[1]

Bibette J, Leal-Calderon F, Schmitt V, Poulin P. 2003. Emulsion science: basic principles. An overview. Berlin, Heidelberg: Springer. doi: 10.1007/3-540-70820-0

[2]

Silva HD, Cerqueira MA, Vicente AA. 2015. Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering 167:89−98

doi: 10.1016/j.jfoodeng.2015.07.037
[3]

Linke C, Drusch S. 2018. Pickering emulsions in foods - opportunities and limitations. Critical Reviews in Food Science and Nutrition 58:1971−85

doi: 10.1080/10408398.2017.1290578
[4]

Niro CM, Medeiros JA, Freitas JA, Azeredo HM. 2021. Advantages and challenges of Pickering emulsions applied to bio-based films: a mini-review. Journal of the Science of Food and Agriculture 101:3535−40

doi: 10.1002/jsfa.11029
[5]

Zhang T, Xu J, Chen J, Wang Z, Wang X, et al. 2021. Protein nanoparticles for Pickering emulsions: a comprehensive review on their shapes, preparation methods, and modification methods. Trends in Food Science & Technology 113:26−41

doi: 10.1016/j.jpgs.2021.04.054
[6]

Ming Y, Xia Y, Ma G. 2022. Aggregating particles on the O/W interface: tuning Pickering emulsion for the enhanced drug delivery systems. Aggregate 3:e162

doi: 10.1002/agt2.162
[7]

Yang Y, Fang Z, Chen X, Zhang W, Xie Y, et al. 2017. An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Frontiers in Pharmacology 8:287

doi: 10.3389/fphar.2017.00287
[8]

Santos TP, Okuro PK, Cunha RL. 2021. Pickering emulsions as a platform for structures design: cutting-edge strategies to engineer digestibility. Food Hydrocolloids 116:106645

doi: 10.1016/j.foodhyd.2021.106645
[9]

Abdullah, Weiss J, Ahmad T, Zhang C, Zhang H. 2020. A review of recent progress on high internal-phase Pickering emulsions in food science. Trends in Food Science & Technology 106:91−103

doi: 10.1016/j.jpgs.2020.10.016
[10]

Lv X, Zhang D, Zhu X, Li D, Zhang C. 2024. Emulsification stability of Auricularia auricula polysaccharides and its effect on steady-state properties of β-carotene embedding. Food Innovation and Advances 3:360−71

doi: 10.48130/fia-0024-0034
[11]

Kang Y, Xiao N, Wu H, Pan Z, Chen W, et al. 2025. Resveratrol promotes spherical nano-self-assembly of egg white protein to enhance emulsification performance. Food Innovation and Advances 4:19−30

doi: 10.48130/fia-0025-0001
[12]

Ashaolu TJ, Zhao G. 2020. Fabricating a Pickering stabilizer from okara dietary fibre particulates by conjugating with soy protein isolate via Maillard reaction. Foods 9:143

doi: 10.3390/foods9020143
[13]

Li MF, He ZY, Li GY, Zeng QZ, Su DX, et al. 2019. The formation and characterization of antioxidant Pickering emulsions: Effect of the interactions between gliadin and chitosan. Food Hydrocolloids 90:482−89

doi: 10.1016/j.foodhyd.2018.12.052
[14]

Khemissi H, Bassani H, Aschi A, Capron I, Benyahia L, et al. 2018. Exploiting complex formation between polysaccharides and protein microgels to influence particle stabilization of W/W emulsions. Langmuir 34:11806−13

doi: 10.1021/acs.langmuir.8b02383
[15]

Thakur M, Chandel M, Kumar A, Kumari S, Kumar P, et al. 2023. The development of carbohydrate polymer- and protein-based biomaterials and their role in environmental health and hygiene: a review. International Journal of Biological Macromolecules 242:124875

doi: 10.1016/j.ijbiomac.2023.124875
[16]

Chen Q, Dong L, Li Y, Liu Y, Xia Q, et al. 2024. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Critical Reviews in Food Science and Nutrition 64:7045−66

doi: 10.1080/10408398.2023.2179969
[17]

Joshi SC. 2011. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4:1861−905

doi: 10.3390/ma4101861
[18]

Otoni CG, Lorevice MV, de Moura MR, Mattoso LHC. 2018. On the effects of hydroxyl substitution degree and molecular weight on mechanical and water barrier properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers 185:105−11

doi: 10.1016/j.carbpol.2018.01.016
[19]

Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Dinarvand R, et al. 2020. Burgeoning polymer nano blends for improved controlled drug release: a review. International Journal of Nanomedicine 15:4363−92

doi: 10.2147/IJN.S252237
[20]

Rubilar JF, Zúñiga RN, Osorio F, Pedreschi F. 2015. Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/WPI) edible films. Carbohydrate Polymers 123:27−38

doi: 10.1016/j.carbpol.2015.01.010
[21]

Siepmann J, Peppas NA. 2001. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews 48:139−57

doi: 10.1016/S0169-409X(01)00112-0
[22]

Li C, Wang JX, Le Y, Chen JF. 2013. Studies of bicalutamide-excipients interaction by combination of molecular docking and molecular dynamics simulation. Molecular Pharmaceutics 10:2362−69

doi: 10.1021/mp300727d
[23]

Nicolai T, Durand D. 2013. Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science 18:249−56

doi: 10.1016/j.cocis.2013.03.001
[24]

