[1]

Chandrasekara A, Kumar TJ. 2016. Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. International Journal of Food Science 2016:3631647

doi: 10.1155/2016/3631647
[2]

Zierer W, Rüscher D, Sonnewald U, Sonnewald S. 2021. Tuber and tuberous root development. Annual Review of Plant Biology 72:551−80

doi: 10.1146/annurev-arplant-080720-084456
[3]

Kondhare KR, Kumar A, Patil NS, Malankar NN, Saha K, et al. 2021. Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism. Plant Physiology 187(3):1071−86

doi: 10.1093/plphys/kiab409
[4]

Ravi V, Naskar SK, Makeshkumar T, Babu B, Krishnan BSP. 2009. Molecular physiology of storage root formation and development in sweet potato [Ipomoea batatas (L.) Lam. ]. Journal of Root Crops 35:1−27

[5]

Roumeliotis E, Visser RGF, Bachem CWB. 2012. A crosstalk of auxin and GA during tuber development. Plant Signaling & Behavior 7:1360−63

doi: 10.4161/psb.21515
[6]

Carrera E, Bou J, García-Martínez JL, Prat S. 2000. Changes in GA 20‐oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. The Plant Journal 22(3):247−56

doi: 10.1046/j.1365-313x.2000.00736.x
[7]

Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, et al. 2007. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. The Plant Journal 52(2):362−73

doi: 10.1111/j.1365-313X.2007.03245.x
[8]

Bou-Torrent J, Martínez-García JF, García-Martínez JL, Prat S. 2011. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS One 6(9):e24458

doi: 10.1371/journal.pone.0024458
[9]

Roumeliotis E, Kloosterman B, Oortwijn M, Lange T, Visser RGF, et al. 2013. Down regulation of StGA3ox genes in potato results in altered GA content and affect plant and tuber growth characteristics. Journal of Plant Physiology 170:1228−34

doi: 10.1016/j.jplph.2013.04.003
[10]

Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester HJ, et al. 2012. The effects of auxin and strigolactones on tuber initiationand stolon architecture in potato. Journal of Experimental Botany 63(12):4539−47

doi: 10.1093/jxb/ers132
[11]

Malankar NN, Kondhare KR, Saha K, Mantri M, Banerjee AK. 2023. The phased short-interfering RNA siRD29(−) regulates GIBBERELLIN 3-OXIDASE 3 during stolon-to-tuber transitions in potato. Plant Physiology 193(4):2555−72

doi: 10.1093/plphys/kiad493
[12]

Roumeliotis E, Kloosterman B, Oortwijn M, Visser RGF, Bachem CWB. 2013. The PIN family of proteins in potato and their putative role in tuberization. Frontiers in Plant Science 4:524

doi: 10.3389/fpls.2013.00524
[13]

Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester HJ, et al. 2023. Over-expression of a YUCCA-like gene results in altered shoot and stolon branching and reduced potato tuber size. Potato Research 66:67−84

doi: 10.1007/s11540-022-09572-x
[14]

Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S. 2011. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiology 155(2):776−96

doi: 10.1104/pp.110.168252
[15]

Eviatar-Ribak T, Shalit-Kaneh A, Chappell-Maor L, Amsellem Z, Eshed Y, et al. 2013. A cytokinin-activating enzyme promotes tuber formation in tomato. Current Biology 23(12):1057−64

doi: 10.1016/j.cub.2013.04.061
[16]

Ohashi-Ito K, Fukuda H. 2020. Transcriptional networks regulating root vascular development. Current Opinion in Plant Biology 57:118−23

doi: 10.1016/j.pbi.2020.08.004
[17]

Muñiz García MN, Cortelezzi JI, Fumagalli M, Capiati DA. 2018. Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance. Plant Molecular Biology 98:137−52

doi: 10.1007/s11103-018-0769-y
[18]

Liu L, Zhang RJ, Zhu WJ, Liu XR, Shi K, et al. 2017. Inhibitory effect of StCYP707A1 gene on tuberization in transgenic potato. Plant Biotechnology Reports 11:219−28

doi: 10.1007/s11816-017-0442-y
[19]

