[1]

Cassman KG. 1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America 96:5952−5959

doi: 10.1073/pnas.96.11.5952
[2]

Swanson B. 2008. Global review of good agricultural extension and advisory service practices. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. https://www.fao.org/4/i0261e/i0261e00.pdf

[3]

Hazell PBR. 2009. The Asian green revolution. IFPRI Discussion Paper 911. International Food Policy Research Institute (IFPRI), Washington, USA. https://hdl.handle.net/10568/161978

[4]

Pingali P. 2007. Agricultural growth and economic development: a view through the globalization lens. Agricultural Economics 37:1−12

doi: 10.1111/j.1574-0862.2007.00231.x
[5]

Pingali PL. 2012. Green revolution: impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States of America 109:12302−12308

doi: 10.1073/pnas.0912953109
[6]

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, et al. 2014. Producing more grain with lower environmental costs. Nature 514:486−489

doi: 10.1038/nature13609
[7]

Peng S, Buresh RJ, Huang J, Yang J, Zou Y, et al. 2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research 96:37−47

doi: 10.1016/j.fcr.2005.05.004
[8]

Sui B, Feng X, Tian G, Hu X, Shen Q, et al. 2013. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research 150:99−107

doi: 10.1016/j.fcr.2013.06.012
[9]

Zhang D, Wang H, Pan J, Luo J, Liu J, et al. 2018. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture, Ecosystems & Environment 265:8−14

doi: 10.1016/j.agee.2018.05.023
[10]

Gu B, Zhang X, Lam SK, Yu Y, van Grinsven HJM, et al. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613:77−84

doi: 10.1038/s41586-022-05481-8
[11]

Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, et al. 2010. Significant acidification in major Chinese croplands. Science 327:1008−1010

doi: 10.1126/science.1182570
[12]

Sayer J, Sunderland T, Ghazoul J, Pfund JL, Sheil D, et al. 2013. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proceedings of the National Academy of Sciences of the United States of America 110:8349−8356

doi: 10.1073/pnas.1210595110
[13]

Sutton MA, Bleeker A, Howard C, Erisman JW, Abrol YP, et al. 2013. Our nutrient world: the challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh UK on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. https://nora.nerc.ac.uk/id/eprint/500700/1/N500700BK.pdf

[14]

Zhang ZS, Chen J, Liu TQ, Cao CG, Li CF. 2016. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmospheric Environment 144:274−281

doi: 10.1016/j.atmosenv.2016.09.003
[15]

Van Grinsven HJM, Holland M, Jacobsen BH, Klimont Z, Sutton MA, et al. 2013. Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental Science & Technology 47:3571−3579

doi: 10.1021/es303804g
[16]

Sobota DJ, Compton JE, McCrackin ML, Singh S. 2015. Cost of reactive nitrogen release from human activities to the environment in the United States. Environmental Research Letters 10:025006

doi: 10.1088/1748-9326/10/2/025006
[17]

Silva JV, Pede VO, Radanielson AM, Kodama W, Duarte A, et al. 2022. Revisiting yield gaps and the scope for sustainable intensification for irrigated lowland rice in Southeast Asia. Agricultural Systems 198:103383

doi: 10.1016/j.agsy.2022.103383
[18]

Yuan S, Stuart AM, Laborte AG, Rattalino Edreira JI, Dobermann A, et al. 2022. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nature Food 3:217−226

doi: 10.1038/s43016-022-00477-z
[19]

Raitzer DA, Tavoni M, Orecchia C, Bosello F, Marangoni G, et al. 2015. Southeast Asia and the economics of global climate stabilization. ADB Briefs No. 50. Asian Development Bank, Manila, Philippines. https://www.adb.org/sites/default/files/publication/177225/adb-brief-50-sea-global-climate-stabilization.pdf

[20]

Denning G, Baroang K, Sandar TM, other MDRI and MSU colleagues. 2013. Background paper No. 2: rice productivity improvement in Myanmar. Michigan State University (MSU) and Myanmar Development Resource Institute (MDRI), Yangon, Myanmar and East Lansing, USA. https://themimu.info/sites/themimu.info/files/documents/Ref_Doc_Background_Paper_2_Rice_Productivity_Improvement_Mar2013.pdf

[21]

Garcia AG, Garcia YT. 1999. Rice production systems in Myanmar. 2nd Asia-Pacific Conference on Sustainable Agriculture, 18–20 October 1999, Phitsanulok, Thailand. American Association for the Advancement of Science. pp. 18−20

[22]

Htwe CM, Win KK, Ngwe K, Mar SS. 2016. Estimating soil nutrient supply capacity for rice (Oryza sativa L.) production. AUAA Proceeding of 9th Agricultural Research Conference, Yezin Agricultural University, Mandalay, Myanmar. www.researchgate.net/publication/328476598_Estimating_Soil_Nutrient_Supply_Capacity_for_Rice_Oryza_sativa_L_Production

[23]

