[1]

Abbasi T, Abbasi SA. 2011. Decarbonization of fossil fuels as a strategy to control global warming. Renewable and Sustainable Energy Reviews 15:1828−1834

doi: 10.1016/j.rser.2010.11.049
[2]

Fuso Nerini F, Tomei J, To LS, Bisaga I, Parikh P, et al. 2018. Mapping synergies and trade-offs between energy and the sustainable development goals. Nature Energy 3:10−15

doi: 10.1038/s41560-017-0036-5
[3]

Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J. 2014. Mesoporous materials for clean energy technologies. Chemical Society Reviews 43:7681−7717

doi: 10.1039/c3cs60435g
[4]

Titirici MM, White RJ, Brun N, Budarin VL, Su DS, et al. 2015. Sustainable carbon materials. Chemical Society Reviews 44:250−290

doi: 10.1039/C4CS00232F
[5]

Yu S, He J, Zhang Z, Sun Z, Xie M, et al. 2024. Towards negative emissions: hydrothermal carbonization of biomass for sustainable carbon materials. Advanced Materials 36:2307412

doi: 10.1002/adma.202307412
[6]

Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, et al. 2020. Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot−modified electrode. Environmental Science and Pollution Research 27:13315−13324

doi: 10.1007/s11356-020-07695-7
[7]

Pudza MY, Abidin ZZ, Abdul-Rashid S, Yassin FM, Noor ASM, et al. 2019. Synthesis and characterization of fluorescent carbon dots from tapioca. ChemistrySelect 4:4140−4146

doi: 10.1002/slct.201900836
[8]

Christou A, Beretsou VG, Iakovides IC, Karaolia P, Michael C, et al. 2024. Sustainable wastewater reuse for agriculture. Nature Reviews Earth & Environment 5:504−521

doi: 10.1038/s43017-024-00560-y
[9]

Lin J, Ye W, Xie M, Seo DH, Luo J, et al. 2023. Environmental impacts and remediation of dye-containing wastewater. Nature Reviews Earth & Environment 4:785−803

doi: 10.1038/s43017-023-00489-8
[10]

Mei D, Liu L, Yan B. 2023. Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coordination Chemistry Reviews 475:214917

doi: 10.1016/j.ccr.2022.214917
[11]

Meng Q, Wu L, Chen T, Xiong Y, Duan T, et al. 2024. Constructing the electron-rich microenvironment of an all-polymer-based s-scheme homostructure for accelerating uranium capture from nuclear wastewater. Environmental Science & Technology 58(34):15333−15342

doi: 10.1021/acs.est.4c04881
[12]

Sharma VK, Zboril R, Varma RS. 2015. Ferrates: greener oxidants with multimodal action in water treatment technologies. Accounts of Chemical Research 48:182−191

doi: 10.1021/ar5004219
[13]

Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J. 2016. Graphene in photocatalysis: A review. Small 12:6640−6696

doi: 10.1002/smll.201600382
[14]

Perreault F, Fonseca de Faria A, Elimelech M. 2015. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews 44:5861−5896

doi: 10.1039/C5CS00021A
[15]

Xie Y, Chen C, Ren X, Wang X, Wang H, et al. 2019. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science 103:180−234

doi: 10.1016/j.pmatsci.2019.01.005
[16]

Shen Y, Fang Q, Chen B. 2015. Environmental applications of three-dimensional graphene-based macrostructures: Adsorption, transformation, and detection. Environmental Science & Technology 49:67−84

doi: 10.1021/es504421y
[17]

Yousefi N, Lu X, Elimelech M, Tufenkji N. 2019. Environmental performance of graphene-based 3D macrostructures. Nature Nanotechnology 14:107−119

doi: 10.1038/s41565-018-0325-6
[18]

Yu F, Li Y, Han S, Ma J. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:365−385

doi: 10.1016/j.chemosphere.2016.03.083
[19]

Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, et al. 2016. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology 11:218−230

doi: 10.1038/nnano.2015.340
[20]

Gao W, Liang S, Wang R, Jiang Q, Zhang Y, et al. 2020. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews 49:8584−8686

doi: 10.1039/D0CS00025F
[21]

Singh G, Lee J, Karakoti A, Bahadur R, Yi J, et al. 2020. Emerging trends in porous materials for CO2 capture and conversion. Chemical Society Reviews 49:4360−4404

doi: 10.1039/D0CS00075B
[22]

Hu C, Paul R, Dai Q, Dai L. 2021. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chemical Society Reviews 50:11785−11843

doi: 10.1039/D1CS00219H
[23]

Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM. 2017. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chemical Society Reviews 46:337−365

doi: 10.1039/C6CS00328A
[24]

Wang HF, Chen L, Pang H, Kaskel S, Xu Q. 2020. Mof-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews 49:1414−1448

doi: 10.1039/C9CS00906J
[25]

Deringer VL, Caro MA, Csányi G. 2019. Machine learning interatomic potentials as emerging tools for materials science. Advanced Materials 31:e1902765

doi: 10.1002/adma.201902765
[26]

Jablonka KM, Ongari D, Moosavi SM, Smit B. 2020. Big-data science in porous materials: Materials genomics and machine learning. Chemical Reviews 120:8066−8129

doi: 10.1021/acs.chemrev.0c00004
[27]

Tao H, Wu T, Aldeghi M, Wu TC, Aspuru-Guzik A, et al. 2021. Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials 6:701−716

doi: 10.1038/s41578-021-00337-5
[28]

Kaspar C, Ravoo BJ, van der Wiel WG, Wegner SV, Pernice WHP. 2021. The rise of intelligent matter. Nature 594:345−355

doi: 10.1038/s41586-021-03453-y
[29]

Zhang Y, Deng F, Zhang Q, Li Y, Li Y, et al. 2023. Sodium polyacrylate-based porous carbon fabricated by one-step carbonization and its outstanding electrochemical properties in supercapacitor. Journal of Energy Storage 73:109098

doi: 10.1016/j.est.2023.109098
[30]

Gao M, Wang L, Yang Y, Sun Y, Zhao X, et al. 2023. Metal and metal oxide supported on ordered mesoporous carbon as heterogeneous catalysts. ACS Catalysis 13:4060−4090

doi: 10.1021/acscatal.2c05894
[31]

Dong S, Xia T, Yang Y, Lin S, Mao L. 2018. Bioaccumulation of 14C-labeled graphene in an aquatic food chain through direct uptake or trophic transfer. Environmental Science & Technology 52:541−549

doi: 10.1021/acs.est.7b04339
[32]

Li B, Bell DR, Gu Z, Li W, Zhou R. 2019. Protein WW domain denaturation on defective graphene reveals the significance of nanomaterial defects in nanotoxicity. Carbon 146:257−264

doi: 10.1016/j.carbon.2019.01.107
[33]

Balamurugan J, Austeria PM, Kim JB, Jeong ES, Huang HH, et al. 2023. Electrocatalysts for zinc−air batteries featuring single molybdenum atoms in a nitrogen-doped carbon framework. Advanced Materials 35:2302625

doi: 10.1002/adma.202302625
[34]

Chang H, Liu X, Zhao S, Liu Z, Lv R, et al. 2024. Self-assembled 3D N/P/S-tridoped carbon nanoflower with highly branched carbon nanotubes as efficient bifunctional oxygen electrocatalyst toward high-performance rechargeable Zn−air batteries. Advanced Functional Materials 34:2313491

doi: 10.1002/adfm.202313491
[35]

Yang H, Liu X, Hao M, Xie Y, Wang X, et al. 2021. Functionalized iron−nitrogen−carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials 33:e2106621

doi: 10.1002/adma.202106621
[36]

Ma Y, You C, Yao Y, Qi S, Zhou T, et al. 2025. Cobalt-doped covalent organic framework effectively enhances fenton-like activity: radical and non-radical dual pathways enhancement. Chemical Engineering Journal 515:163646

doi: 10.1016/j.cej.2025.163646
[37]

Yin Y, Yang Y, Liu G, Chen H, Gong D, et al. 2022. Ultrafast solid-phase synthesis of 2D pyrene-alkadiyne frameworks towards efficient capture of radioactive iodine. Chemical Engineering Journal 441:135996

doi: 10.1016/j.cej.2022.135996
[38]

Liu Y, Chen H, Yang Y, Jiao C, Zhu W, et al. 2023. Atomically inner tandem catalysts for electrochemical reduction of carbon dioxide. Energy & Environmental Science 16:5185−5195

doi: 10.1039/D3EE02324A
[39]

Wang C, Guo W, Chen T, Lu W, Song Z, et al. 2024. Advanced noble-metal/transition-metal/metal-free electrocatalysts for hydrogen evolution reaction in water-electrolysis for hydrogen production. Coordination Chemistry Reviews 514:215899

doi: 10.1016/j.ccr.2024.215899
[40]

Yang L, Zhang X, Yu L, Hou J, Zhou Z, et al. 2022. Atomic Fe–N4 /C in flexible carbon fiber membrane as binder-free air cathode for Zn−air batteries with stable cycling over 1000 h. Advanced Materials 34:2105410

doi: 10.1002/adma.202105410
[41]

Wu Y, Jiang Z, Lu X, Liang Y, Wang H. 2019. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575:639−642

doi: 10.1038/s41586-019-1760-8
[42]

Zhu XY, Li HS, Sun ZB, Wan JQ, Xin Y, et al. 2024. Fabrication of carbonized derivatives from a novel azo polymer as a precursor for the layered adsorption of iodine and bromine. Carbon 226:119232

doi: 10.1016/j.carbon.2024.119232
[43]

Mo Z, Yang W, Gao S, Shang JK, Ding Y, et al. 2021. Efficient oxygen reduction reaction by a highly porous, nitrogen-doped carbon sphere electrocatalyst through space confinement effect in nanopores. Journal of Advanced Ceramics 10:714−728

doi: 10.1007/s40145-021-0466-1
[44]

Ranjith KS, Kwak CH, Hwang JU, Ghoreishian SM, Raju GSR, et al. 2020. High-performance all-solid-state hybrid supercapacitors based on surface-embedded bimetallic oxide nanograins loaded onto carbon nanofiber and activated carbon. Electrochimica Acta 332:135494

doi: 10.1016/j.electacta.2019.135494
[45]

Huang Q, Hu L, Chen X, Cai W, Wang L, et al. 2023. Metal–organic framework-derived N-doped carbon with controllable mesopore sizes for low-pt fuel cells. Advanced Functional Materials 33:2302582

doi: 10.1002/adfm.202302582
[46]

Zhu W, Hu W, Wei Y, Zhang Y, Pan K, et al. 2024. Core–shell Co-Cox P nanoparticle-embedded N-doped carbon nanowhiskers hollow sphere for efficient oxygen evolution electrocatalysis. Advanced Functional Materials 34:2409390

doi: 10.1002/adfm.202409390
[47]

Ling LL, Jiao L, Liu X, Dong Y, Yang W, et al. 2022. Potassium-assisted fabrication of intrinsic defects in porous carbons for electrocatalytic CO2 reduction. Advanced Materials 34:e2205933

doi: 10.1002/adma.202205933
[48]

Zhang W, Li H, Feng D, Wu C, Sun C, et al. 2024. MOF-derived 1D/3D N-doped porous carbon for spatially confined electrochemical CO2 reduction to adjustable syngas. Carbon Energy 6:e461

doi: 10.1002/cey2.461
[49]

Zhu M, Zhao C, Liu X, Wang X, Zhou F, et al. 2021. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catalysis 11:3923−3929

doi: 10.1021/acscatal.0c05503
[50]

Zhang T, Liu P, Zhong Y, Zheng J, Deng K, et al. 2022. N, S co-doped branched carbon nanotubes with hierarchical porous structure and electron/ion transfer pathways for supercapacitors and lithium-ion batteries. Carbon 198:91−100

doi: 10.1016/j.carbon.2022.07.015
[51]

Baker RTK. 1989. Catalytic growth of carbon filaments. Carbon 27:315−323

doi: 10.1016/0008-6223(89)90062-6
[52]

Walker PL, Rakszawski JF, Imperial GR. 1959. Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. I. Properties of carbon formed. The Journal of Physical Chemistry 63:133−140

doi: 10.1021/j150572a002
[53]

Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, et al. 1996. Large-scale synthesis of aligned carbon nanotubes. Science 274:1701−1703

doi: 10.1126/science.274.5293.1701
[54]

Wang Y, Wen Y, Su W, Fu W, Wang CH. 2024d. Carbon deposition behavior on biochar during chemical vapor deposition process. Chemical Engineering Journal 485:149726

doi: 10.1016/j.cej.2024.149726
[55]

Chen X, Sawut N, Chen K, Li H, Zhang J, et al. 2023. Filling carbon: A microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy & Environmental Science 16:4041−4053

doi: 10.1039/D3EE01154B
[56]

Zhu Y, Ji H, Cheng HM, Ruoff RS. 2018. Mass production and industrial applications of graphene materials. National Science Review 5:90−101

doi: 10.1093/nsr/nwx055
[57]

Jia T, Qi X, Wang L, Yang JL, Gong X, et al. 2023. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 206:364−374

doi: 10.1016/j.carbon.2023.02.046
[58]

Wen Y, Liu H, Jiang X. 2023. Preparation of graphene by exfoliation and its application in lithium-ion batteries. Journal of Alloys and Compounds 961:170885

doi: 10.1016/j.jallcom.2023.170885
[59]

Gutiérrez-Cruz A, Ruiz-Hernández AR, Vega-Clemente JF, Luna-Gazcón DG, Campos-Delgado J. 2022. A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide. Journal of Materials Science 57:14543−14578

doi: 10.1007/s10853-022-07514-z
[60]

Yang S, Lohe MR, Müllen K, Feng X. 2016. New-generation graphene from electrochemical approaches: production and applications. Advanced Materials 28:6213−6221

doi: 10.1002/adma.201505326
[61]

Liu N, Luo F, Wu H, Liu Y, Zhang C, et al. 2008. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials 18:1518−1525

doi: 10.1002/adfm.200700797
[62]