Jing S, Sun X, Yu L, Wang E, Cheng Z, et al. 2022. Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. Plant Physiology 189(3):1677−93

doi: 10.1093/plphys/kiac098
[20]

Liu T, Dong L, Wang E, Liu S, Cheng Y, et al. 2023. StHAB1, a negative regulatory factor in abscisic acid signaling, plays crucial roles in potato drought tolerance and shoot branching. Journal of Experimental Botany 74(21):6708−21

doi: 10.1093/jxb/erad292
[21]

Zhu W, Jiao D, Zhang J, Xue C, Chen M, et al. 2020. Genome-wide identification and analysis of BES1/BZR1 transcription factor family in potato (Solanum tuberosum. L). Plant Growth Regulation 92:375−87

doi: 10.1007/s10725-020-00645-w
[22]

Huang S, Zheng C, Zhao Y, Li Q, Liu J, et al. 2021. RNA interference knockdown of the brassinosteroid receptor BRI1 in potato (Solanum tuberosum L.) reveals novel functions for brassinosteroid signaling in controlling tuberization. Scientia Horticulturae 290:110516

doi: 10.1016/j.scienta.2021.110516
[23]

Liu S, Cai C, Li L, Yu L, Wang Q, et al. 2024. Transcriptome analysis reveals the molecular mechanisms of BR negative regulatory factor StBIN2 maintaining tuber dormancy. International Journal of Molecular Sciences 25(4):2244

doi: 10.3390/ijms25042244
[24]

Deng R, Huang S, Du J, Luo D, Liu J, et al. 2024. The brassinosteroid receptor StBRI1 promotes tuber development by enhancing plasma membrane H+-ATPase activity in potato. The Plant Cell 36(9):3498−520

doi: 10.1093/plcell/koae163
[25]

Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, et al. 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348−51

doi: 10.1126/science.1218094
[26]

Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, et al. 2013. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytologist 198(4):1108−20

doi: 10.1111/nph.12217
[27]

Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA. 2009. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology 150(1):482−93

doi: 10.1104/pp.108.134783
[28]

Cenzano A, Vigliocco A, Kraus T, Abdala G. 2003. Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Annals of Botany 91(7):915−19

doi: 10.1093/aob/mcg098
[29]

Begum S, Jing S, Yu L, Sun X, Wang E, et al. 2022. Modulation of JA signalling reveals the influence of StJAZ1-like on tuber initiation and tuber bulking in potato. The Plant Journal 109(4):952−64

doi: 10.1111/tpj.15606
[30]

Koda Y, Takahashi K, Kikuta Y. 1992. Potato tuber-inducing activities of salicylic acid and related compounds. Journal of Plant Growth Regulation 11:215−19

doi: 10.1007/BF02115480
[31]

Khilji SA, Rafique A, Ahmad Sajid Z, Rauf M, Ali Shah A, et al. 2024. Foliar application of salicylic acid improved morpho-anatomical features of potato by irrigating with wastewater. BMC Plant Biology 24(1):754

doi: 10.1186/s12870-024-05469-8
[32]

Catchpole AH, Hillman J. 1969. Effect of ethylene on tuber initiation in Solanum tuberosum L. Nature 223:1387

doi: 10.1038/2231387a0
[33]

Vreugdenhil D, Van Dijk W. 1989. Effects of ethylene on the tuberization of potato (Solanum tuberosum) cuttings. Plant Growth Regulation 8:31−39

doi: 10.1007/BF00040914
[34]

Saidi A, Hajibarat Z. 2021. Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology 19(1):89

doi: 10.1186/s43141-021-00192-5
[35]

Mathura SR, Sutton F, Rouse-Miller J, Bowrin V. 2024. The molecular coordination of tuberization: current status and future directions. Current Opinion in Plant Biology 82:102655

doi: 10.1016/j.pbi.2024.102655
[36]

Chen P, Yang R, Bartels D, Dong T, Duan H. 2022. Roles of abscisic acid and gibberellins in stem/root tuber development. International Journal of Molecular Sciences 23(9):4955

doi: 10.3390/ijms23094955
[37]

Zhang M, Jian H, Shang L, Wang K, Wen S, et al. 2024. Transcriptome analysis reveals novel genes potentially involved in tuberization in potato. Plants 13(6):795

doi: 10.3390/plants13060795
[38]