Oo AN, Khaung T, Thein SS. 2016. Nutrient management for rice production in Myanmar. In Paper Collection of Unknown Contemporary Issues for Sustainable Environmental and Rural Development in Myanmar: Highlighting Collaboration with Bangladesh, Bhutan and Japan, eds. Ando K, Swe KL, Kanzaki M. Kyoto, Japan: Department of Practice-oriented Area Studies, Center for Southeast Asian Studies (CSEAS), Kyoto University. pp. 37−45 https://www-archive.cseas.kyoto-u.ac.jp/brahmaputra/Paper/MyanmarWorkshop2016.pdf

[24]

Yuan S, Linquist BA, Wilson LT, Cassman KG, Stuart AM, et al. 2021. Sustainable intensification for a larger global rice bowl. Nature Communications 12:7163

doi: 10.1038/s41467-021-27424-z
[25]

Pandey A, Suter H, He JZ, Hu HW, Chen D. 2019. Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biology and Biochemistry 131:149−156

doi: 10.1016/j.soilbio.2019.01.007
[26]

Pandey A, Suter H, He JZ, Hu HW, Chen D. 2021. Dissimilatory nitrate ammonification and N2 fixation helps maintain nitrogen nutrition in resource-limited rice paddies. Biology and Fertility of Soils 57:107−115

doi: 10.1007/s00374-020-01508-2
[27]

Eldridge SM, Pandey A, Weatherley A, Willett IR, Myint AK, et al. 2022. Recovery of nitrogen fertilizer can be doubled by urea-briquette deep placement in rice paddies. European Journal of Agronomy 140:126605

doi: 10.1016/j.eja.2022.126605
[28]

Dobermann A, Witt C, Abdulrachman S, Gines HC, Nagarajan R, et al. 2003. Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agronomy Journal 95:913−923

doi: 10.2134/agronj2003.9130
[29]

Denier van der Gon HAC, Kropff MJ, van Breemen N, Wassmann R, Lantin RS, et al. 2002. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proceedings of the National Academy of Sciences of the United States of America 99:12021−12024

doi: 10.1073/pnas.192276599
[30]

Willett IR. 2021. Management of nutrients for improved profitability and sustainability of crop production in central Myanmar. Report FR2021-052. Australian Centre for International Agricultural Research (ACIAR), Canberra, ACT, Australia. www.aciar.gov.au/publication/technical-publications/management-nutrients-improved-profitability-and-sustainability-crop-production-central

[31]

Llewellyn RS, Brown B. 2020. Predicting adoption of innovations by farmers: what is different in smallholder agriculture? Applied Economic Perspectives and Policy 42:100−112

doi: 10.1002/aepp.13012
[32]

Thar SP, Farquharson RJ, Ramilan T, Coggins S, Chen D. 2021. Recommended vs. practice: smallholder fertilizer decisions in central Myanmar. Agriculture 11:65

doi: 10.3390/agriculture11010065
[33]

Ministry of Agriculture, Livestock and Irrigation (MOALI). 2018. Myanmar agriculture development strategy and investment plan (2018-19/2022-23). MOALI, Myanmar. https://climate-laws.org/documents/myanmar-agriculture-development-strategy-and-investment-plan-2018-19-2022-23_1b52?id=myanmar-agriculture-development-strategy-and-investment-plan-2018-19-2022-23_1c84

[34]

Pandey A, Eldridge SM, Weatherley A, Willett IR, Myint AK, et al. 2023. High fertilizer nitrogen input increases nitrogen mining in sandy paddy soils. Nutrient Cycling in Agroecosystems 125:77−88

doi: 10.1007/s10705-022-10257-7
[35]

Li Y, White R, Chen D, Zhang J, Li B, et al. 2007. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecological Modelling 203:395−423

doi: 10.1016/j.ecolmodel.2006.12.011
[36]

Hu K, Li Y, Chen W, Chen D, Wei Y, et al. 2010. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China. Journal of Environmental Quality 39:667−677

doi: 10.2134/jeq2009.0204
[37]

Gu B, Zhang L, Van Dingenen R, Vieno M, Van Grinsven HJ, et al. 2021. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374:758−762

doi: 10.1126/science.abf8623
[38]

Pinder RW, Bettez ND, Bonan GB, Greaver TL, Wieder WR, et al. 2013. Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry 114:25−40

doi: 10.1007/s10533-012-9787-z
[39]

Thar SP, Ramilan T, Farquharson RJ, Chen D. 2021. Identifying potential for decision support tools through farm systems typology analysis coupled with participatory research: a case for smallholder farmers in Myanmar. Agriculture 11:516

doi: 10.3390/agriculture11060516
[40]

Thar SP, Ramilan T, Farquharson RJ, Pang A, Chen D. 2021. An empirical analysis of the use of agricultural mobile applications among smallholder farmers in Myanmar. The Electronic Journal of Information Systems in Developing Countries 87:e12159

doi: 10.1002/isd2.12159