Liu B, Zhang Q, Zhang L, Xu C, Pan Z, et al. 2022. Electrochemically exfoliated chlorine-doped graphene for flexible all-solid-state micro-supercapacitors with high volumetric energy density. Advanced Materials 34:2106309

doi: 10.1002/adma.202106309
[63]

Kim M, Xu X, Xin R, Earnshaw J, Ashok A, et al. 2021. KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Applied Materials & Interfaces 13:52034−52043

doi: 10.1021/acsami.1c09107
[64]

Wyss KM, Li JT, Advincula PA, Bets KV, Chen W, et al. 2023. Upcycling of waste plastic into hybrid carbon nanomaterials. Advanced Materials 35:2209621

doi: 10.1002/adma.202209621
[65]

Zhang L, Lu C, Ye F, Pang R, Liu Y, et al. 2021. Selenic acid etching assisted vacancy engineering for designing highly active electrocatalysts toward the oxygen evolution reaction. Advanced Materials 33:2007523

doi: 10.1002/adma.202007523
[66]

Liu S, Yin S, Zhang Z, Feng L, Liu Y, et al. 2023. Regulation of defects and nitrogen species on carbon nanotube by plasma-etching for peroxymonosulfate activation: Inducing non-radical/radical oxidation of organic contaminants. Journal of Hazardous Materials 441:129905

doi: 10.1016/j.jhazmat.2022.129905
[67]

Zheng Z, Hu S, Yin W, Peng J, Wang R, et al. 2024. CO2 -etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Advanced Energy Materials 14:2303064

doi: 10.1002/aenm.202303064
[68]

Hessien M. 2022. Microwave-assisted hydrothermal carbonization of pomegranate peels into hydrochar for environmental applications. Energies 15:3629

doi: 10.3390/en15103629
[69]

Ischia G, Cutillo M, Guella G, Bazzanella N, Cazzanelli M, et al. 2022. Hydrothermal carbonization of glucose: Secondary char properties, reaction pathways, and kinetics. Chemical Engineering Journal 449:137827

doi: 10.1016/j.cej.2022.137827
[70]

Yuan Y, Huang E, Hwang S, Liu P, Chen JG. 2024. Converting carbon dioxide into carbon nanotubes by reacting with ethane. Angewandte Chemie International Edition 63:e202404047

doi: 10.1002/anie.202404047
[71]

He P, Zhang L, Wu L, Xiao S, Ren X, et al. 2023. Synergy of oxygen vacancies and thermoelectric effect enhances uranium(VI) photoreduction. Applied Catalysis B: Environmental 322:122087

doi: 10.1016/j.apcatb.2022.122087
[72]

Wang Q, Mu J. 2024. Baking-inspired pore regulation strategy towards a hierarchically porous carbon for ultra-high efficiency cationic/anionic dyes adsorption. Bioresource Technology 395:130324

doi: 10.1016/j.biortech.2024.130324
[73]

Gutru R, Turtayeva Z, Xu F, Maranzana G, Thimmappa R, et al. 2023. Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells. International Journal of Hydrogen Energy 48:3593−3631

doi: 10.1016/j.ijhydene.2022.10.177
[74]

Makinde WO, Hassan MA, Pan Y, Guan G, López-Salas N, et al. 2024. Sulfur and nitrogen co-doping of peanut shell-derived biochar for sustainable supercapacitor applications. Journal of Alloys and Compounds 991:174452

doi: 10.1016/j.jallcom.2024.174452
[75]

Roy H, Firoz SH, Bhuiyan MMK, Islam MS. 2024. Functionalized graphene oxide sheets for the selective sequestration of cationic and anionic pollutants from textile wastewater. Journal of Water Process Engineering 68:106295

doi: 10.1016/j.jwpe.2024.106295
[76]

Poudel MB, Balanay MP, Lohani PC, Sekar K, Yoo DJ. 2024. Atomic engineering of 3D self-supported bifunctional oxygen electrodes for rechargeable zinc-air batteries and fuel cell applications. Advanced Energy Materials 14:2400347

doi: 10.1002/aenm.202400347
[77]

Jain M, Sahoo A, Mishra D, Aiman Khan S, Kishore Pant K, et al. 2024. Modelling and statistical interpretation of phenol adsorption behaviour of 3-dimensional hybrid aerogel of waste-derived carbon nanotubes and graphene oxide. Chemical Engineering Journal 490:151351

doi: 10.1016/j.cej.2024.151351
[78]

Yu J, Garcés-Pineda FA, González-Cobos J, Peña-Díaz M, Rogero C, et al. 2022. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4. Nature Communications 13:4341

doi: 10.1038/s41467-022-32024-6
[79]

Lin X, Sheng L, Yang J, Zhang Y, Shi H, et al. 2024. Flexible films with three-dimensional ion transport channels: carbon nanotubes@MnO2 as interlayer spacers in porous graphene electrodes for high-performance supercapacitors. Journal of Alloys and Compounds 990:174455

doi: 10.1016/j.jallcom.2024.174455
[80]

Noh J, Jekal S, Yoon CM. 2023. Polyaniline-coated mesoporous carbon nanosheets with fast capacitive energy storage in symmetric supercapacitors. Advanced Science 10:2301923

doi: 10.1002/advs.202301923
[81]

Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, et al. 2018. Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano 12:10582−10620

doi: 10.1021/acsnano.8b04758
[82]

Guo Z, Chakraborty S, Monikh FA, Varsou DD, Chetwynd AJ, et al. 2021. Surface functionalization of graphene-based materials: biological behavior, toxicology, and safe-by-design aspects. Advanced Biology 5:2100637

doi: 10.1002/adbi.202100637
[83]

Wang H, Yang ST, Cao A, Liu Y. 2013. Quantification of carbon nanomaterials in vivo. Accounts of Chemical Research 46:750−760

doi: 10.1021/ar200335j
[84]

Huang C, Xia T, Niu J, Yang Y, Lin S, et al. 2018. Transformation of 14C-labeled graphene to 14CO2 in the shoots of a rice plant. Angewandte Chemie International Edition 57:9759−9763

doi: 10.1002/anie.201805099
[85]

Lu K, Dong S, Xia T, Mao L. 2021. Kupffer cells degrade 14C-labeled few-layer graphene to 14CO2 in liver through erythrophagocytosis. ACS Nano 15:396−409

doi: 10.1021/acsnano.0c07452
[86]

Lin JY, Lai PX, Sun YC, Huang CC, Su CK. 2020. Biodistribution of graphene oxide determined through postadministration labeling with DNA-conjugated gold nanoparticles and icpms. Analytical Chemistry 92:13997−14005

doi: 10.1021/acs.analchem.0c02909
[87]

Li J, Chen C, Xia T. 2022. Understanding nanomaterial–liver interactions to facilitate the development of safer nanoapplications. Advanced Materials 34:2106456

doi: 10.1002/adma.202106456
[88]

Georgin D, Czarny B, Botquin M, Mayne-L'Hermite M, Pinault M, et al. 2009. Preparation of 14C-labeled multiwalled carbon nanotubes for biodistribution investigations. Journal of the American Chemical Society 131:14658−14659

doi: 10.1021/ja906319z
[89]

Zhang D, Zhang Z, Liu Y, Chu M, Yang C, et al. 2015. The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials 68:100−113

doi: 10.1016/j.biomaterials.2015.07.060
[90]

Lu K, Dong S, Petersen EJ, Niu J, Chang X, et al. 2017. Biological uptake, distribution, and depuration of radio-labeled graphene in adult zebrafish: Effects of graphene size and natural organic matter. ACS Nano 11:2872−2885

doi: 10.1021/acsnano.6b07982
[91]

Li B, Zhang XY, Yang JZ, Zhang YJ, Li WX, et al. 2014. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. International Journal of Nanomedicine 9:4697−707

doi: 10.2147/IJN.S66591
[92]

Dong S, Wang T, Lu K, Zhao J, Tong Y, et al. 2021. Fate of 14C-labeled few-layer graphene in natural soils: competitive roles of ferric oxides. Environmental Science: Nano 8:1425−1436

doi: 10.1039/D0EN01256D
[93]

Lu T, Xia T, Qi Y, Zhang C, Chen W. 2017. Effects of clay minerals on transport of graphene oxide in saturated porous media. Environmental Toxicology and Chemistry 36:655−660

doi: 10.1002/etc.3605
[94]

Xia T, Fortner JD, Zhu D, Qi Z, Chen W. 2015. Transport of sulfide-reduced graphene oxide in saturated quartz sand: Cation-dependent retention mechanisms. Environmental Science & Technology 49:11468−11475

doi: 10.1021/acs.est.5b02349
[95]

He K, Chen G, Zeng G, Peng M, Huang Z, et al. 2017. Stability, transport and ecosystem effects of graphene in water and soil environments. Nanoscale 9:5370−5388

doi: 10.1039/C6NR09931A
[96]

Ren X, Li J, Chen C, Gao Y, Chen D, et al. 2018. Graphene analogues in aquatic environments and porous media: dispersion, aggregation, deposition and transformation. Environmental Science: Nano 5:1298−1340

doi: 10.1039/C7EN01258F
[97]

Wu L, Liu L, Gao B, Muñoz-Carpena R, Zhang M, et al. 2013. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir 29:15174−15181

doi: 10.1021/la404134x
[98]

Zhao J, Wang Z, White JC, Xing B. 2014. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environmental Science & Technology 48:9995−10009

doi: 10.1021/es5022679
[99]

Hou WC, Jafvert CT. 2009. Photochemical transformation of aqueous C60 clusters in sunlight. Environmental Science & Technology 43:362−367

doi: 10.1021/es802465z
[100]

Qu X, Alvarez PJJ, Li Q. 2013. Photochemical transformation of carboxylated multiwalled carbon nanotubes: role of reactive oxygen species. Environmental Science & Technology 47:14080−14088

doi: 10.1021/es4033056
[101]

Hu X, Zhou M, Zhou Q. 2015. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity. Environmental Science & Technology 49:3410−3418

doi: 10.1021/es503003y
[102]

Jiang H, Liu Y, Xie Y, Liu J, Chen T, et al. 2019. Oxidation potential reduction of carbon nanomaterials during atmospheric-relevant aging: role of surface coating. Environmental Science & Technology 53:10454−10461

doi: 10.1021/acs.est.9b02062
[103]

Liu Y, Liggio J, Li SM, Breznan D, Vincent R, et al. 2015. Chemical and toxicological evolution of carbon nanotubes during atmospherically relevant aging processes. Environmental Science & Technology 49:2806−2814

doi: 10.1021/es505298d
[104]

Bjorkland R, Tobias DA, Petersen EJ. 2017. Increasing evidence indicates low bioaccumulation of carbon nanotubes. Environmental Science: Nano 4:747−766

doi: 10.1039/C6EN00389C
[105]

Shi Q, Wang CL, Zhang H, Chen C, Zhang X, et al. 2020. Trophic transfer and biomagnification of fullerenol nanoparticles in an aquatic food chain. Environmental Science: Nano 7:1240−1251

doi: 10.1039/C9EN01277J
[106]

Hashemi E, Giesy JP, Liang Z, Akhavan O, Tayefeh AR, et al. 2024. Impacts of graphene oxide contamination on a food web: Threats to somatic and reproductive health of organisms. Ecotoxicology and Environmental Safety 285:117032

doi: 10.1016/j.ecoenv.2024.117032
[107]

Sigmund G, Jiang C, Hofmann T, Chen W. 2018. Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environmental Science: Nano 5:2500−2518

doi: 10.1039/C8EN00676H
[108]

Zhang H, Peng C, Yang J, Lv M, Liu R, et al. 2013. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. ACS Applied Materials & Interfaces 5:1761−1767

doi: 10.1021/am303005j
[109]

Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, et al. 2016. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity . Journal of Medicinal Chemistry 59:8149−8167

doi: 10.1021/acs.jmedchem.5b01770
[110]

Raffa V, Ciofani G, Nitodas S, Karachalios T, D'Alessandro D, et al. 2008. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46:1600−1610

doi: 10.1016/j.carbon.2008.06.053
[111]

Silva RM, Doudrick K, Franzi LM, TeeSy C, Anderson DS, et al. 2014. Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano 8:8911−8931

doi: 10.1021/nn503887r
[112]

Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, et al. 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. The American Journal of Pathology 178:2587−2600

doi: 10.1016/j.ajpath.2011.02.040
[113]

Song M, Yuan S, Yin J, Wang X, Meng Z, et al. 2012. Size-dependent toxicity of nano-C60 aggregates: more sensitive indication by apoptosis-related bax translocation in cultured human cells. Environmental Science & Technology 46:3457−3464

doi: 10.1021/es2039008
[114]

Li M, Feng W, Wang X. 2020. Complex hollow structures of cobalt(II) sulfide as a cathode for lithium–sulfur batteries. International Journal of Electrochemical Science 15:526−534

doi: 10.20964/2020.01.77
[115]

Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, et al. 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Toxicological aspects. Chemical Research in Toxicology 21:1698−1705

doi: 10.1021/tx800101p
[116]

Jiang W, Wang Q, Qu X, Wang L, Wei X, et al. 2017. Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. Science of The Total Environment 574:771−780

doi: 10.1016/j.scitotenv.2016.09.150
[117]

Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, et al. 2020. Influence of oxygen-containing functional groups on the environmental properties, transformations, and toxicity of carbon nanotubes. Chemical Reviews 120:11651−11697

doi: 10.1021/acs.chemrev.0c00351
[118]

Fraczek-Szczypta A, Menaszek E, Syeda TB, Misra A, Alavijeh M, et al. 2012. Effect of MWCNT surface and chemical modification on in vitro cellular response. Journal of Nanoparticle Research 14:1181

doi: 10.1007/s11051-012-1181-1
[119]

Pérez-Luna V, Moreno-Aguilar C, Arauz-Lara JL, Aranda-Espinoza S, Quintana M. 2018. Interactions of functionalized multi-wall carbon nanotubes with giant phospholipid vesicles as model cellular membrane system. Scientific Reports 8:17998

doi: 10.1038/s41598-018-36531-9
[120]