Guo C, Huang Z, Luo S, Wang X, Li J, et al. 2025. Cell fate determination of the potato shoot apex and stolon tips revealed by single-cell transcriptome analysis. Plant, Cell & Environment 48(7):4838−58

doi: 10.1111/pce.15459
[39]

Wang X, Zheng K, Na T, Ye G, Han S, et al. 2025. Transcriptomic profiles reveal hormonal regulation of sugar-induced stolon initiation in potato. Scientific Reports 15:19122

doi: 10.1038/s41598-025-02215-4
[40]

Li T, Kang X, Lei W, Yao X, Zou L, et al. 2020. SHY2 as a node in the regulation of root meristem development by auxin, brassinosteroids, and cytokinin. Journal of Integrative Plant Biology 62(10):1500−17

doi: 10.1111/jipb.12931
[41]

González-Schain ND, Díaz-Mendoza M, Żurczak M, Suárez-López P. 2012. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. The Plant Journal 70(4):678−90

doi: 10.1111/j.1365-313X.2012.04909.x
[42]

Zhou T, Song B, Liu T, Shen Y, Dong L, et al. 2019. Phytochrome F plays critical roles in potato photoperiodic tuberization. The Plant Journal 98(1):42−54

doi: 10.1111/tpj.14198
[43]

Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, Prat S. 2016. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Current Biology 26(7):872−81

doi: 10.1016/j.cub.2016.01.066
[44]

Teo CJ, Takahashi K, Shimizu K, Shimamoto K, Taoka KI. 2017. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant and Cell Physiology 58(2):365−74

doi: 10.1093/pcp/pcw197
[45]

Banerjee AK, Chatterjee M, Yu Y, Suh SG, Miller WA, et al. 2006. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. The Plant Cell 18(12):3443−57

doi: 10.1105/tpc.106.042473
[46]

Mahajan A, Bhogale S, Kang IH, Hannapel DJ, Banerjee AK. 2012. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Molecular Biology 79:595−08

doi: 10.1007/s11103-012-9931-0
[47]

Sharma P, Lin T, Hannapel DJ. 2016. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A. Plant Physiology 170(1):310−24

doi: 10.1104/pp.15.01314
[48]

Zhang X, Campbell R, Ducreux LJM, Morris J, Hedley PE, et al. 2020. TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen activation complex. The Plant Journal 103(6):2263−78

doi: 10.1111/tpj.14898
[49]

Nicolas M, Torres-Pérez R, Wahl V, Cruz-Oró E, Rodríguez-Buey ML, et al. 2022. Spatial control of potato tuberization by the TCP transcription factor BRANCHED1b. Nature Plants 8:281−94

doi: 10.1038/s41477-022-01112-2
[50]

Ai Y, Jing S, Cheng Z, Song B, Xie C, et al. 2021. DNA methylation affects photoperiodic tuberization in potato (Solanum tuberosum L.) by mediating the expression of genes related to the photoperiod and GA pathways. Horticulture Research 8:181

doi: 10.1038/s41438-021-00619-7
[51]

Dutta M, Raturi V, Gahlaut V, Kumar A, Sharma P, et al. 2022. The interplay of DNA methyltransferases and demethylases with tuberization genes in potato (Solanum tuberosum L.) genotypes under high temperature. Frontiers in Plant Science 13:933740

doi: 10.3389/fpls.2022.933740
[52]

Kumar A, Kondhare KR, Vetal PV, Banerjee AK. 2020. PcG proteins MSI1 and BMI1 function upstream of miR156 to regulate aerial tuber formation in potato. Plant Physiology 182:185−203

doi: 10.1104/pp.19.00416
[53]

Kumar A, Kondhare KR, Malankar NN, Banerjee AK. 2021. The Polycomb group methyltransferase StE(z)2 and deposition of H3K27me3 and H3K4me3 regulate the expression of tuberization genes in potato. Journal of Experimental Botany 72:426−44

doi: 10.1093/jxb/eraa468
[54]

Martin A, Adam H, Díaz-Mendoza M, Żurczak M, González-Schain ND, et al. 2009. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873−81

doi: 10.1242/dev.031658
[55]

Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, et al. 2014. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology 164:1011−27

doi: 10.1104/pp.113.230714
[56]

Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK, et al. 2017. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Plant Physiology 159:244−61

doi: 10.1111/ppl.12517
[57]

Kondhare KR, Malankar NN, Devani RS, Banerjee AK. 2018. Genome-wide transcriptome analysis reveals small RNA profiles involved in early stages of stolon-to-tuber transitions in potato under photoperiodic conditions. BMC Plant Biology 18:284

doi: 10.1186/s12870-018-1501-4
[58]

Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19:489−06

doi: 10.1038/s41580-018-0016-z
[59]

Feng S, Jacobsen SE, Reik, W. 2010. Epigenetic reprogramming in plant and animal development. Science 330(6004):622−27

doi: 10.1126/science.1190614
[60]

Le H, Simmons CH, Zhong X. 2025. Functions and mechanisms of histone modifications in plants. Annual Review of Plant Biology 76:551−78

doi: 10.1146/annurev-arplant-083123-070919
[61]

Liu Y, Teng C, Xia R, Meyers BC. 2020. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. The Plant Cell 32(10):3059−80

doi: 10.1105/tpc.20.00335
[62]

Dong Q, Hu B, Zhang C. 2022. microRNAs and their roles in plant development. Frontiers in Plant Science 13:824240

doi: 10.3389/fpls.2022.824240
[63]

Lehretz GG, Sonnewald S, Hornyik C, Corral JM, Sonnewald U. 2019. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Current Biology 29(10):1614−24

doi: 10.1016/j.cub.2019.04.027
[64]

Xie F, Frazier TP, Zhang B. 2011. Identification, characterization and expression analysis of microRNAs and their targets in the potato (Solanum tuberosum). Gene 473(1):8−22

doi: 10.1016/j.gene.2010.09.007
[65]

Zhang R, Marshall D, Bryan GJ, Hornyik C. 2013. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS One 8(2):e57233

doi: 10.1371/journal.pone.0057233
[66]

Lakhotia N, Joshi G, Bhardwaj AR, Katiyar-Agarwal S, Agarwal M, et al. 2014. Identification and characterization of miRNAome in root stem leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biology 14:6

doi: 10.1186/1471-2229-14-6
[67]

Guo G, Liu X, Sun F, Cao J, Huo N, et al. 2018. Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. The Plant Cell 30(4):796−814

doi: 10.1105/tpc.17.00842
[68]

Villordon A, LaBonte D, Solis J, Firon N. 2012. Characterization of lateral root development at the onset of storage root initiation in 'Beauregard'sweetpotato adventitious roots. HortScience 47(7):961−68

doi: 10.21273/HORTSCI.47.7.961
[69]

Villordon AQ, La Bonte DR, Firon N, Kfir Y, Pressman E, et al. 2009. Characterization of adventitious root development in sweetpotato. HortScience 44(3):651−55

doi: 10.21273/HORTSCI.44.3.651
[70]

Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, et al. 2013. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 14:460

doi: 10.1186/1471-2164-14-460
[71]

Lee JJ, Kim YH, Kwak YS, An JY, Kim PJ, et al. 2015. A comparative study of proteomic differences between pencil and storage roots of sweetpotato (Ipomoea batatas (L.) Lam. ). Plant Physiology and Biochemistry 87:92−101

doi: 10.1016/j.plaphy.2014.12.010
[72]

Morales A, Ma P, Jia Z, Rodríguez D, Vargas IJP, et al. 2025. Evolution of sweet potato (Ipomoea batatas [L.] Lam.) Breeding in Cuba. Plants 14(13):1911

doi: 10.3390/plants14131911
[73]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut−dip−budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4(1):100345

doi: 10.1016/j.xinn.2022.100345
[74]

Dong T, Zhu M, Yu J, Han R, Tang C, et al. 2019. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). BMC Plant Biology 19:136

doi: 10.1186/s12870-019-1731-0
[75]

Tang C, Han R, Zhou Z, Yang Y, Zhu M, et al. 2020. Identification of candidate miRNAs related in storage root development of sweet potato by high throughput sequencing. Journal of Plant Physiology 251:153224

doi: 10.1016/j.jplph.2020.153224
[76]

