[1]

Feng Y Zhang Y, Lin N, Chen Y, Luo K. 2024. Diversity of entophytic bacteria in different tissues of cassava. Journal of Tropical Biology 15:141−49

doi: 10.15886/j.cnki.rdswxb.20230077
[2]

Olsen KM, Schaal BA. 1999. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America 96:5586−91

doi: 10.1073/pnas.96.10.5586
[3]

Li S, Cui Y, Zhou Y, Luo Z, Liu J, et al. 2017. The industrial applications of cassava: current status, opportunities and prospects. Journal of the Science of Food and Agriculture 97:2282−90

doi: 10.1002/jsfa.8287
[4]

Wang S, Zhou X, Pan K, Zhang H, Shen X, et al. 2023. Distinct heat response molecular mechanisms emerge in cassava vasculature compared to leaf mesophyll tissue under high temperature stress. Frontiers in Plant Science 14:1281436

doi: 10.3389/fpls.2023.1281436
[5]

Bai Y, Dong Y, Zheng L, Zeng H, Wei Y, et al. 2024. Cassava phosphatase PP2C1 modulates thermotolerance via fine-tuning dephosphorylation of antioxidant enzymes. Plant Physiology 194:2724−38

doi: 10.1093/plphys/kiae009
[6]

Lehretz GG, Sonnewald S, Hornyik C, Corral JM, Sonnewald U. 2019. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Current Biology 29:1614−1624.e3

doi: 10.1016/j.cub.2019.04.027
[7]

Shah Z, Shah SH, Ali GS, Munir I, Khan RS, et al. 2020. Introduction of Arabidopsis's heat shock factor HsfA1d mitigates adverse effects of heat stress on potato (Solanum tuberosum L.) plant. Cell Stress and Chaperones 25:57−63

doi: 10.1007/s12192-019-01043-6
[8]

Gautam S, Pandey J, Scheuring DC, Koym JW, Vales MI. 2024. Genetic basis of potato tuber defects and identification of heat-tolerant clones. Plants 13:616

doi: 10.3390/plants13050616
[9]

Gray, WM, Ostin, Sandberg, Romano, et al. 1998. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 95:7197−202

doi: 10.1073/pnas.95.12.7197
[10]

Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, et al. 2011. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America 108:20231−35

doi: 10.1073/pnas.1110682108
[11]

Lopez-Delgado H, Dat JF, Foyer CH, Scott IM. 1998. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany 49:713−20

doi: 10.1093/jxb/49.321.713
[12]

Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, et al. 2016. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. Journal of Experimental Botany 67:5381−90

doi: 10.1093/jxb/erw299
[13]

Hong JH, Seah SW, Xu J. 2013. The root of ABA action in environmental stress response. Plant Cell Reports 32:971−83

doi: 10.1007/s00299-013-1439-9
[14]

Al-Whaibi MH. 2011. Plant heat-shock proteins: a mini review. Journal of King Saud University - Science 23:139−50

doi: 10.1016/j.jksus.2010.06.022
[15]

Xu M, Lin L, Ram BM, Shriwas O, Chuang KH, et al. 2023. Heat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock response. Cell Reports 42:112557

doi: 10.1016/j.celrep.2023.112557
[16]

Zhang H, Li G, Hu D, Zhang Y, Zhang Y, et al. 2020. Functional characterization of maize heat shock transcription factor gene ZmHsf01 in thermotolerance. PeerJ 8:e8926

doi: 10.7717/peerj.8926
[17]

Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−19

doi: 10.1016/j.bbagrm.2011.10.002
[18]

Shunmei E, Zhao Y, Huang Y, Lai K, Chen C, et al. 2010. Heat shock factor 1 is a transcription factor of Fas gene. Molecules and Cells 29:527−31

doi: 10.1007/s10059-010-0065-4
[19]

Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany 61:199−223

doi: 10.1016/j.envexpbot.2007.05.011
[20]

Jacob P, Hirt H, Bendahmane A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15:405−14

doi: 10.1111/pbi.12659
[21]

Li H, Xiao J, Chen J, Shen X, Luo J, et al. 2025. Identification of the cassava NADP-ME gene family and its response and regulation in photosynthesis. Frontiers in Plant Science 16:1525193

doi: 10.3389/fpls.2025.1525193
[22]

Lin SQ, Song W, Gan LZ, Wei W, Shan W, et al. 2024. Low temperature downregulates MabHLH355 and its associated target genes responsible for scavenging ROS in banana peel under cold stress. Postharvest Biology and Technology 213:112956

doi: 10.1016/j.postharvbio.2024.112956
[23]

Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24:713−14

doi: 10.1093/bioinformatics/btn025
[24]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[25]

Zheng M, Li J, Lin C, Wang B, Zhao P, et al. 2025. Functional analysis of MeFER4 in regulating ROS homeostasis during abiotic stress responses in Arabidopsis. Tropical Plants 4:e013

doi: 10.48130/tp-0025-0010
[26]

Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, et al. 2011. Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. The Plant Journal 66:915−28

doi: 10.1111/j.1365-313X.2011.04552.x
[27]

Lima RB, Dos Santos TB, Vieira LGE, de Lourdes Lúcio Ferrarese M, Ferrarese-Filho O, et al. 2013. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydrate Polymers 93:135−43

doi: 10.1016/j.carbpol.2012.05.015
[28]

Li Z, Li Z, Ji Y, Wang C, Wang S, et al. 2024. The heat shock factor 20-HSF4-cellulose synthase A2 module regulates heat stress tolerance in maize. The Plant Cell 36:2652−67

doi: 10.1093/plcell/koae106
[29]

Kamel H, Geitmann A. 2023. Strength in numbers: an isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. Plant Physiology 194:67−80

doi: 10.1093/plphys/kiad544
[30]

Du J, Kirui A, Huang S, Wang L, Barnes WJ, et al. 2020. Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis thaliana. The Plant Cell 32:3576−97

doi: 10.1105/tpc.20.00252
[31]

Adetunji AI, Du Clou H, Walford SN, Taylor JRN. 2016. Complementary effects of cell wall degrading enzymes together with lactic acid fermentation on cassava tuber cell wall breakdown. Industrial Crops and Products 90:110−17

doi: 10.1016/j.indcrop.2016.06.028
[32]

Staack L, Pia EAD, Jørgensen B, Pettersson D, Pedersen NR. 2019. Cassava cell wall characterization and degradation by a multicomponent NSP-targeting enzyme (NSPase). Scientific Reports 9:10150

doi: 10.1038/s41598-019-46341-2
[33]

Vulavala VKR, Fogelman E, Faigenboim A, Shoseyov O, Ginzberg I. 2019. The transcriptome of potato tuber phellogen reveals cellular functions of cork cambium and genes involved in periderm formation and maturation. Scientific Reports 9:10216

doi: 10.1038/s41598-019-46681-z
[34]

Guo C, Huang Z, Luo S, Wang X, Li J, et al. 2025. Cell fate determination of the potato shoot apex and stolon tips revealed by single-cell transcriptome analysis. Plant, Cell & Environment 48:4838−58

doi: 10.1111/pce.15459
[35]

Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, et al. 2010. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology 10:34

doi: 10.1186/1471-2229-10-34
[36]

Larkindale J, Huang B. 2005. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regulation 47:17−28

doi: 10.1007/s10725-005-1536-z
[37]

Wind J, Smeekens S, Hanson J. 2010. Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610−14

doi: 10.1016/j.phytochem.2010.07.007
[38]

Dobrá J, Černý M, Štorchová H, Dobrev P, Skalák J, et al. 2015. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Science 231:52−61

doi: 10.1016/j.plantsci.2014.11.005
[39]

Xu Y, Gianfagna T, Huang B. 2010. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. Journal of Experimental Botany 61:3273−89

doi: 10.1093/jxb/erq149
[40]

Prerostova S, Dobrev PI, Kramna B, Gaudinova A, Knirsch V, et al. 2020. Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Frontiers in Plant Science 11:87

doi: 10.3389/fpls.2020.00087
[41]

Sadura I, Libik-Konieczny M, Jurczyk B, Gruszka D, Janeczko A. 2020. HSP transcript and protein accumulation in brassinosteroid barley mutants acclimated to low and high temperatures. International Journal of Molecular Sciences 21:1889

doi: 10.3390/ijms21051889
[42]

Savada RP, Ozga JA, Jayasinghege CPA, Waduthanthri KD, Reinecke DM. 2017. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues. Plant Molecular Biology 95:313−31

doi: 10.1007/s11103-017-0653-1
[43]

Wu YS, Yang CY. 2019. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Botanical Studies 60:23

doi: 10.1186/s40529-019-0272-z
[44]

Lu T, Shi JW, Sun ZP, Qi MF, Liu YF, et al. 2017. Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato. Journal of Zhejiang University-Science B 18:635−48

doi: 10.1631/jzus.B1600286