Huang Y, Yao H, Li X, Li F, Wang X, et al. 2023. Differences of functionalized graphene materials on inducing chronic aquatic toxicity through the regulation of DNA damage, metabolism and oxidative stress in daphnia magna. Science of The Total Environment 876:162735

doi: 10.1016/j.scitotenv.2023.162735
[121]

Zhang S, Yang K, Feng L, Liu Z. 2011. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49:4040−4049

doi: 10.1016/j.carbon.2011.05.056
[122]

Ganguly P, Breen A, Pillai SC. 2018. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomaterials Science & Engineering 4:2237−2275

doi: 10.1021/acsbiomaterials.8b00068
[123]

Shen M, Wang SH, Shi X, Chen X, Huang Q, et al. 2009. Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. The Journal of Physical Chemistry C 113:3150−3156

doi: 10.1021/jp809323e
[124]

Ye S, Yang P, Cheng K, Zhou T, Wang Y, et al. 2016. Drp1-dependent mitochondrial fission mediates toxicity of positively charged graphene in microglia. ACS Biomaterials Science & Engineering 2:722−733

doi: 10.1021/acsbiomaterials.5b00465
[125]

Yin J, Dong Z, Liu Y, Wang H, Li A, et al. 2020. Toxicity of reduced graphene oxide modified by metals in microalgae: Effect of the surface properties of algal cells and nanomaterials. Carbon 169:182−192

doi: 10.1016/j.carbon.2020.07.057
[126]

Mudigonda S, Atturu P, Dahms HU, Hwang JS, Wang CK. 2024. Evaluation of antibiofilm activity of metal oxides nanoparticles and carbon nanotubes coated styrofoam on the bacterium jeotgalicoccus huakuii. Water Research 259:121810

doi: 10.1016/j.watres.2024.121810
[127]

Valimukhametova AR, Zub OS, Lee BH, Fannon O, Nguyen S, et al. 2022. Dual-mode fluorescence/ultrasound imaging with biocompatible metal-doped graphene quantum dots. ACS Biomaterials Science & Engineering 8:4965−4975

doi: 10.1021/acsbiomaterials.2c00794
[128]

Yang K, Wan J, Zhang S, Zhang Y, Lee ST, et al. 2011 . In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516−522

doi: 10.1021/nn1024303
[129]

Bellingeri R, Alustiza F, Picco N, Acevedo D, Molina MA, et al. 2015. In vitro toxicity evaluation of hydrogel–carbon nanotubes composites on intestinal cells. Journal of Applied Polymer Science 132:app.41370

doi: 10.1002/app.41370
[130]

Razavi R, Tajik H, Molaei R, McClements DJ, Moradi M. 2024. Janus nanoparticles synthesized from hydrophobic carbon dots and carboxymethyl cellulose: Novel antimicrobial additives for fresh food applications. Food Bioscience 62:105171

doi: 10.1016/j.fbio.2024.105171
[131]

Guo Z, Zhang P, Chetwynd AJ, Xie HQ, Valsami-Jones E, et al. 2020. Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials. Nanoscale 12:18600−18605

doi: 10.1039/D0NR04179C
[132]

YYoung YF, Lee HJ, Shen YS, Tseng SH, Lee CY, et al. 2012. Toxicity mechanism of carbon nanotubes on escherichia coli. Materials Chemistry and Physics 134:279−286

doi: 10.1016/j.matchemphys.2012.02.066
[133]

Kang S, Pinault M, Pfefferle LD, Elimelech M. 2007. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670−8673

doi: 10.1021/la701067r
[134]

Cheng WW, Lin ZQ, Wei BF, Zeng Q, Han B, et al. 2011. Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: Reactive oxygen species are involved in the mitochondrial pathway. The International Journal of Biochemistry & Cell Biology 43:564−572

doi: 10.1016/j.biocel.2010.12.013
[135]

Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, et al. 2005. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Letters 5:2448−2464

doi: 10.1021/nl051748o
[136]

Jiang H, Lee PS, Li C. 2013. 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science 6:41−53

doi: 10.1039/C2EE23284G
[137]

Ou L, Song B, Liang H, Liu J, Feng X, et al. 2016. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Particle and Fibre Toxicology 13:57

doi: 10.1186/s12989-016-0168-y
[138]

Cho M, Snow SD, Hughes JB, Kim JH. 2011. Escherichia coli inactivation by UVC-irradiated C60 : Kinetics and mechanisms. Environmental Science & Technology 45:9627−9633

doi: 10.1021/es202269r
[139]

Liu Y, Luo Y, Wu J, Wang Y, Yang X, et al. 2013. Graphene oxide can induce in vitro and in vivo mutagenesis. Scientific Reports 3:3469

doi: 10.1038/srep03469
[140]

Ren H, Wang C, Zhang J, Zhou X, Xu D, et al. 2010. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 4:7169−7174

doi: 10.1021/nn101696r
[141]

Zhao X. 2011. Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: a molecular simulation study. The Journal of Physical Chemistry C 115:6181−6189

doi: 10.1021/jp110013r
[142]

Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, et al. 2011. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicology and Applied Pharmacology 252:1−10

doi: 10.1016/j.taap.2011.02.001
[143]

Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, et al. 2010. Role of oxidative damage in toxicity of particulates. Free Radical Research 44:1−46

doi: 10.3109/10715760903300691
[144]

Yue H, Wei W, Yue Z, Wang B, Luo N, et al. 2012. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33:4013−4021

doi: 10.1016/j.biomaterials.2012.02.021
[145]

Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. 2005. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicology Letters 155:377−384

doi: 10.1016/j.toxlet.2004.11.004
[146]

Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, et al. 2008. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146:351−355

doi: 10.1016/j.ssc.2008.02.024
[147]

Brida D, Tomadin A, Manzoni C, Kim YJ, Lombardo A, et al. 2013. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications 4:1987

doi: 10.1038/ncomms2987
[148]

Pang Y, Jian J, Tu T, Yang Z, Ling J, et al. 2018. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors and Bioelectronics 116:123−129

doi: 10.1016/j.bios.2018.05.038
[149]

Yu L, Li Y, Xiang H, Li Y, Cao H, et al. 2024 . Four-channel graphene optical receiver. Nanophotonics 13:4019−4028

doi: 10.1515/nanoph-2024-0274
[150]

Andrei EY, MacDonald AH. 2020. Graphene bilayers with a twist. Nature Materials 20:1265−1275

doi: 10.1038/s41563-020-00840-0
[151]

Nerl HC, Elyas K, Kochovski Z, Talebi N, Koch CT, et al. 2024. Flat dispersion at large momentum transfer at the onset of exciton polariton formation. Communications Physics 7:388

doi: 10.1038/s42005-024-01876-3
[152]

Tsakmakidis KL. 2021. Stopped-light nanolasing in optical magic-angle graphene. Nature Nanotechnology 16:1048−1049

doi: 10.1038/s41565-021-00960-x
[153]

Hai X, Feng J, Chen X, Wang J. 2018. Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. Journal of Materials Chemistry B 6:3219−3234

doi: 10.1039/C8TB00428E
[154]

Kuo WS, Shen XC, Chang CY, Kao HF, Lin SH, et al. 2020. Multiplexed graphene quantum dots with excitation-wavelength-independent photoluminescence, as two-photon probes, and in ultraviolet–near infrared bioimaging. ACS Nano 14:11502−11509

doi: 10.1021/acsnano.0c03915
[155]

Zheng P, Wu N. 2017. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chemistry – An Asian Journal 12:2343−2353

doi: 10.1002/asia.201700814
[156]

Gan Z, Xu H, Hao Y. 2016. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8:7794−7807

doi: 10.1039/C6NR00605A
[157]

Zhu S, Song Y, Wang J, Wan H, Zhang Y, et al. 2017. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 13:10−14

doi: 10.1016/j.nantod.2016.12.006
[158]

Huang CC, Chung SR, Wang KW. 2024. Enhancing optical properties through zinc halide precursor selection: Interfacial optimization of inznp quantum dots. Journal of Materials Chemistry C 12:1317−1324

doi: 10.1039/D3TC04023B
[159]

Yan F, Sun Z, Zhang H, Sun X, Jiang Y, et al. 2019. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchimica Acta 186:583

doi: 10.1007/s00604-019-3688-y
[160]

Hirai M, Tanaka N, Sakai M, Yamaguchi S. 2019. Structurally constrained boron-, nitrogen-, silicon-, and phosphorus-centered polycyclic π-conjugated systems. Chemical Reviews 119:8291−8331

doi: 10.1021/acs.chemrev.8b00637
[161]

Paraknowitsch JP, Thomas A. 2013. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science 6:2839

doi: 10.1039/c3ee41444b
[162]

Do Minh T, Song J, Deb A, Cha L, Srivastava V, et al. 2020. Biochar based catalysts for the abatement of emerging pollutants: a review. Chemical Engineering Journal 394:124856

doi: 10.1016/j.cej.2020.124856
[163]

Lu Y, Cai Y, Zhang S, Zhuang L, Hu B, et al. 2022. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. Biochar 4:45

doi: 10.1007/s42773-022-00173-y
[164]

Liu WJ, Jiang H, Yu HQ. 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews 115:12251−12285

doi: 10.1021/acs.chemrev.5b00195
[165]

Jing L, Li P, Li Z, Ma D, Hu J. 2025. Influence of π–π interactions on organic photocatalytic materials and their performance. Chemical Society Reviews 54:2054−2090

doi: 10.1039/D4CS00029C
[166]

Bhavani P, Hussain M, Park YK. 2022. Recent advancements on the sustainable biochar based semiconducting materials for photocatalytic applications: a state of the art review. Journal of Cleaner Production 330:129899

doi: 10.1016/j.jclepro.2021.129899
[167]

Roy S, Mishra SR, Ahmaruzzaman M. 2024. Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: synergistic effect and mechanistic insight. Journal of Environmental Management 366:121802

doi: 10.1016/j.jenvman.2024.121802
[168]

Liang L, Cai S, Zhang L, Sun K, He Z, et al. 2024. D/A heterojunction photocatalysts interspersed onto biochar to couple photocatalysis and adsorption for visible light-responsive efficient removal of pollutants. Journal of Alloys and Compounds 1005:176093

doi: 10.1016/j.jallcom.2024.176093
[169]

Rangarajan G, Jayaseelan A, Farnood R. 2022. Photocatalytic reactive oxygen species generation and their mechanisms of action in pollutant removal with biochar supported photocatalysts: a review. Journal of Cleaner Production 346:131155

doi: 10.1016/j.jclepro.2022.131155
[170]

Tang R, Gong D, Deng Y, Xiong S, Zheng J, et al. 2022. π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. Journal of Hazardous Materials 423:126944

doi: 10.1016/j.jhazmat.2021.126944
[171]

Yang Z, Xu T, Li H, She M, Chen J, et al. 2023. Zero-dimensional carbon nanomaterials for fluorescent sensing and imaging. Chemical Reviews 123:11047−11136

doi: 10.1021/acs.chemrev.3c00186
[172]

Wang Y, Kalytchuk S, Zhang Y, Shi H, Kershaw SV, et al. 2014d. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. The Journal of Physical Chemistry Letters 5:1412−1420

doi: 10.1021/jz5005335
[173]

Sharma A, Gadly T, Gupta A, Ballal A, Ghosh SK, et al. 2016. Origin of excitation dependent fluorescence in carbon nanodots. The Journal of Physical Chemistry Letters 7:3695−3702

doi: 10.1021/acs.jpclett.6b01791
[174]

Dimitriev O, Kysil D, Zaderko A, Isaieva O, Vasin A, et al. 2024. Photoluminescence quantum yield of carbon dots: emission due to multiple centers versus excitonic emission. Nanoscale Advances 6:2185−2197

doi: 10.1039/D4NA00033A
[175]

Yang ZC, Wang M, Yong AM, Wong SY, Zhang XH, et al. 2011b. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chemical Communications 47:11615

doi: 10.1039/c1cc14860e
[176]

Cai D, Zhong X, Xu L, Xiong Y, Deng W, et al. 2025. Biomass-derived carbon dots: synthesis, modification and application in batteries. Chemical Science 16:4937−4970

doi: 10.1039/D4SC08659G
[177]

Chernyak S, Podgornova A, Dorofeev S, Maksimov S, Maslakov K, et al. 2020. Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation. Applied Surface Science 507:145027

doi: 10.1016/j.apsusc.2019.145027
[178]

Iravani S, Varma RS. 2020. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. Environmental Chemistry Letters 18:703−727

doi: 10.1007/s10311-020-00984-0
[179]

Jian HJ, Wu RS, Lin TY, Li YJ, Lin HJ, et al. 2017. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano 11:6703−6716

doi: 10.1021/acsnano.7b01023
[180]

Liu S, Xu Y, Wang X, Zhou H, Zhang T. 2024. Insight into the synthetic strategies of carbon dots and its structure-property interplay for next-generation technologies. Chemical Engineering Journal 496:153914

doi: 10.1016/j.cej.2024.153914
[181]

Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, et al. 2022a. Carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review. Small Science 2:2200012

doi: 10.1002/smsc.202200012
[182]

Ji C, Zhou Y, Leblanc RM, Peng Z. 2020. Recent developments of carbon dots in biosensing: a review. ACS Sensors 5:2724−2741

doi: 10.1021/acssensors.0c01556
[183]

Feng T, Tao S, Yue D, Zeng Q, Chen W, et al. 2020. Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small 16:2001295

doi: 10.1002/smll.202001295
[184]

Wang B, Lu S. 2022. The light of carbon dots: from mechanism to applications. Matter 5:110−149

doi: 10.1016/j.matt.2021.10.016
[185]

Zhang Q, Wang R, Feng B, Zhong X, Ostrikov KK. 2021 . Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications 12:6856

doi: 10.1038/s41467-021-27071-4
[186]