Tanaka M, Takahata Y, Nakayama H, Nakatani M, Tahara M. 2009. Altered carbohydrate metabolism in the storage roots of sweetpotato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. Planta 230:737−46

doi: 10.1007/s00425-009-0979-2
[77]

Noh SA, Lee HS, Huh EJ, Huh GH, Paek KH, et al. 2010. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). Journal of Experimental Botany 61(5):1337−49

doi: 10.1093/jxb/erp399
[78]

Noh SA, Lee HS, Kim YS, Paek KH, Shin JS, et al. 2013. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato. Journal of Experimental Botany 64(1):129−42

doi: 10.1093/jxb/ers236
[79]

He S, Wang H, Hao X, Wu Y, Bian X, et al. 2021. Dynamic network biomarker analysis discovers IbNAC083 in the initiation and regulation of sweet potato root tuberization. The Plant Journal 108(3):793−813

doi: 10.1111/tpj.15478
[80]

Wang D, Li C, Liu H, Song W, Shi C, et al. 2024. Sweetpotato sucrose transporter IbSUT1 alters storage roots formation by regulating sucrose transport and lignin biosynthesis. The Plant Journal 120(3):950−65

doi: 10.1111/tpj.17029
[81]

Singh V, Sergeeva L, Ligterink W, Aloni R, Zemach H, et al. 2019. Gibberellin promotes sweetpotato root vascular lignification and reduces storage-root formation. Frontiers in Plant Science 10:1320

doi: 10.3389/fpls.2019.01320
[82]

Wang QM, Zhang LM, Guan YA, Wang ZL . 2006. Endogenous hormone concentration in developing tuberous roots of different sweet potato genotypes. Agricultural Sciences in China 5(12):919−27

doi: 10.1016/S1671-2927(07)60005-4
[83]

Tanaka M, Kato N, Nakayama H, Nakatani M, Takahata Y. 2008. Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas). Journal of plant physiology 165(16):1726−35

doi: 10.1016/j.jplph.2007.11.009
[84]

Matsuo T, Mitsuzono H, Okada R, Itoo S. 1988. Variations in the levels of major free cytokinins and free abscisic acid during tuber development of sweet potato. Journal of Plant Growth Regulation 7:249−58

doi: 10.1007/BF02025267
[85]

Li H, Wang JQ, Liu Q. 2020. Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. Journal of Plant Physiology 253:153265

doi: 10.1016/j.jplph.2020.153265
[86]

Mathura SR, Sutton F, Bowrin V. 2023. Characterization and expression analysis of SnRK2, PYL, and ABF/AREB/ABI5 gene families in sweet potato. PLoS One 18(11):e0288481

doi: 10.1371/journal.pone.0288481
[87]

Wan H, Ren L, Ma J, Li Y, Xu H, et al. 2023. Sweet potato gibberellin 2-oxidase genes in the dwarf phenotype. Scientia Horticulturae 313:111921

doi: 10.1016/j.scienta.2023.111921
[88]

Xing M, He M, Deng S, Zhang Y, Zhu H. 2025. Identification and functional characterisation of the gibberellin-inactivating enzyme, IbCYP714A1, in sweetpotato. Plant Physiology and Biochemistry 226:109973

doi: 10.1016/j.plaphy.2025.109973
[89]

Park SC, Kim HS, Lee HU, Kim YH, Kwak SS. 2019. Overexpression of Arabidopsis YUCCA6 enhances environment stress tolerance and inhibits storage root formation in sweetpotato. Plant Biotechnology Reports 13:345−52

doi: 10.1007/s11816-019-00537-0
[90]

Xue L, Wang Y, Fan Y, Jiang Z, Wei Z, et al. 2024. IbNF-YA1 is a key factor in the storage root development of sweet potato. The Plant Journal 118(6):1991−2002

doi: 10.1111/tpj.16723
[91]

Li C, Song W, Wang D, Li C, Tang W, et al. 2025. The IbMYB52/IbARF11L-IbDRM1 module negatively regulates the root development of sweetpotato. Plant Physiology and Biochemistry 14:110250

doi: 10.1016/j.plaphy.2025.110250
[92]

