130/FR-2022-0011
[3]

Luo L, Li L. 2022. Molecular understanding of wood formation in trees. Forestry Research 2:5

doi: 10.48130/fr-2022-0005
[4]

Zhong R, Lee C, Ye ZH. 2010. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiology 152:1044−55

doi: 10.1104/pp.109.148270
[5]

Zhong R, McCarthy RL, Haghighat M, Ye ZH. 2013. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS One 8:e69219

doi: 10.1371/journal.pone.0069219
[6]

Zhu Y, Song D, Sun J, Wang X, Li L. 2013. PtrHB7, a class III HD-zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Molecular Plant 6:1331−43

doi: 10.1093/mp/sss164
[7]

Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, et al. 2014. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nature Communications 5:3504

doi: 10.1038/ncomms4504
[8]

Han Z, Yang T, Guo Y, Cui WH, Yao LJ, et al. 2021. The transcription factor PagLBD3 contributes to the regulation of secondary growth in Populus. Journal of Experimental Botany 72:7092−106

doi: 10.1093/jxb/erab351
[9]

Zheng S, He J, Lin Z, Zhu Y, Sun J, et al. 2021. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Populus. Plant Communications 2:100134

doi: 10.1016/j.xplc.2020.100134
[10]

Du J, Gerttula S, Li Z, Zhao ST, Liu YL, et al. 2020. Brassinosteroid regulation of wood formation in poplar. New Phytologist 225:1516−30

doi: 10.1111/nph.15936
[11]

Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, et al. 2008. Cytokinin signaling regulates cambial development in poplar. Proceedings of The National Academy of Sciences of The United States of America 105:20032−37

doi: 10.1073/pnas.0805617106
[12]

Seyfferth C, Wessels BA, Vahala J, Kangasjärvi J, Delhomme N, et al. 2021. PopulusPtERF85 balances xylem cell expansion and secondary cell wall formation in hybrid aspen. Cells 10:1971

doi: 10.3390/cells10081971
[13]

Kalluri UC, Difazio SP, Brunner AM, Tuskan GA. 2007. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology 7:59

doi: 10.1186/1471-2229-7-59
[14]

Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, et al. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. The Plant Cell 20:843−55

doi: 10.1105/tpc.107.055798
[15]

Hu MX, Guo W, Song XQ, Liu YL, Xue Y, et al. 2024. PagJAZ5 regulates cambium activity through coordinately modulating cytokinin concentration and signaling in poplar. New Phytologist 243:1455−71

doi: 10.1111/nph.19912
[16]

Wang Q, Ci D, Li T, Li P, Song Y, et al. 2016. The role of DNA methylation in xylogenesis in different tissues of poplar. Frontiers in Plant Science 7:1003

doi: 10.3389/fpls.2016.01003
[17]

Dai X, Zhai R, Lin J, Wang Z, Meng D, et al. 2023. Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa. Nature Plants 9:96−111

doi: 10.1038/s41477-022-01315-7
[18]

Ma H, Su L, Zhang W, Sun Y, Li D, et al. 2025. Epigenetic regulation of lignin biosynthesis in wood formation. New Phytologist 245:1589−607

doi: 10.1111/nph.20328
[19]

Zhang D, Guo W, Wang T, Wang Y, Le L, et al. 2023. RNA 5-methylcytosine modification regulates vegetative development associated with H3K27 trimethylation in Arabidopsis. Advanced Science 10:2204885

doi: 10.1002/advs.202204885
[20]

Zhao BS, Roundtree IA, He C. 2017. Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology 18:31−42

doi: 10.1038/nrm.2016.132
[21]

Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, et al. 2015. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526:591−94

doi: 10.1038/nature15377
[22]

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, et al. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388−99

doi: 10.1016/j.cell.2015.05.014
[23]

Liu P, Liu H, Zhao J, Yang T, Guo S, et al. 2024. Genome-wide identification and functional analysis of mRNA m6A writers in soybean under abiotic stress. Frontiers in Plant Science 15:1446591

doi: 10.3389/fpls.2024.1446591
[24]

Yu Q, Liu S, Yu L, Xiao Y, Zhang S, et al. 2021. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nature Biotechnology 39:1581−88

doi: 10.1038/s41587-021-00982-9
[25]

Gao S, Sun Y, Chen X, Zhu C, Liu X, et al. 2023. Pyrimidine catabolism is required to prevent the accumulation of 5-methyluridine in RNA. Nucleic Acids Research 51:7451−64

doi: 10.1093/nar/gkad529
[26]

Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, et al. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research 40:5023−33

doi: 10.1093/nar/gks144
[27]

Chellamuthu A, Gray SG. 2020. The RNA methyltransferase NSUN2 and its potential roles in cancer. Cells 9:1758

doi: 10.3390/cells9081758
[28]

Cui X, Liang Z, Shen L, Zhang Q, Bao S, et al. 2017. 5-methylcytosine RNA methylation in Arabidopsis thaliana. Molecular Plant 10:1387−99

doi: 10.1016/j.molp.2017.09.013
[29]

Tang Y, Gao CC, Gao Y, Yang Y, Shi B, et al. 2020. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Developmental Cell 53:272−286.e7

doi: 10.1016/j.devcel.2020.03.009
[30]