Zhu S, Song Y, Zhao X, Shao J, Zhang J, et al. 2015. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research 8:355−381

doi: 10.1007/s12274-014-0644-3
[187]

Ai L, Yang Y, Wang B, Chang J, Tang Z, et al. 2021. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin 66:839−856

doi: 10.1016/j.scib.2020.12.015
[188]

Cao L, Zan M, Chen F, Kou X, Liu Y, et al. 2022. Formation mechanism of carbon dots: from chemical structures to fluorescent behaviors. Carbon 194:42−51

doi: 10.1016/j.carbon.2022.03.058
[189]

Wang C, Wei C, Niu H, Xu L, Liu X. 2025. Graded nitro-engineering strategy: Tuning surface states and sp2 conjugated domains of carbon quantum dots for full-color emission. Chinese Chemical Letters 36:111296

doi: 10.1016/j.cclet.2025.111296
[190]

Ru Y, Waterhouse GIN, Lu S. 2022. Aggregation in carbon dots: Special issue: emerging investigators. Aggregate 3:e296

doi: 10.1002/agt2.296
[191]

Ajith MP, Pardhiya S, Rajamani P. 2022. Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation. Small 18:2105579

doi: 10.1002/smll.202105579
[192]

Sciortino A, Gazzetto M, Buscarino G, Popescu R, Schneider R, et al. 2018. Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning. Nanoscale 10:15317−15323

doi: 10.1039/C8NR02953A
[193]

Bao L, Liu C, Zhang ZL, Pang DW. 2015. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Advanced Materials 27:1663−1667

doi: 10.1002/adma.201405070
[194]

Ding H, Yu SB, Wei JS, Xiong HM. 2016a. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484−491

doi: 10.1021/acsnano.5b05406
[195]

Kozák O, Sudolská M, Pramanik G, Cígler P, Otyepka M, et al. 2016. Photoluminescent carbon nanostructures. Chemistry of Materials 28:4085−4128

doi: 10.1021/acs.chemmater.6b01372
[196]

Li L, Dong T. 2018. Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C 7:3105−3105

doi: 10.1039/c8tc90242a
[197]

Chen Z, Liu Y, Kang Z. 2022 . Diversity and tailorability of photoelectrochemical properties of carbon dots. Accounts of Chemical Research 55:3110−3124

doi: 10.1021/acs.accounts.2c00570
[198]

Moniruzzaman M, Kim J. 2019. N-doped carbon dots with tunable emission for multifaceted application: solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting. Sensors and Actuators B: Chemical 295:12−21

doi: 10.1016/j.snb.2019.05.035
[199]

Yan F, Jiang Y, Sun X, Wei J, Chen L, et al. 2020. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Research 13:52−60

doi: 10.1007/s12274-019-2569-3
[200]

Ding H, Wei JS, Zhang P, Zhou ZY, Gao QY, et al. 2018. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14:1800612

doi: 10.1002/smll.201800612
[201]

LeCroy GE, Messina F, Sciortino A, Bunker CE, Wang P, et al. 2017. Characteristic excitation wavelength dependence of fluorescence emissions in carbon "quantum" dots. The Journal of Physical Chemistry C 121:28180−28186

doi: 10.1021/acs.jpcc.7b10129
[202]

Mintz KJ, Zhou Y, Leblanc RM. 2019. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11:4634−4652

doi: 10.1039/C8NR10059D
[203]

ang L, Zhu SJ, Wang HY, Qu SN, Zhang YL, et al. 2014 . Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8:2541−2547

doi: 10.1021/nn500368m
[204]

Mondal S, Yucknovsky A, Akulov K, Ghorai N, Schwartz T, et al. 2019. Efficient photosensitizing capabilities and ultrafast carrier dynamics of doped carbon dots. Journal of the American Chemical Society 141:15413−15422

doi: 10.1021/jacs.9b08071
[205]

Ghosh S, Chizhik AM, Karedla N, Dekaliuk MO, Gregor I, et al. 2014. Photoluminescence of carbon nanodots: Dipole emission centers and electron–phonon coupling. Nano Letters 14:5656−5661

doi: 10.1021/nl502372x
[206]

Wang F, Dukovic G, Brus LE, Heinz TF. 2005. The optical resonances in carbon nanotubes arise from excitons. Science 308:838−841

doi: 10.1126/science.1110265
[207]

Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, et al. 2002. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361−2366

doi: 10.1126/science.1078727
[208]

Kwon H, Kim M, Meany B, Piao Y, Powell LR, et al. 2015. Optical probing of local ph and temperature in complex fluids with covalently functionalized, semiconducting carbon nanotubes. The Journal of Physical Chemistry C 119:3733−3739

doi: 10.1021/jp509546d
[209]

Kojima K, Iizumi Y, Zhang M, Okazaki T. 2022. Streptavidin-conjugated oxygen-doped single-walled carbon nanotubes as near-infrared labels for immunoassays. Langmuir 38:1509−1513

doi: 10.1021/acs.langmuir.1c02824
[210]

Xu P, Hou J, Cheng J, Chen X, Zhang J, et al. 2022 . Color carbon fiber and its discoloration response. Carbon 199:42−50

doi: 10.1016/j.carbon.2022.07.039
[211]

Kobets LP, Deev IS. 1998. Carbon fibres: Structure and mechanical properties. Composites Science and Technology 57:1571−1580

doi: 10.1016/S0266-3538(97)00088-2
[212]

Habibi A, Mousavi Khoie SM, Mahboubi F, Urgen M. 2017. Raman spectroscopy of thin dlc film deposited by plasma electrolysis process. Surface and Coatings Technology 309:945−950

doi: 10.1016/j.surfcoat.2016.10.056
[213]

Zhang Q, Uchaker E, Candelaria SL, Cao G. 2013 . Nanomaterials for energy conversion and storage. Chemical Society Reviews 42:3127

doi: 10.1039/c3cs00009e
[214]

Shang M, Long Y, Pi Y, Chen J, Ding K, et al. 2023. Non-contact anisotropy detection based on polarized photoacoustic remote sensing microscopy. Proceedings SPIE 12766, Advanced Optical Imaging Technologies VI; 127660U (2023). Event: SPIE/COS Photonics Asia, 2023, Beijing, China. doi: 10.1117/12.2686622

[215]

Kim KW, Jeong JS, An KH, Kim BJ. 2019. A study on the microstructural changes and mechanical behaviors of carbon fibers induced by optimized electrochemical etching. Composites Part B: Engineering 165:764−771

doi: 10.1016/j.compositesb.2019.02.055
[216]

Tang Y, Zhao X, Li D, Zuo X, Tang A, et al. 2022. Nano-porous carbon-enabled composite phase change materials with high photo-thermal conversion performance for multi-function coating. Solar Energy Materials and Solar Cells 248:112025

doi: 10.1016/j.solmat.2022.112025
[217]

Wang X, Zeng W, Xin C, Kong X, Hu X, et al. 2022b. The development of activated carbon from corncob for CO2 capture. RSC Advances 12:33069−33078

doi: 10.1039/D2RA05979G
[218]

Bhattacharjya D, Park HY, Kim MS, Choi HS, Inamdar SN, et al. 2014. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir 30:318−324

doi: 10.1021/la403366e
[219]

Erdogan MS, Bekmezci M, Bayat R, Sen F. 2025. Sustainable innovation in activated carbon-based temperature controlled surface technologies. Biomass and Bioenergy 197:107760

doi: 10.1016/j.biombioe.2025.107760
[220]

Dziejarski B, Hernández-Barreto DF, Moreno-Piraján JC, Giraldo L, Serafin J, et al. 2024. Upgrading recovered carbon black (rCB) from industrial-scale end-of-life tires (ELTs) pyrolysis to activated carbons: Material characterization and CO2 capture abilities. Environmental Research 247:118169

doi: 10.1016/j.envres.2024.118169
[221]

Yang B, Zhou H, Zhang X, Liu X, Zhao M. 2017. Dirac cones and highly anisotropic electronic structure of super-graphyne. Carbon 113:40−45

doi: 10.1016/j.carbon.2016.11.028
[222]

Chaves A, Azadani JG, Alsalman H, da Costa DR, Frisenda R, et al. 2020. Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Materials and Applications 4:29

doi: 10.1038/s41699-020-00162-4
[223]

Yakovkin I. 2016. Dirac cones in graphene, interlayer interaction in layered materials, and the band gap in MoS2. Crystals 6:143

doi: 10.3390/cryst6110143
[224]

Hwang H, Joo P, Kang MS, Ahn G, Han JT, et al. 2012. Highly tunable charge transport in layer-by-layer assembled graphene transistors. ACS Nano 6:2432−2440

doi: 10.1021/nn2047197
[225]

Kim KK, Kim SM, Lee YH. 2016. Chemically conjugated carbon nanotubes and graphene for carrier modulation. Accounts of Chemical Research 49:390−399

doi: 10.1021/acs.accounts.5b00441
[226]

Fuhrer MS, Lau CN, MacDonald AH. 2010. Graphene: materially better carbon. MRS Bulletin 35:289−295

doi: 10.1557/mrs2010.551
[227]

Morozov SV, Novoselov KS, Geim AK. 2008. Electron transport in graphene. Physics-Uspekhi 51:744−748

doi: 10.1070/PU2008v051n07ABEH006575
[228]

Hyun WJ, Park OO, Chin BD. 2013. Foldable graphene electronic circuits based on paper substrates. Advanced Materials 25:4729−4734

doi: 10.1002/adma.201302063
[229]

Ma Y, Zhi L. 2019. Graphene-based transparent conductive films: material systems, preparation and applications. Small Methods 3:1800199

doi: 10.1002/smtd.201800199
[230]

Rosli NN, Ibrahim MA, Ahmad Ludin N, Mat Teridi MA, Sopian K. 2019. A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renewable and Sustainable Energy Reviews 99:83−99

doi: 10.1016/j.rser.2018.09.011
[231]

El-Kady MF, Shao Y, Kaner RB. 2016. Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials 1:16033

doi: 10.1038/natrevmats.2016.33
[232]

Sharma S, Kundu P, Tyagi D, Shanmugam V. 2025. Graphene-based nanomaterials applications for agricultural and food sector. Advances in Colloid and Interface Science 336:103377

doi: 10.1016/j.cis.2024.103377
[233]

Zhang F, Zhang T, Yang X, Zhang L, Leng K, et al. 2013. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science 6:1623

doi: 10.1039/c3ee40509e
[234]

Yuan W, Shi G. 2013. Graphene-based gas sensors. Journal of Materials Chemistry A 1:10078

doi: 10.1039/c3ta11774j
[235]

Lim M, Kim JY, Kang H, Yun TW, Cho HB, et al. 2024. Room temperature-based hydrogen gas sensing over laser-induced graphene electrode supported pt nanoparticles for low lod. Sensors and Actuators Reports 8:100247

doi: 10.1016/j.snr.2024.100247
[236]

Liu WJ, Jiang H, Yu HQ. 2019. Emerging applications of biochar-based materials for energy storage and conversion. Energy & Environmental Science 12:1751−1779

doi: 10.1039/C9EE00206E
[237]

Hassaan MA, Elkatory MR, El-Nemr MA, Ragab S, Yi X, et al. 2023. Application of multi-heteroatom doping biochar in a newly proposed mechanism of electron transfer in biogas production. Chemical Engineering Journal 470:144229

doi: 10.1016/j.cej.2023.144229
[238]

He W, Wang Y, Jiang C, Lu L. 2016. Structural effects of a carbon matrix in non-precious metal O2 -reduction electrocatalysts. Chemical Society Reviews 45:2396−2409

doi: 10.1039/C5CS00665A
[239]

Hu C, Li M, Qiu J, Sun YP. 2019. Design and fabrication of carbon dots for energy conversion and storage. Chemical Society Reviews 48:2315−2337

doi: 10.1039/C8CS00750K
[240]

Nawade A, Busi KB, Ramya K, Chakrabortty S, Mukhopadhyay S. 2025. Impact of organic precursors on the optoelectronic properties of as-synthesized carbon dots. ChemNanoMat 11 https://doi.org/10.1002/cnma.202500082

[241]

Miao S, Liang K, Zhu J, Yang B, Zhao D, et al. 2020. Hetero-atom-doped carbon dots: doping strategies, properties and applications. Nano Today 33:100879

doi: 10.1016/j.nantod.2020.100879
[242]

Zhang X, Shao Z, Zhang X, He Y, Jie J. 2016. Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Advanced Materials 28(47):10409−10442

doi: 10.1002/adma.201601966
[243]

Stergiou A, Tagmatarchis N. 2021. Interfacing carbon dots for charge-transfer processes. Small 17:2006005

doi: 10.1002/smll.202006005
[244]

Krasley AT, Li E, Galeana JM, Bulumulla C, Beyene AG, et al. 2024. Carbon nanomaterial fluorescent probes and their biological applications. Chemical Reviews 124:3085−3185

doi: 10.1021/acs.chemrev.3c00581
[245]

Lu S, Xiao G, Sui L, Feng T, Yong X, et al. 2017 . Piezochromic carbon dots with two-photon fluorescence. Angewandte Chemie International Edition 56:6187−6191

doi: 10.1002/anie.201700757
[246]

Strauss V, Kahnt A, Zolnhofer EM, Meyer K, Maid H, et al. 2016. Assigning electronic states in carbon nanodots. Advanced Functional Materials 26:7975−7985

doi: 10.1002/adfm.201602325
[247]

Sciortino A, Marino E, van Dam B, Schall P, Cannas M, et al. 2016. Solvatochromism unravels the emission mechanism of carbon nanodots. The Journal of Physical Chemistry Letters 7:3419−3423

doi: 10.1021/acs.jpclett.6b01590
[248]

Aslam F, Shah A, Ullah N, Munir S. 2023. Multiwalled carbon nanotube/Fe-doped ZnO-based sensors for droplet electrochemical detection and degradation monitoring of brilliant green. ACS Applied Nano Materials 6:6172−6185

doi: 10.1021/acsanm.3c00488
[249]