Kang C, He S, Zhai H, Li R, Zhao N, et al. 2018. A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Frontiers in Plant Science 9:1307

doi: 10.3389/fpls.2018.01307
[93]

Mathura SR, Sutton F, Bowrin V. 2023. Genome-wide identification, characterization, and expression analysis of the sweet potato (Ipomoea batatas [L.] Lam. ) ARF, Aux/IAA, GH3, and SAUR gene families. BMC Plant Biology 23:622

doi: 10.1186/s12870-023-04598-w
[94]

Huang Z, Wang Z, Li X, He S, Liu Q, et al. 2021. Genome-wide identification and expression analysis of JAZ family involved in hormone and abiotic stress in sweet potato and its two diploid relatives. International Journal of Molecular Sciences 22:9786

doi: 10.3390/ijms22189786
[95]

Zhang H, Zhang Q, Zhai H, Gao S, Yang L, et al. 2020. IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. The Plant Cell 32(4):1102−23

doi: 10.1105/tpc.19.00641
[96]

Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, et al. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. The Plant Cell 19(7):2197−212

doi: 10.1105/tpc.107.052126
[97]

Hannapel DJ. 2013. A perspective on photoperiodic phloem-mobile signals that control development. Frontiers in Plant Science 4:295

doi: 10.3389/fpls.2013.00295
[98]

Mathura SR. 2023. Deciphering the hormone regulatory mechanisms of storage root initiation in sweet potato: challenges and future prospects. AoB Plants 15(3):plad027

doi: 10.1093/aobpla/plad027
[99]

Kondhare KR, Kumar A, Hannapel DJ, Banerjee AK. 2018. Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops. BMC Genomics 19:124

doi: 10.1186/s12864-018-4502-7
[100]

Natarajan B, Kondhare KR, Hannapel DJ, Banerjee AK. 2019. Mobile RNAs and proteins: Prospects in storage organ development of tuber and root crops. Plant Science 284:73−81

doi: 10.1016/j.plantsci.2019.03.019
[101]

Koda Y, Okazawa Y. 1983. Characteristic changes in the levels of endogenous plant hormones in relation to the onset of potato tuberization. Japanese Journal of Crop Science 52(4):592−97

doi: 10.1626/jcs.52.592
[102]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13(8):1194−202

doi: 10.1016/j.molp.2020.06.009
[103]

Dai X, Zhao PX. 2011. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research 39:w155−w159

doi: 10.1093/nar/gkr319
[104]

Fladung M. 1993. Influence of the indoleacetic acid-lysine synthetase gene (iaaL) of Pseudomonas syringae subsp. savastanoi on yield attributes of potatoes. Plant Breeding 111:242−45

doi: 10.1111/j.1439-0523.1993.tb00635.x
[105]

Kim JI, Baek D, Park HC, Chun HJ, Oh DH, et al. 2013. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Molecular Plant 6(2):337−49

doi: 10.1093/mp/sss100
[106]

Kolachevskaya OO, Sergeeva LI, Floková K, Getman IA, Lomin SN, et al. 2017. Auxin synthesis gene tms1 driven by tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones. Plant Cell Report 36:419−35

doi: 10.1007/s00299-016-2091-y
[107]

Kloosterman B, Visser RGF, Bachem CWB. 2006. Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member (StIAA2) that is involved in petiole hyponasty and shoot morphogenesis. Plant Physiology and Biochemistry 44(11-12):766−75

doi: 10.1016/j.plaphy.2006.10.026
[108]

Gális I, Macas J, Vlasák J, Ondřej M, Van Onckelen HA. 1995. The effects of an elevated cytokinin level using the ipt gene and N6-benzyladenine on single node and intact potato plant tuberization in vitro. Journal of Plant Growth Regulation 14:143−50

doi: 10.1007/BF00210916
[109]

Liu S, Wang Y, Li L, Yan L, Wang X, et al. 2025. StSN2 enhances tuber formation in potato via upregulating of the ABA signaling pathway. Frontiers in Plant Science 16:1566237

doi: 10.3389/fpls.2025.1566237