Feng J, Liu S, Sun N, Dong H, Miao L, et al. 2024. Combining different ionic polysaccharides and pH treatment improved functional properties of soybean protein amyloid fibrils through structural modifications. Food Hydrocolloids 153:110027

doi: 10.1016/j.foodhyd.2024.110027
[25]

Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. 2013. Preparation of Janus colloidal particles via Pickering emulsion: an overview. Colloids and Surfaces A: Physicochemical and Engineering Aspects 439:35−42

doi: 10.1016/j.colsurfa.2013.01.004
[26]

Binks BP, Isa L, Tyowua AT. 2013. Direct measurement of contact angles of silica particles in relation to double inversion of Pickering emulsions. Langmuir 29:4923−27

doi: 10.1021/la4006899
[27]

Destribats M, Gineste S, Laurichesse E, Tanner H, Leal-Calderon F, et al. 2014. Pickering emulsions: what are the main parameters determining the emulsion type and interfacial properties? Langmuir 30:9313−26

doi: 10.1021/la501299u
[28]

Frelichowska J, Bolzinger MA, Chevalier Y. 2010. Effects of solid particle content on properties of o/w Pickering emulsions. Journal of Colloid and Interface Science 351:348−56

doi: 10.1016/j.jcis.2010.08.019
[29]

Kaganyuk M, Mohraz A. 2017. Non-monotonic dependence of Pickering emulsion gel rheology on particle volume fraction. Soft Matter 13:2513−22

doi: 10.1039/C6SM02858F
[30]

Liu Z, Zheng K, Yan R, Tang H, Jia Z, et al. 2024. Effects of different solid particle sizes on oat protein isolate and pectin particle-stabilized Pickering emulsions and their use as delivery systems. Food Chemistry 454:139681

doi: 10.1016/j.foodchem.2024.139681
[31]

Yakhoub HA, Masalova I, Haldenwang R. 2010. Highly concentrated emulsions: role of droplet size. Chemical Engineering Communications 198:147−71

doi: 10.1080/00986445.2010.499841
[32]

Wang LJ, Yin SW, Wu LY, Qi JR, Guo J, et al. 2016. Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs). Food Chemistry 213:462−69

doi: 10.1016/j.foodchem.2016.06.119
[33]

Winter HH, Chambon F. 1986. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of Rheology 30:367−82

doi: 10.1122/1.549853
[34]

Bower C, Gallegos C, Mackley MR, Madiedo JM. 1999. The rheological and microstructural characterisation of the non-linear flow behaviour of concentrated oil-in-water emulsions. Rheologica Acta 38:145−59

doi: 10.1007/s003970050164
[35]

Gu X, Guo J, Meng Z. 2023. Effects of crystalline/non-crystalline emulsifiers on foamed emulsion: Microstructure, rheological properties, and 3D printing. Food Hydrocolloids 144:109000

doi: 10.1016/j.foodhyd.2023.109000
[36]

Patel AR, Cludts N, Bin Sintang MD, Lewille B, Lesaffer A, et al. 2014. Polysaccharide-based oleogels prepared with an emulsion-templated approach. ChemPhysChem 15:3435−39

doi: 10.1002/cphc.201402473
[37]

Chang C, Li X, Zhai J, Su Y, Gu L, et al. 2023. Stability of protein particle based Pickering emulsions in various environments: Review on strategies to inhibit coalescence and oxidation. Food Chemistry: X 18:100651

doi: 10.1016/j.fochx.2023.100651
[38]

Rousseau D. 2013. Trends in structuring edible emulsions with Pickering fat crystals. Current Opinion in Colloid & Interface Science 18:283−91

doi: 10.1016/j.cocis.2013.04.009
[39]

Ghosh S, Rousseau D. 2009. Freeze-thaw stability of water-in-oil emulsions. Journal of Colloid and Interface Science 339:91−102

doi: 10.1016/j.jcis.2009.07.047
[40]

Zhao Y, Wang D, Xu J, Tu D, Zhuang W, et al. 2024. Effect of polysaccharide concentration on heat-induced Tremella fuciformis polysaccharide-soy protein isolation gels: Gel properties and interactions. International Journal of Biological Macromolecules 262:129782

doi: 10.1016/j.ijbiomac.2024.129782
[41]

Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, et al. 2023. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Frontiers in Microbiology 14:1304081

doi: 10.3389/fmicb.2023.1304081
[42]

Gustafsson C, Nyström C, Lennholm H, Bonferoni MC, Caramella CM. 2003. Characteristics of hydroxypropyl methylcellulose influencing compactibility and prediction of particle and tablet properties by infrared spectroscopy. Journal of Pharmaceutical Sciences 92:494−504

doi: 10.1002/jps.10323
[43]

Sharma RD, Lynn AM, Sharma PK, Rajnee, Jawaid S. 2009. High temperature unfolding of Bacillus anthracis amidase-03 by molecular dynamics simulations. Bioinformation 3:430−34

doi: 10.6026/97320630003430
[44]

Ormeño F, General IJ. 2024. Convergence and equilibrium in molecular dynamics simulations. Communications Chemistry 7:26

doi: 10.1038/s42004-024-01114-5
[45]

Sumera, Anwer F, Waseem M, Fatima A, Malik N, et al. 2022. Molecular docking and molecular dynamics studies reveal secretory proteins as novel targets of temozolomide in glioblastoma multiforme. Molecules 27:7198

doi: 10.3390/molecules27217198