Zhao W, Yang H, Xu S, Li X, Wei W, et al. 2019. "Olive-structured" nanocomposite based on multiwalled carbon nanotubes decorated with an electroactive copolymer for environmental nitrite detection. ACS Sustainable Chemistry & Engineering 7:17424−17431

doi: 10.1021/acssuschemeng.9b04616
[250]

Liu J, Liu L, Lu J, Zhu H. 2018 . The formation mechanism of chiral carbon nanotubes. Physica B: Condensed Matter 530:277−282

doi: 10.1016/j.physb.2017.11.068
[251]

Gao Z, Oudjedi L, Faes R, Moroté F, Jaillet C, et al. 2015. Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm. Scientific Reports 5:17093

doi: 10.1038/srep17093
[252]

Liu S, Zhang Y, Hao L, Zhang J, Nsabimana A, et al. 2024 . Designing a three-dimensional CoFe2O4 cross-frame wrapped with carbon nanotubes for monitoring the environmental pollutant nitrobenzene. Ceramics International 50:35516−35524

doi: 10.1016/j.ceramint.2024.06.364
[253]

Wang H, Cao H, Wu H, Zhang Q, Mao X, et al. 2023 . Environmentally friendly and sensitive strain sensor based on multiwalled carbon nanotubes/lignin-based carbon nanofibers. ACS Applied Nano Materials 6:14165−14176

doi: 10.1021/acsanm.3c02073
[254]

Wu G, Zheng H, Xing Y, Wang C, Yuan X, et al. 2021 . A sensitive electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite. Chemosphere 286:131602

doi: 10.1016/j.chemosphere.2021.131602
[255]

Jang D, Lee S. 2020. Correlating thermal conductivity of carbon fibers with mechanical and structural properties. Journal of Industrial and Engineering Chemistry 89:115−118

doi: 10.1016/j.jiec.2020.06.026
[256]

Jia Z, Hu C, Zhang Y, Zhang S, Tang B. 2023b. Exploring electro-thermal conversion in phase change materials: a review. Composites Part A: Applied Science and Manufacturing 175:107809

doi: 10.1016/j.compositesa.2023.107809
[257]

Yang Q, Gao Y, Li T, Ma L, Qi Q, et al. 2024 . Advances in carbon fiber-based electromagnetic shielding materials: composition, structure, and application. Carbon 226:119203

doi: 10.1016/j.carbon.2024.119203
[258]

Lee YG, Lee J, An GH. 2021 . Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous supercapacitors. Advanced Functional Materials 31:2104256

doi: 10.1002/adfm.202104256
[259]

Jana D, Sun CL, Chen LC, Chen KH. 2013. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Progress in Materials Science 58:565−635

doi: 10.1016/j.pmatsci.2013.01.003
[260]

Beltrán-Larrotta JI, Moreno-Piraján JC, Giraldo L. 2025. New perspectives on the models of porous carbon. Computational and Structural Biotechnology Journal 29:156−165

doi: 10.1016/j.csbj.2025.04.024
[261]

Pan X, Ji J, Zhang N, Xing M. 2020. Research progress of graphene-based nanomaterials for the environmental remediation. Chinese Chemical Letters 31:1462−1473

doi: 10.1016/j.cclet.2019.10.002
[262]

Wang Y, Geng Q, Yang J, Liu Y, Liu C. 2020 . Hybrid system of flocculation–photocatalysis for the decolorization of crystal violet, reactive red X-3B, and acid orange ii dye. ACS Omega 5:31137−31145

doi: 10.1021/acsomega.0c04285
[263]

Liu Z, Ren X, Duan X, Sarmah AK, Zhao X. 2023d. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): a review. Science of The Total Environment 863:160818

doi: 10.1016/j.scitotenv.2022.160818
[264]

Li K, Yang X, Zhao T, Liu J, Liu J, et al. 2019 . Raney Ni as recyclable and selective catalyst for the reduction of α-pinene to cis -pinane with NaBH4 at room temperature. ChemistrySelect 4:10506−10509

doi: 10.1002/slct.201902769
[265]

Ruan T, Li P, Wang H, Li T, Jiang G. 2023. Identification and prioritization of environmental organic pollutants: from an analytical and toxicological perspective. Chemical Reviews 123:10584−10640

doi: 10.1021/acs.chemrev.3c00056
[266]

Jones KC. 2021. Persistent organic pollutants (POPs) and related chemicals in the global environment: some personal reflections. Environmental Science & Technology 55:9400−9412

doi: 10.1021/acs.est.0c08093
[267]

Eghbali P, Hassani A, Wacławek S, Andrew Lin KY, Sayyar Z, et al. 2024. Recent advances in design and engineering of MXene-based catalysts for photocatalysis and persulfate-based advanced oxidation processes: a state-of-the-art review. Chemical Engineering Journal 480:147920

doi: 10.1016/j.cej.2023.147920
[268]

Tan CW, Tan KH, Ong YT, Mohamed AR, Zein SHS, et al. 2012. Energy and environmental applications of carbon nanotubes. Environmental Chemistry Letters 10:265−273

doi: 10.1007/s10311-012-0356-4
[269]

Balasubramanian K, Burghard M. 2005. Chemically functionalized carbon nanotubes. Small 1:180−192

doi: 10.1002/smll.200400118
[270]

Ren X, Chen C, Nagatsu M, Wang X. 2011. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal 170:395−410

doi: 10.1016/j.cej.2010.08.045
[271]

Ahmad M, Silva SRP. 2020. Low temperature growth of carbon nanotubes – a review. Carbon 158:24−44

doi: 10.1016/j.carbon.2019.11.061
[272]

Zheng W, Liu Y, Liu W, Ji H, Li F, et al. 2021. A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. Water Research 194:116961

doi: 10.1016/j.watres.2021.116961
[273]

Zhu K, Bin Q, Shen Y, Huang J, He D, et al. 2020. In-situ formed n-doped bamboo-like carbon nanotubes encapsulated with fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants. Chemical Engineering Journal 402:126090

doi: 10.1016/j.cej.2020.126090
[274]

Yi L, Zuo L, Wei C, Fu H, Qu X, et al. 2020. Enhanced adsorption of bisphenol a, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions. Science of The Total Environment 719:137389

doi: 10.1016/j.scitotenv.2020.137389
[275]

Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354:56−58

doi: 10.1038/354056a0
[276]

Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. 1995. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters 243:49−54

doi: 10.1016/0009-2614(95)00825-O
[277]

Ghorbani H, Rashidi AM, Rastegari S, Mirdamadi S, Alaei M. 2011. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield. Materials Research Bulletin 46:716−721

doi: 10.1016/j.materresbull.2011.01.021
[278]

Dey D, Shafi T, Chowdhury S, Dubey BK, Sen R. 2024. Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS). Chemosphere 351:141164

doi: 10.1016/j.chemosphere.2024.141164
[279]

Deng S, Zhang Q, Nie Y, Wei H, Wang B, et al. 2012. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution 168:138−144

doi: 10.1016/j.envpol.2012.03.048
[280]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666−669

doi: 10.1126/science.1102896
[281]

Sykes ECH. 2009. Graphene goes undercover. Nature Chemistry 1:175−176

doi: 10.1038/nchem.224
[282]

Razaq A, Bibi F, Zheng X, Papadakis R, Jafri SHM, et al. 2022. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials 15:1012

doi: 10.3390/ma15031012
[283]

Kumar V, Kumar A, Lee DJ, Park SS. 2021. Estimation of number of graphene layers using different methods: a focused review. Materials 14:4590

doi: 10.3390/ma14164590
[284]

Prekodravac JR, Kepić DP, Colmenares JC, Giannakoudakis DA, Jovanović SP. 2021. A comprehensive review on selected graphene synthesis methods: From electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis. Journal of Materials Chemistry C 9:6722−6748

doi: 10.1039/D1TC01316E
[285]

Wang Y, Li S, Yang H, Luo J. 2020. Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances 10:15328−15345

doi: 10.1039/d0ra01068e
[286]

Chang C-W,Hu C. 2020. Graphene oxide-derived carbon-doped SrTiO3 for highly efficient photocatalytic degradation of organic pollutants under visible light irradiation. Chemical Engineering Journal 383:123116

doi: 10.1016/j.cej.2019.123116
[287]

Huong VT, Van Duc B, An NT, Anh TTP, Aminabhavi TM, et al. 2024. 3D-printed WO3-UiO-66@ reduced graphene oxide nanocomposites for photocatalytic degradation of sulfamethoxazole. Chemical Engineering Journal 483:149277

doi: 10.1016/j.cej.2024.149277
[288]

Long Y, Dai J, Zhao S, Su Y, Wang Z, et al. 2021. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environmental Science & Technology 55:5357−5370

doi: 10.1021/acs.est.0c07794
[289]

Rinaldi G. 2010. Nanoscience and technology: a collection of reviews from nature journals. Assembly Automation 30(2):1

doi: 10.1108/aa.2010.03330bae.001
[290]

Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, et al. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558−1565

doi: 10.1016/j.carbon.2007.02.034
[291]

Zubair M, Roopesh MS, Ullah A. 2024. Challenges and prospects: graphene oxide-based materials for water remediation including metal ions and organic pollutants. Environmental Science: Nano 11:3693−3720

doi: 10.1039/D4EN00143E
[292]

Compton OC, Nguyen ST. 2010. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711−723

doi: 10.1002/smll.200901934
[293]

Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, et al. 2016. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chemical Reviews 116:5464−5519

doi: 10.1021/acs.chemrev.5b00620
[294]

Chen J, Ji Y. 2012. The application of carbon fiber reinforced material in sports equipments. Advanced Materials Research 568:372−375

doi: 10.4028/www.scientific.net/AMR.568.372
[295]

Thakur K, Kandasubramanian B. 2019. Graphene and graphene oxide-based composites for removal of organic pollutants: A review. Journal of Chemical & Engineering Data 64:833−867

doi: 10.1021/acs.jced.8b01057
[296]

López-Díaz D, Mercedes Velázquez M, Blanco de la Torre S, Pérez-Pisonero A, Trujillano R, et al. 2013. The role of oxidative debris on graphene oxide films. ChemPhysChem 14:4002−4009

doi: 10.1002/cphc.201300620
[297]

Uhl FM, Wilkie CA. 2002. Polystyrene/graphite nanocomposites: Effect on thermal stability. Polymer Degradation and Stability 76:111−122

doi: 10.1016/S0141-3910(02)00003-4
[298]

Zhang J, Liang G, Xiao Y, Zhao W, Tang J, et al. 2022. Conductive, strong and tough reduced graphene oxide-based composite film for infrared camouflage application. Composites Part B: Engineering 242:109998

doi: 10.1016/j.compositesb.2022.109998
[299]

Khaliha S, Bianchi A, Kovtun A, Tunioli F, Boschi A, et al. 2022. Graphene oxide nanosheets for drinking water purification by tandem adsorption and microfiltration. Separation and Purification Technology 300:121826

doi: 10.1016/j.seppur.2022.121826
[300]

Diercks CS, Yaghi OM. 2017. The atom, the molecule, and the covalent organic framework. Science 355:eaal1585

doi: 10.1126/science.aal1585
[301]

Gan J, Li X, Rizwan K, Adeel M, Bilal M, et al. 2022. Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution. Chemosphere 286:131710

doi: 10.1016/j.chemosphere.2021.131710
[302]

Zhao K, Quan X. 2021. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: Recent progress and remaining challenges. ACS Catalysis 11:2076−2097

doi: 10.1021/acscatal.0c04714
[303]

Du X, Nie H, Qu Y, Jia H, Liu Y, et al. 2025. Revisiting the efficacy of COF treatment for dyes in wastewater: A comprehensive review. Journal of Environmental Chemical Engineering 13:115660

doi: 10.1016/j.jece.2025.115660
[304]

Lai J, Niu W, Luque R, Xu G. 2015. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10:240−267

doi: 10.1016/j.nantod.2015.03.001
[305]

Wu D, Wang H, Wang L, Geng W, Gu N, et al. 2025. Geomimetic interfacial hydrothermal synthesis of crystalline ionic vinylene-linked covalent organic frameworks. Small 21:2409233

doi: 10.1002/smll.202409233
[306]

Pan Y, Li Z, Shen S, Liu D, Zhang G. 2024. Preparation of PVDF mixed matrix membrane based on hydrophilic imine type covalent organic framework(COF) for dye and salt separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 686:133431

doi: 10.1016/j.colsurfa.2024.133431
[307]

Wang L, Du H, Wang X, Hao D, Li Q, et al. 2025. A critical review of COFs-based photocatalysis for environmental remediation. Environmental Research 272:121166

doi: 10.1016/j.envres.2025.121166
[308]

Li C, Guggenberger P, Han SW, Ding WL, Kleitz F. 2022 . Ultrathin covalent organic framework anchored on graphene for enhanced organic pollutant removal. Angewandte Chemie International Edition 61:e202206564

doi: 10.1002/anie.202206564
[309]

Khaing KK, Yin D, Ouyang Y, Xiao S, Liu B, et al. 2020. Fabrication of 2D–2D heterojunction catalyst with covalent organic framework (COF) and MoS2 for highly efficient photocatalytic degradation of organic pollutants. Inorganic Chemistry 59:6942−6952

doi: 10.1021/acs.inorgchem.0c00422
[310]

Aggarwal M, Basu S, Shetti NP, Nadagouda MN, Kwon EE, et al. 2021. Photocatalytic carbon dioxide reduction: exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4). Chemical Engineering Journal 425:131402

doi: 10.1016/j.cej.2021.131402
[311]

Wang J, Wang S. 2022. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews 453:214338

doi: 10.1016/j.ccr.2021.214338
[312]

Li T, Pan Y, Shao B, Zhang X, Wu T, et al. 2023 . Covalent–organic framework (COF)-core–shell composites: Classification, synthesis, properties, and applications. Advanced Functional Materials 33:2304990

doi: 10.1002/adfm.202304990
[313]