David R, Burgess A, Parker B, Li J, Pulsford K, et al. 2017. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs. The Plant Cell 29:445−60

doi: 10.1105/tpc.16.00751
[31]

Burgess AL, David R, Searle IR. 2015. Conservation of tRNA and rRNA 5-methylcytosine in the Kingdom Plantae. BMC Plant Biology 15:199

doi: 10.1186/s12870-015-0580-8
[32]

Zhang P, Wang Y, Gu X. 2020. RNA 5-methylcytosine controls plant development and environmental adaptation. Trends in Plant Science 25:954−58

doi: 10.1016/j.tplants.2020.07.004
[33]

Wang W, Liu H, Wang F, Liu X, Sun Y, et al. 2023. N4-acetylation of cytidine in mRNA plays essential roles in plants. The Plant Cell 35:3739−56

doi: 10.1093/plcell/koad189
[34]

Zhao J, Liu H, Li T, Li Y, Wang M, et al. 2025. N4-acetylcytidine mRNA modification regulates photosynthesis in plants. New Phytologist 247:2098−117

doi: 10.1111/nph.70323
[35]

Hao Y, Lu F, Pyo SW, Kim MH, Ko JH, et al. 2024. PagMYB128 regulates secondary cell wall formation by direct activation of cell wall biosynthetic genes during wood formation in poplar. Journal of Integrative Plant Biology 66:1658−74

doi: 10.1111/jipb.13717
[36]

Zeng D, Dai LJ, Li X, Li W, Qu GZ, et al. 2023. Genome-wide identification of the ERF transcription factor family for structure analysis, expression pattern, and response to drought stress in Populus alba × Populus glandulosa. International Journal of Molecular Sciences 24:3697

doi: 10.3390/ijms24043697
[37]

Li H, Dai X, Huang X, Xu M, Wang Q, et al. 2021. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. Journal of Integrative Plant Biology 63:1906−21

doi: 10.1111/jipb.13159
[38]

Li H, Chen G, Pang H, Wang Q, Dai X. 2021. Investigation into different wood formation mechanisms between angiosperm and gymnosperm tree species at the transcriptional and post-transcriptional level. Frontiers in Plant Science 12:698602

doi: 10.3389/fpls.2021.698602
[39]

Zhang Y, Chen S, Xu L, Chu S, Yan X, et al. 2024. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar. The Plant Cell 36:1806−28

doi: 10.1093/plcell/koae040
[40]

Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, et al. 2019. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nature Plants 5:1033−42

doi: 10.1038/s41477-019-0522-9
[41]

Lin YC, Li W, Sun YH, Kumari S, Wei H, et al. 2013. SND1 transcription factor–directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. The Plant Cell 25:4324−41

doi: 10.1105/tpc.113.117697
[42]

Li C, Ma X, Yu H, Fu Y, Luo K. 2018. Ectopic expression of PtoMYB74 in poplar and Arabidopsis promotes secondary cell wall formation. Frontiers in Plant Science 9:1262

doi: 10.3389/fpls.2018.01262
[43]

de Lyra Soriano Saleme M, Cesarino I, Vargas L, Kim H, Vanholme R, et al. 2017. Silencing CAFFEOYL SHIKIMATE ESTERASE affects lignification and improves saccharification in poplar. Plant Physiology 175:1040−57

doi: 10.1104/pp.17.00920
[44]

Taylor NG, Laurie S, Turner SR. 2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. The Plant Cell 12:2529−40

doi: 10.1105/tpc.12.12.2529
[45]

Abbas M, Peszlen I, Shi R, Kim H, Katahira R, et al. 2020. Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. Tree Physiology 40:73−89

doi: 10.1093/treephys/tpz020
[46]

Yang L, Zhao X, Ran L, Li C, Fan D, et al. 2017. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Scientific Reports 7:41209

doi: 10.1038/srep41209
[47]

Chen H, Wang JP, Liu H, Li H, Lin YJ, et al. 2019. Hierarchical transcription factor and chromatin binding network for wood formation in black cottonwood (Populus trichocarpa). The Plant Cell 31:602−26

doi: 10.1105/tpc.18.00620
[48]

Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, et al. 2010. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America 107:17409−14

doi: 10.1073/pnas.1005456107
[49]

Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR. 2009. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. The Plant Journal 57:732−46

doi: 10.1111/j.1365-313X.2008.03729.x
[50]

Motorin Y, Grosjean H. 1999. Multisite-specific tRNA: m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. RNA 5:1105−18

doi: 10.1017/S1355838299982201
[51]

Guarnacci M, Zhang PH, Kanchi M, Hung YT, Lin H, et al. 2024. Substrate diversity of NSUN enzymes and links of 5-methylcytosine to mRNA translation and turnover. Life Science Alliance 7:e202402613

doi: 10.26508/lsa.202402613
[52]

Müller M, Samel-Pommerencke A, Legrand C, Tuorto F, Lyko F, et al. 2019. Division of labour: tRNA methylation by the NSun2 tRNA methyltransferases Trm4a and Trm4b in fission yeast. RNA Biology 16:249−56

doi: 10.1080/15476286.2019.1568819