Masih D, Ma Y, Rohani S. 2017. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Applied Catalysis B: Environmental 206:556−588

doi: 10.1016/j.apcatb.2017.01.061
[314]

Xu L, Li L, Yu L, Yu JC. 2022 . Efficient generation of singlet oxygen on modified g-C3N4 photocatalyst for preferential oxidation of targeted organic pollutants. Chemical Engineeering Journal 431:134241

doi: 10.1016/j.cej.2021.134241
[315]

Jing M, Zhao H, Jian L, Pan C, Dong Y, et al. 2023. Coral-like b-doped g-C3N4 with enhanced molecular dipole to boost photocatalysis-self-fenton removal of persistent organic pollutants. Journal of Hazardous Materials 449:131017

doi: 10.1016/j.jhazmat.2023.131017
[316]

Sağlam S, Türk FN, Arslanoğlu H. 2023. Use and applications of metal-organic frameworks (MOF) in dye adsorption: Review. Journal of Environmental Chemical Engineering 11:110568

doi: 10.1016/j.jece.2023.110568
[317]

Cao G, Shen Z, Cui J, Yu M, Li W. 2024. Bifunctional activation of peroxymonosulfate over CuS/g-C3N4 composite for efficient degradation of tetracycline antibiotics. Chemical Engineering Journal 483:149082

doi: 10.1016/j.cej.2024.149082
[318]

Lee G, Park G, Kim S, Jhung SH. 2023. Adsorptive removal of aromatic diamines from water using metal-organic frameworks functionalized with a nitro group. Journal of Hazardous Materials 443:130133

doi: 10.1016/j.jhazmat.2022.130133
[319]

Fu H, Pan Y, Cai Z, Deng Y, Hou M, et al. 2024. Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction. Nano Research 17:5845−5855

doi: 10.1007/s12274-024-6545-1
[320]

Khan MA, Mutahir S, Shaheen I, Yuan Q, Bououdina M, et al. 2025. Recent advances over the doped g-C3N4 in photocatalysis: a review. Coordination Chemistry Reviews 522:216227

doi: 10.1016/j.ccr.2024.216227
[321]

You Y, Nam W. 2014. Designing photoluminescent molecular probes for singlet oxygen, hydroxyl radical, and iron–oxygen species. Chem. Sci 5:4123−4135

doi: 10.1039/C4SC01637H
[322]

Lu S, Liu L, Demissie H, An G, Wang D. 2021 . Design and application of metal-organic frameworks and derivatives as heterogeneous fenton-like catalysts for organic wastewater treatment: A review. Environment International 146:106273

doi: 10.1016/j.envint.2020.106273
[323]

Yaghi OM, Li G, Li H. 1995. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378:703−706

doi: 10.1038/378703a0
[324]

Feng Y, Chen Q, Cao M, Ling N, Yao J. 2019. Defect-tailoring and titanium substitution in metal–organic framework UiO-66-NH2 for the photocatalytic degradation of Cr(VI) to Cr(III). ACS Applied Nano Materials 2:5973−5980

doi: 10.1021/acsanm.9b01403
[325]

Li L, Han J, Huang X, Qiu S, Liu X, et al. 2023. Organic pollutants removal from aqueous solutions using metal-organic frameworks (MOFs) as adsorbents: a review. Journal of Environmental Chemical Engineering 11:111217

doi: 10.1016/j.jece.2023.111217
[326]

Wang C, Ma L, Zeng Y, Rao Y, Du Y, et al. 2025. Construction of built-in electric field within ZIF-67/BCN heterojunction for high selectivity photocatalytic CO2 conversion. Chemical Engineering Journal 514:163139

doi: 10.1016/j.cej.2025.163139
[327]

Tong Z, Wang H, An W, Li G, Cui W, et al. 2024. Fecu bimetallic metal organic frameworks photo-fenton synergy efficiently degrades organic pollutants: Structure, properties, and mechanism insight. Journal of Colloid and Interface Science 661:1011−1024

doi: 10.1016/j.jcis.2024.01.212
[328]

Lei Y, Guo X, Jiang M, Sun W, He H, et al. 2022. Co-ZIF reinforced cow manure biochar (CMB) as an effective peroxymonosulfate activator for degradation of carbamazepine. Applied Catalysis B: Environmental 319:121932

doi: 10.1016/j.apcatb.2022.121932
[329]

Bendi A, Chauhan V, Vashisth C, Yogita, Chinmay, et al. 2024. Revolutionizing industrial wastewater treatment: Mxenes conquer organic pollutants in a paradigm shifting breakthrough towards sustainability. Chemical Engineering Journal 490:151373

doi: 10.1016/j.cej.2024.151373
[330]

Solangi NH, Karri RR, Mubarak NM, Ali Mazari S, Jatoi AS, et al. 2023. Emerging 2D mxene -based adsorbents for hazardous pollutants removal. Desalination 549:116314

doi: 10.1016/j.desal.2022.116314
[331]

Ghanbari R, Nazarzadeh Zare E. 2024. Engineered MXene-polymer composites for water remediation: promises, challenges and future perspective. Coordination Chemistry Reviews 518:216089

doi: 10.1016/j.ccr.2024.216089
[332]

Jeon M, Jun BM, Kim S, Jang M, Park CM, et al. 2020. A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 261:127781

doi: 10.1016/j.chemosphere.2020.127781
[333]

Gao K, Hou LA, An X, Huang D, Yang Y. 2023 . BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: process, mechanism and toxicity analysis. Applied Catalysis B: Environmental 323:122150

doi: 10.1016/j.apcatb.2022.122150
[334]

Wang R, Yao C, Peng C, Qiu J, Wang Q, et al. 2024 . Ultra-strong adsorption of organic dyes and antibiotic onto the alk-MXene/ZIF adsorbents with a specific intercalation structure. Chemical Engineering Journal 485:149916

doi: 10.1016/j.cej.2024.149916
[335]

Guo L, Liu YL, Zeng Q, Zhang C, Wen Y, et al. 2024. A self-driven solar coupling system with TiO2@MXene cathode for effectively eliminating uranium and organics from complex wastewater accompanying with electricity generation. Journal of Hazardous Materials 465:133415

doi: 10.1016/j.jhazmat.2023.133415
[336]

Xie X, Xue Y, Li L, Chen S, Nie Y, et al. 2014. Surface al leached Ti3AIC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 6:11035−11040

doi: 10.1039/C4NR02080D
[337]

Tu H, Wu Y, Li Z, Zhang P, Wei C, et al. 2024. One-pot eutectic molten salt synthesis of MXene-supported nanoscale zero-valent iron composites for efficient adsorption and reduction of uranium. Chemical Engineering Journal 485:150089

doi: 10.1016/j.cej.2024.150089
[338]

Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. 2021. Advances in the synthesis of 2D MXenes. Advanced Materials 33:2103148

doi: 10.1002/adma.202103148
[339]

Park D, Nam SN, Jung B, Soo Choi J, Min Park C, et al. 2024. Removal of selected contaminants of dyes and pharmaceuticals using mxene-based nanoadsorbents: A review. Separation and Purification Technology 341:126864

doi: 10.1016/j.seppur.2024.126864
[340]

Bolisetty S, Peydayesh M, Mezzenga R. 2019. Sustainable technologies for water purification from heavy metals: Review and analysis. Chemical Society Reviews 48:463−487

doi: 10.1039/C8CS00493E
[341]

Shi W, Li J, Gao F, Meng L, Su X, et al. 2024. Strongly coordinating mediator enables single-step resource recovery from heavy metal-organic complexes in wastewater. Nature Communications 15:10828

doi: 10.1038/s41467-024-55174-1
[342]

Sun GL, Reynolds EE, Belcher AM. 2020. Using yeast to sustainably remediate and extract heavy metals from waste waters. Nature Sustainability 3:303−311

doi: 10.1038/s41893-020-0478-9
[343]

Chen S, Ding R, Li B, Lu J, Zhang X. 2025. A robust aerogel incorporated with phthalocyanine-based porous organic polymers for highly efficient gold extraction. Separation and Purification Technology 354:129451

doi: 10.1016/j.seppur.2024.129451
[344]

Ding R, Zhu Y, Jing L, Chen S, Lu J, et al. 2024. Sulfhydryl functionalized chitosan-covalent organic framework composites for highly efficient and selective recovery of gold from complex liquids. International Journal of Biological Macromolecules 282:137037

doi: 10.1016/j.ijbiomac.2024.137037
[345]

Bi S, Wang H, Wang R, Yang M, Tian J, et al. 2025. Simultaneous heavy-metal ion adsorption and electricity generation from wastewater via "heavy-metal removal batteries" . Advanced Materials 37:2503776

doi: 10.1002/adma.202503776
[346]

Xie Y, Rong Q, Wen C, Liu X, Hao M, et al. 2024. Covalent organic framework with predesigned single-ion traps for highly efficient palladium recovery from wastes. CCS Chemistry 6:1908−1919

doi: 10.31635/ccschem.023.202303404
[347]

Kobielska PA, Howarth AJ, Farha OK, Nayak S. 2018. Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews 358:92−107

doi: 10.1016/j.ccr.2017.12.010
[348]

Qasem NAA, Mohammed RH, Lawal DU. 2021. Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water 4:36

doi: 10.1038/s41545-021-00127-0
[349]

Zinn YL, de Faria JA, de Araujo MA, Skorupa ALA. 2020. Soil parent material is the main control on heavy metal concentrations in tropical highlands of brazil. CATENA 185:104319

doi: 10.1016/j.catena.2019.104319
[350]

Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T. 2016. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of the Total Environment 569−570:476−488

doi: 10.1016/j.scitotenv.2016.06.166
[351]

He T, Feng X, Guo Y, Qiu G, Li Z, et al. 2008. The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: A case study from Hongfeng Reservoir, Guizhou, China. Environmental Pollution 154:56−67

doi: 10.1016/j.envpol.2007.11.013
[352]

Duruibe JO, Ogwuegbu M, Egwurugwu J. 2007. Heavy metal pollution and human biotoxic effects. International Journal of physical sciences 2:112−118

[353]

Da̧browski A, Hubicki Z, Podkościelny P, Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91−106

doi: 10.1016/j.chemosphere.2004.03.006
[354]

Bolisetty S, Mezzenga R. 2016. Amyloid–carbon hybrid membranes for universal water purification. Nature Nanotechnology 11:365−371

doi: 10.1038/nnano.2015.310
[355]

Werber JR, Osuji CO, Elimelech M. 2016. Materials for next-generation desalination and water purification membranes. Nature Reviews Materials 1:16018

doi: 10.1038/natrevmats.2016.18
[356]

Pohl A. 2020. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water, Air, & Soil Pollution 231:503

doi: 10.1007/s11270-020-04863-w
[357]

Lee J, Kim S, Kim C, Yoon J. 2014. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science 7:3683−3689

doi: 10.1039/C4EE02378A
[358]

Wang J, Chen C. 2006. Biosorption of heavy metals by saccharomyces cerevisiae: a review. Biotechnology Advances 24:427−451

doi: 10.1016/j.biotechadv.2006.03.001
[359]

Fei Y, Hu YH. 2022. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. Journal of Materials Chemistry A 10:1047−1085

doi: 10.1039/D1TA06612A
[360]

Sun Q, Aguila B, Perman J, Earl LD, Abney CW, et al. 2017. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. Journal of the American Chemical Society 139:2786−2793

doi: 10.1021/jacs.6b12885
[361]

Uddin MK. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal 308:438−462

doi: 10.1016/j.cej.2016.09.029
[362]

Vunain E, Mishra AK, Mamba BB. 2016. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. International Journal of Biological Macromolecules 86:570−586

doi: 10.1016/j.ijbiomac.2016.02.005
[363]

Yang X, Wan Y, Zheng Y, He F, Yu Z, et al. 2019 . Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal 366:608−621

doi: 10.1016/j.cej.2019.02.119
[364]

Li H, Dong X, Da Silva EB, De Oliveira LM, Chen Y, et al. 2017a. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466−478

doi: 10.1016/j.chemosphere.2017.03.072
[365]

Kruk M, Jaroniec M, Gadkaree KP. 1999. Determination of the specific surface area and the pore size of microporous carbons from adsorption potential distributions. Langmuir 15:1442−1448

doi: 10.1021/la980789f
[366]

Dong L, Hou La, Wang Z, Gu P, Chen G, et al. 2018. A new function of spent activated carbon in bac process: removing heavy metals by ion exchange mechanism. Journal of Hazardous Materials 359:76−84

doi: 10.1016/j.jhazmat.2018.07.030
[367]

Liu X, Ma R, Wang X, Ma Y, Yang Y, et al. 2019. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environmental Pollution 252:62−73

doi: 10.1016/j.envpol.2019.05.050
[368]

Wang S, Kwak JH, Islam MS, Naeth MA, Gamal El-Din M, et al. 2020c. Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Science of The Total Environment 712:136538

doi: 10.1016/j.scitotenv.2020.136538
[369]

Schiewer S. 1999. Modelling complexation and electrostatic attraction in heavy metal biosorption by sargassum biomass. Journal of Applied Phycology 11:79−87

doi: 10.1023/A:1008025411634
[370]

Wang H, Gao B, Fang J, Ok YS, Xue Y, et al. 2018 . Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecological Engineering 121:124−129

doi: 10.1016/j.ecoleng.2017.06.029
[371]

Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, et al. 2016. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology 46:406−433

doi: 10.1080/10643389.2015.1096880
[372]

Teng Y, Zhu J, Xiao S, Ma Z, Huang T, et al. 2022. Exploring chitosan-loaded activated carbon fiber for the enhanced adsorption of Pb(II)-EDTA complex from electroplating wastewater in batch and continuous processes. Separation and Purification Technology 299:121659

doi: 10.1016/j.seppur.2022.121659
[373]

Li H, Zheng F, Wang J, Zhou J, Huang X, et al. 2020 . Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chemical Engineering Journal 390:124513

doi: 10.1016/j.cej.2020.124513
[374]

Pap S, Šolević Knudsen T, Radonić J, Maletić S, Igić SM, et al. 2017. Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. Journal of Cleaner Production 162:958−972

doi: 10.1016/j.jclepro.2017.06.083
[375]

Vasiraja N, Saravana Sathiya Prabhahar R, Joshua A. 2023. Preparation and physio–chemical characterisation of activated carbon derived from Prosopis juliflora stem for the removal of methylene blue dye and heavy metal containing textile industry effluent. Journal of Cleaner Production 397:136579

doi: 10.1016/j.jclepro.2023.136579
[376]

Fouladi Tajar A, Kaghazchi T, Soleimani M. 2009. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells. Journal of Hazardous Materials 165:1159−1164

doi: 10.1016/j.jhazmat.2008.10.131
[377]

Mena Aguilar KM, Amano Y, Machida M. 2016. Ammonium persulfate oxidized activated carbon fiber as a high capacity adsorbent for aqueous Pb(II). Journal of Environmental Chemical Engineering 4:4644−4652

doi: 10.1016/j.jece.2016.10.028
[378]

Zhu L, Xi M, Yao Y, Lan P. 2023. Thiol-functionalized activated carbon fibers as efficient adsorbents for Pb2+. Materials Chemistry and Physics 302:127552

doi: 10.1016/j.matchemphys.2023.127552
[379]

Li YH, Wang S, Wei J, Zhang X, Xu C, et al. 2002. Lead adsorption on carbon nanotubes. Chemical Physics Letters 357:263−266

doi: 10.1016/S0009-2614(02)00502-X
[380]

Li YH, Wang S, Luan Z, Ding J, Xu C, et al. 2003. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057−1062

doi: 10.1016/S0008-6223(02)00440-2
[381]

Veličković ZS, Marinković AD, Bajić ZJ, Marković JM, Perić-Grujić AA, et al. 2013. Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water. Separation Science and Technology 48:2047−2058

doi: 10.1080/01496395.2013.790446
[382]

Liu C, Peng J, Zhang L, Wang S, Ju S, et al. 2018. Mercury adsorption from aqueous solution by regenerated activated carbon produced from depleted mercury-containing catalyst by microwave-assisted decontamination. Journal of Cleaner Production 196:109−121

doi: 10.1016/j.jclepro.2018.06.027
[383]

Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, et al. 2019. Review on heavy metal adsorption processes by carbon nanotubes. Journal of Cleaner Production 230:783−793

doi: 10.1016/j.jclepro.2019.05.154
[384]

Lu C, Chiu H. 2006. Adsorption of zinc(II) from water with purified carbon nanotubes. Chemical Engineering Science 61:1138−1145

doi: 10.1016/j.ces.2005.08.007
[385]

Thostenson ET, Ren Z, Chou TW. 2001. Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology 61:1899−1912

doi: 10.1016/S0266-3538(01)00094-X
[386]

Ma PC, Siddiqui NA, Marom G, Kim JK. 2010. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 41:1345−1367

doi: 10.1016/j.compositesa.2010.07.003
[387]

Zhuang S, Mei Y, Wang J. 2023. Adsorption performance and mechanisms of CO2+ onto carboxyl-functionalized carbon nanotubes. Journal of Cleaner Production 430:139709

doi: 10.1016/j.jclepro.2023.139709
[388]

Lim JY, Mubarak NM, Abdullah EC, Nizamuddin S, Khalid M, et al. 2018. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — a review. Journal of Industrial and Engineering Chemistry 66:29−44

doi: 10.1016/j.jiec.2018.05.028
[389]

Wang X, Chen Z, Yang S. 2015. Application of graphene oxides for the removal of Pb(II) ions from aqueous solutions: Experimental and DFT calculation. Journal of Molecular Liquids 211:957−964

doi: 10.1016/j.molliq.2015.08.020
[390]

Zhang Y, Peng W, Xia L, Song S. 2017. Adsorption of Cd(II) at the interface of water and graphene oxide prepared from flaky graphite and amorphous graphite. Journal of Environmental Chemical Engineering 5:4157−4164

doi: 10.1016/j.jece.2017.08.004
[391]

Singh S, Anil AG, Uppara B, Behera SK, Nath B, et al. 2024. Adsorption and DFT investigations of Cr(VI) removal using nanocrystals decorated with graphene oxide. NPJ Clean Water 7:17

doi: 10.1038/s41545-024-00306-9
[392]

Wang Z, Lin F, Huang L, Chang Z, Yang B, et al. 2019. Cyclodextrin functionalized 3D-graphene for the removal of Cr(VI) with the easy and rapid separation strategy. Environmental Pollution 254:112854

doi: 10.1016/j.envpol.2019.07.022
[393]

Zhang H, Shi Z, Liu X, Wang B, Niu W, et al. 2025. Insights into graphene oxide double-network macro-monothlic adsorbent through 3D printing: mechanical properties and Cu2+ adsorption mechanism. Separation and Purification Technology 363:132140

doi: 10.1016/j.seppur.2025.132140
[394]

Sitko R, Turek E, Zawisza B, Malicka E, Talik E, et al. 2013. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions 42:5682

doi: 10.1039/c3dt33097d
[395]

Fan W, Li S, Yuan Q, Wu P, Zhang X. 2025. Light-driven in-situ synthesis of nano-sulfur and graphene oxide composites for efficient removal of heavy metal ions. Journal of Hazardous Materials 487:137079

doi: 10.1016/j.jhazmat.2024.137079
[396]

Ihsanullah I, Sajid M, Khan S, Bilal M. 2022. Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Separation and Purification Technology 291:120923

doi: 10.1016/j.seppur.2022.120923
[397]

Li H, Li X, Wei S, Wang C, Zhang Y. 2025. Recent advances of carbon dots for the detection and removal of water contaminants. Materials Science in Semiconductor Processing 192:109424

doi: 10.1016/j.mssp.2025.109424
[398]

Zheng M, Xie Z, Qu D, Li D, Du P, et al. 2013. On–off–on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Applied Materials & Interfaces 5:13242−13247

doi: 10.1021/am4042355
[399]

Ryabchenko EO, Suslov AP, Morozov NA, Krivoshapkina EF. 2024. Silica/carbon dot nanosorbent for the detection and removal of Pb(II) and Co(II) ions from wastewater. Chemical Engineering Journal 500:156610

doi: 10.1016/j.cej.2024.156610
[400]

Luo Q, Yuan H, Zhang M, Jiang P, Liu M, et al. 2021. A 3D porous fluorescent hydrogel based on amino-modified carbon dots with excellent sorption and sensing abilities for environmentally hazardous Cr(VI). Journal of Hazardous Materials 401:123432

doi: 10.1016/j.jhazmat.2020.123432
[401]

Yang HL, Huang CT, Lin HY, Chen YH, Tsai HA, et al. 2024. Zwitterionic carbon quantum dots incorporated ultrafiltration membrane for efficient removal of copper ion. Separation and Purification Technology 331:125709

doi: 10.1016/j.seppur.2023.125709
[402]

Wang H, Gong Y, Wang Y. 2014. Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Adv 4:45753−45759

doi: 10.1039/C4RA08446B
[403]

Li Y, Zhou M, Waterhouse GIN, Sun J, Shi W, et al. 2021. Efficient removal of cadmium ions from water by adsorption on a magnetic carbon aerogel. Environmental Science and Pollution Research 28:5149−5157

doi: 10.1007/s11356-020-10859-0
[404]

Li J, Zheng L, Liu H. 2017 . A novel carbon aerogel prepared for adsorption of copper(II) ion in water. Journal of Porous Materials 24:1575−1580

doi: 10.1007/s10934-017-0397-y
[405]

Sun Z, Chen Z, Tai X, Wang X. 2025. Uranium extraction from seawater: methods and challenges. Science China Chemistry 68:3923−26

doi: 10.1007/s11426-025-2784-1
[406]

Dong Z, Gao D, Li Z, Pei H, Xu L, et al. 2024. Harvesting the vibration energy of CdS for high-efficient piezo-photocatalysis removal of U(VI): roles of shape dependent and piezoelectric polarization. Energy & Environmental Materials 7:e12705

doi: 10.1002/eem2.12705
[407]

Dong Z, Zhang Z, Li Z, Feng Y, Dong W, et al. 2021. 3D structure aerogels constructed by reduced graphene oxide and hollow TiO2 spheres for efficient visible-light-driven photoreduction of U(VI) in air-equilibrated wastewater. Environmental Science: Nano 8:2372−2385

doi: 10.1039/D1EN00217A
[408]

Moore RB, Belitz K, Ayotte J, Arnold TL, Hayes L, et al. 2023. Predicted uranium and radon concentrations in new hampshire (USA) groundwater—using multi order hydrologic position as predictors. JAWRA Journal of the American Water Resources Association 59:127−145

doi: 10.1111/1752-1688.13075
[409]

Jin H, Hu Y, Shen Z, Pan H, Bao H, et al. 2025. Electrochemical upcycling of uranyl from radioactive organic wastewater with a self-standing covalent-organic framework electrode. Nature Communications 16:3574

doi: 10.1038/s41467-025-58747-w
[410]

Kütahyalı C, Eral M. 2010. Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects. Journal of Nuclear Materials 396:251−256

doi: 10.1016/j.jnucmat.2009.11.018
[411]

Yakout SM, Abdeltawab AA. 2015. Adsorption of uranium in the presence of different ions, humic acid and effect of thorium on uranium adsorption by activated carbon. Desalination and Water Treatment 55:2209−2220

doi: 10.1080/19443994.2014.937757
[412]

Yakout SM, Metwally SS, El-Zakla T. 2013. Uranium sorption onto activated carbon prepared from rice straw: Competition with humic acids. Applied Surface Science 280:745−750

doi: 10.1016/j.apsusc.2013.05.055
[413]

Yakout SM, Rizk MA. 2015. Adsorption of uranium by low-cost adsorbent derived from agricultural wastes in multi-component system. Desalination and Water Treatment 53:1917−1922

doi: 10.1080/19443994.2013.860625
[414]

Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, et al. 2013. All in the graphene family – a recommended nomenclature for two-dimensional carbon materials. Carbon 65:1−6

doi: 10.1016/j.carbon.2013.08.038
[415]

Dong Z, Zhang Z, Zhou R, Dong Y, Dai Y, et al. 2020. Construction of oxidized millimeter-sized hierarchically porous carbon spheres for U(VI) adsorption. Chemical Engineering Journal 386:123944

doi: 10.1016/j.cej.2019.123944
[416]

Wang Y, Gu Z, Yang J, Liao J, Yang Y, et al. 2014. Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Applied Surface Science 320:10−20

doi: 10.1016/j.apsusc.2014.08.182
[417]

Yang X, Li J, Liu J, Tian Y, Li B, et al. 2014. Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. J. Mater. Chem. A 2:1550−1559

doi: 10.1039/C3TA13949B
[418]

Song Y, Ye G, Lu Y, Chen J, Wang J, et al. 2016. Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions. ACS Macro Letters 5:382−386

doi: 10.1021/acsmacrolett.6b00099
[419]

Homaeigohar S, Elbahri M. 2017. Graphene membranes for water desalination. NPG Asia Materials 9:e427−e427

doi: 10.1038/am.2017.135
[420]

Boulanger N, Li G, Bakhiia T, Maslakov KI, Romanchuk AY, et al. 2023. Super-oxidized "activated graphene" as 3D analogue of defect graphene oxide: oxidation degree vs U(VI) sorption. Journal of Hazardous Materials 457:131817

doi: 10.1016/j.jhazmat.2023.131817
[421]

Palansooriya KN, Yoon I-H, Kim S-M, Wang C-H, Kwon H, et al. 2022. Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. Environmental Research 214:114072

doi: 10.1016/j.envres.2022.114072
[422]

Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, et al. 2017. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresource Technology 227:359−372

doi: 10.1016/j.biortech.2016.12.083
[423]

Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, et al. 2012. Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chemical Engineering Journal 198-199:246−253

doi: 10.1016/j.cej.2012.05.112
[424]

Shao D, Jiang Z, Wang X, Li J, Meng Y. 2019. Correction to "plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution" . The Journal of Physical Chemistry B 123:9731−9731

doi: 10.1021/acs.jpcb.9b09943
[425]

Sun Y, Wu ZY, Wang X, Ding C, Cheng W, et al. 2016. Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environmental Science & Technology 50:4459−4467

doi: 10.1021/acs.est.6b00058
[426]

Han B, Zhang E, Cheng G, Zhang L, Wang D, et al. 2018. Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chemical Engineering Journal 338:734−744

doi: 10.1016/j.cej.2018.01.089
[427]

Zhang X, Yan M, Chen P, Li J, Li Y, et al. 2025. Emerging MOFs, COFs, and their derivatives for energy and environmental applications. The Innovation 6:100778

doi: 10.1016/j.xinn.2024.100778
[428]

Bhatnagar A, Hogland W, Marques M, Sillanpää M. 2013. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal 219:499−511

doi: 10.1016/j.cej.2012.12.038
[429]

Tian G, Geng J, Jin Y, Wang C, Li S, et al. 2011. Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. Journal of Hazardous Materials 190:442−450

doi: 10.1016/j.jhazmat.2011.03.066
[430]

Vandenabeele CR, Lucas S. 2020. Technological challenges and progress in nanomaterials plasma surface modification – a review. Materials Science and Engineering: R: Reports 139:100521

doi: 10.1016/j.mser.2019.100521
[431]

Sun Y, Lu S, Wang X, Xu C, Li J, et al. 2017. Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(VI) and 241Am(III). Environmental Science & Technology 51:12274−12282

doi: 10.1021/acs.est.7b02745
[432]

Wang Y, Wang Z, Ang R, Yang J, Liu N, et al. 2015. Synthesis of amidoximated graphene oxide nanoribbons from unzipping of multiwalled carbon nanotubes for selective separation of uranium(VI). RSC Advances 5:89309−89318

doi: 10.1039/C5RA15977F
[433]

Xie Y, Yu L, Chen L, Chen C, Wang L, et al. 2024. Recent progress of radionuclides separation by porous materials. Science China Chemistry 67:3515−3577

doi: 10.1007/s11426-024-2218-8
[434]

Cai Y, Wu C, Liu Z, Zhang L, Chen L, et al. 2017. Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(VI). Environmental Science: Nano 4:1876−1886

doi: 10.1039/C7EN00412E
[435]

Sun Y, Wang X, Ai Y, Yu Z, Huang W, et al. 2017. Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chemical Engineering Journal 310:292−299

doi: 10.1016/j.cej.2016.10.122
[436]

Sun Y, Zhang H, Yuan N, Ge Y, Dai Y, et al. 2021. Phosphorylated biomass-derived porous carbon material for efficient removal of U(VI) in wastewater. Journal of Hazardous Materials 413:125282

doi: 10.1016/j.jhazmat.2021.125282
[437]

Ahmed SH, Sharaby CM, El Gammal EM. 2013. Uranium extraction from sulfuric acid medium using trioctylamine impregnated activated carbon. Hydrometallurgy 134-135:150−157

doi: 10.1016/j.hydromet.2013.02.003
[438]

Mayyas M, Al-Harahsheh M, Wei XY. 2014. Solid phase extractive preconcentration of uranium from jordanian phosphoric acid using 2-hydroxy-4-aminotriazine-anchored activated carbon. Hydrometallurgy 149:41−49

doi: 10.1016/j.hydromet.2014.07.005
[439]

Saleh TA, Naeemullah, Tuzen M, Sarı A. 2017. Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chemical Engineering Research and Design 117:218−227

doi: 10.1016/j.cherd.2016.10.030
[440]

Zhao Y, Liu C, Feng M, Chen Z, Li S, et al. 2010. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. Journal of Hazardous Materials 176:119−124

doi: 10.1016/j.jhazmat.2009.11.005
[441]

Liu Y, Li Q, Cao X, Wang Y, Jiang X, et al. 2013. Removal of uranium(VI) from aqueous solutions by CMK-3 and its polymer composite. Applied Surface Science 285:258−266

doi: 10.1016/j.apsusc.2013.08.048
[442]

Song Y, Ye G, Wu F, Wang Z, Liu S, et al. 2016. Bioinspired polydopamine (PDA) chemistry meets ordered mesoporous carbons (OMCs): a benign surface modification strategy for versatile functionalization. Chemistry of Materials 28:5013−5021

doi: 10.1021/acs.chemmater.6b01729
[443]

Baker CO, Huang X, Nelson W, Kaner RB. 2017. Polyaniline nanofibers: broadening applications for conducting polymers. Chemical Society Reviews 46:1510−1525

doi: 10.1039/C6CS00555A
[444]

Zhao Z, Li J, Wen T, Shen C, Wang X, et al. 2015. Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides. Colloids and Surfaces A: Physicochemical and Engineering Aspects 482:258−266

doi: 10.1016/j.colsurfa.2015.05.020
[445]

Hu R, Shao D, Wang X. 2014. Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polymer Chemistry 5:6207−6215

doi: 10.1039/C4PY00743C
[446]

Song W, Wang X, Wang Q, Shao D, Wang X. 2020. Correction: Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Physical Chemistry Chemical Physics 22:1785−1786

doi: 10.1039/C9CP90305D
[447]

Huang Z, Li Z, Zheng L, Zhou L, Chai Z, et al. 2017. Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chemical Engineering Journal 328:1066−1074

doi: 10.1016/j.cej.2017.07.067
[448]

Hansson S, Ostmark E, Carlmark A, Malmström rom E. 2009. ARGET ATRP for versatile grafting of cellulose using various monomers. ACS Applied Materials & Interfaces 1:2651−2659

doi: 10.1021/am900547g
[449]

Tan L, Liu Q, Jing X, Liu J, Song D, et al. 2015. Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chemical Engineering Journal 273:307−315

doi: 10.1016/j.cej.2015.01.110
[450]

Liu Q, Zhu J, Tan L, Jing X, Liu J, et al. 2016. Polypyrrole/cobalt ferrite/multiwalled carbon nanotubes as an adsorbent for removing uranium ions from aqueous solutions. Dalton Transactions 45:9166−9173

doi: 10.1039/C6DT00912C
[451]

Kong L, Zhu Y, Wang M, Li Z, Tan Z, et al. 2016. Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC. Journal of Hazardous Materials 320:435−441

doi: 10.1016/j.jhazmat.2016.08.060
[452]

Zhao D, Zhang Q, Xuan H, Chen Y, Zhang K, et al. 2017. EDTA functionalized Fe3O4/graphene oxide for efficient removal of U(VI) from aqueous solutions. Journal of Colloid and Interface Science 506:300−307

doi: 10.1016/j.jcis.2017.07.057
[453]

Shao L, Wang X, Ren Y, Wang S, Zhong J, et al. 2016. Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal. Chemical Engineering Journal 286:311−319

doi: 10.1016/j.cej.2015.10.062
[454]

Tan L, Liu Q, Song D, Jing X, Liu J, et al. 2015. Uranium extraction using a magnetic CoFe2O4 –graphene nanocomposite: kinetics and thermodynamics studies. New Journal of Chemistry 39:2832−2838

doi: 10.1039/C4NJ01981D
[455]

Tan L, Wang J, Liu Q, Sun Y, Jing X, et al. 2015. The synthesis of a manganese dioxide–iron oxide–graphene magnetic nanocomposite for enhanced uranium(VI) removal. New Journal of Chemistry 39:868−876

doi: 10.1039/C4NJ01256A
[456]

Wang Z, Liu H, Lei Z, Huang L, Wu T, et al. 2020. Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chemical Engineering Journal 402:126256

doi: 10.1016/j.cej.2020.126256
[457]

Qin S, Sha J, Yang P, Li S, Liu C, et al. 2024. Graphene oxide/graphitic carbon nitride/polyamide oxime nanofibers for adsorption and photocatalytic reduction of uranium from seawater. Inorganic Chemistry Frontiers 11:6156−6167

doi: 10.1039/D4QI01553C
[458]

Guo Y, Guo Y, Wang X, Li P, Kong L, et al. 2017. Enhanced photocatalytic reduction activity of uranium(VI) from aqueous solution using the Fe2O3–graphene oxide nanocomposite. Dalton Transactions 46:14762−14770

doi: 10.1039/C7DT02639K
[459]

Zhu M, Cai Y, Liu S, Fang M, Tan X, et al. 2019. K2Ti6O13 hybridized graphene oxide: effective enhancement in photodegradation of RhB and photoreduction of U(VI). Environmental Pollution 248:448−455

doi: 10.1016/j.envpol.2019.02.025
[460]

Wu L, Yang X, Chen T, Li Y, Meng Q, et al. 2022. Three-dimensional C3N5/RGO aerogels with enhanced visible-light response and electron-hole separation efficiency for photocatalytic uranium reduction. Chemical Engineering Journal 427:131773

doi: 10.1016/j.cej.2021.131773
[461]

Chen T, He P, Liu T, Zhou L, Li M, et al. 2022. Mxene-derived 3D defect-rich TiO2 @reduced graphene oxide aerogel with ultrafast carrier separation for photo-assisted uranium extraction: a combined batch, x-ray absorption spectroscopy, and density functional theory calculations. Inorganic Chemistry 61:12759−12771

doi: 10.1021/acs.inorgchem.2c01850
[462]

Jin M, Huang X, Wang Z, Chan V, Hu J, et al. 2023. Mn, N co-doped carbon nanospheres for efficient capture of uranium (VI) via capacitive deionization. Chemosphere 342:140190

doi: 10.1016/j.chemosphere.2023.140190
[463]

Yu H, Zhou L, Liu Y, Ao X, Ouyang J, et al. 2023. Biocarbon/polyaniline nanofiber electrodes with high hybrid capacitance and hierarchical porous structure for U(VI) electrosorption. Desalination 564:116773

doi: 10.1016/j.desal.2023.116773
[464]

Espriu-Gascon A, Giménez J, Casas I, De Pablo J. 2018. Retention of cesium and strontium by uranophane, Ca(UO2)2(SiO3OH)2·5H2O. Journal of Hazardous Materials 353:431−435

doi: 10.1016/j.jhazmat.2018.04.051
[465]

Wu Y, Zhang X, Kim SY, Wei Y. 2016. Simultaneous separation and recovery of Cs(I) and Sr(II) using a hybrid macrocyclic compounds loaded adsorbent. Kinetic, equilibrium and dynamic adsorption studies. Journal of Nuclear Science and Technology 53:1968−1977

doi: 10.1080/00223131.2016.1175979
[466]

Zhao X, Meng Q, Chen G, Wu Z, Sun G, et al. 2018. An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution. Chemical Engineering Journal 352:133−142

doi: 10.1016/j.cej.2018.06.175
[467]

Ali S, Ali Shah I, Huang H. 2020. Selectivity of Ar/O2 plasma-treated carbon nanotube membranes for Sr(II) and Cs(I) in water and wastewater: fit-for-purpose water treatment. Separation and Purification Technology 237:116352

doi: 10.1016/j.seppur.2019.116352
[468]

Hamed MM, Sami NM, Aglan RF. 2022. Sorbent extraction behavior of cesium and strontium from nitric acid solutions using a new high thermal stability material. Applied Radiation and Isotopes 180:110058

doi: 10.1016/j.apradiso.2021.110058
[469]

Kiener J, Limousy L, Jeguirim M, Le Meins JM, Hajjar-Garreau S, et al. 2019. Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption. Materials 12:1253

doi: 10.3390/ma12081253
[470]

Dong Z, Li Z, Zeng D, Cheng Z, Wang Y, et al. 2023. Highly selective adsorption of radioactive cesium by novel calix[4]biscrown-6 functionalized millimetre-sized hierarchically porous carbon spheres. Separation and Purification Technology 304:122255

doi: 10.1016/j.seppur.2022.122255
[471]

Nisola GM, Parohinog KJ, Cho MK, Burnea FKB, Lee JY, et al. 2020. Covalently decorated crown ethers on magnetic graphene oxides as bi-functional adsorbents with tailorable ion recognition properties for selective metal ion capture in water. Chemical Engineering Journal 389:123421

doi: 10.1016/j.cej.2019.123421
[472]

Liao J, Xiong T, Zhao Z, Ding L, Zhu W, et al. 2022. Synthesis of a novel environmental-friendly biocarbon composite and its highly efficient removal of uranium(VI) and thorium(IV) from aqueous solution. Journal of Cleaner Production 374:134059

doi: 10.1016/j.jclepro.2022.134059
[473]

Wang Z, Huang L, Dong X, Wu T, Qing Q, et al. 2023. Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation. Nature Communications 14:261

doi: 10.1038/s41467-023-35942-1
[474]

Liang J, Zhang X, Liu TQ, Gao XD, Liang WB, et al. 2022. Macroscopic heterostructure membrane of graphene oxide/porous graphene/graphene oxide for selective separation of deuterium water from natural water. Advanced Materials 34:2206524

doi: 10.1002/adma.202206524
[475]

Lee I, Kang SM, Jang SC, Lee GW, Shim HE, et al. 2019. One-pot gamma ray-induced green synthesis of a prussian blue-laden polyvinylpyrrolidone/reduced graphene oxide aerogel for the removal of hazardous pollutants. Journal of Materials Chemistry A 7:1737−1748

doi: 10.1039/C8TA10250C
[476]

Zhang Y, Wang H, Gao K, Huang D, Hou L, et al. 2022. Efficient removal of Cs(i) from water using a novel prussian blue and graphene oxide modified PVDF membrane: preparation, characterization, and mechanism. Science of The Total Environment 838:156530

doi: 10.1016/j.scitotenv.2022.156530
[477]

Şenol ZM, El Messaoudi N, Miyah Y, Georgin J, Franco DSP, et al. 2025. A critical and comprehensive review of the removal of thorium ions from wastewater: advances and future perspectives. Journal of Water Process Engineering 69:106587

doi: 10.1016/j.jwpe.2024.106587
[478]

Gao Y, Qin Y, Zhang M, Xu L, Yang Z, et al. 2022. Revealing the role of oxygen-containing functional groups on graphene oxide for the highly efficient adsorption of thorium ions. Journal of Hazardous Materials 436:129148

doi: 10.1016/j.jhazmat.2022.129148
[479]

Kamal E, Hamdy G, El-Sabbagh IA, Taher FA. 2021. Highly efficient sorption of thorium (IV) onto a ternary magnetic TiO2/Fe3O4/GO nanocomposite. Materials Today: Proceedings 42:2218−2226

doi: 10.1016/j.matpr.2020.12.307
[480]

Wang Z, Brown AT, Tan K, Chabal YJ, Balkus KJ. 2018c. Selective extraction of thorium from rare earth elements using wrinkled mesoporous carbon. Journal of the American Chemical Society 140:14735−14739

doi: 10.1021/jacs.8b07610
[481]

ang WD, Cui YX, Zhang LK, Li YM, Sun P, et al. 2021. Synthesis of a novel ZnFe2O4/porous biochar magnetic composite for Th (IV) adsorption in aqueous solutions. International Journal of Environmental Science and Technology 18:2733−2746

doi: 10.1007/s13762-020-03023-1
[482]

Liu X, Xiao M, Chen P, Zhou Y, Xie Y, et al. 2025. In-situ synthesis of layered double hydroxides with tunable basal spacing for efficient iodide over iodate adsorption selectivity. Science China Chemistry 68:2424−2432

doi: 10.1007/s11426-024-2391-0
[483]

Jia T, Shi K, Wang Y, Yang J, Hou X. 2022. Sequential separation of iodine species in nitric acid media for speciation analysis of 129I in a purex process of spent nuclear fuel reprocessing. Analytical Chemistry 94:10959−10966

doi: 10.1021/acs.analchem.2c00885
[484]

Shen Z, Wiechert AI, Ladshaw AP, Greaney A, Tsouris C, et al. 2024. Adsorption of molecular iodine and alkyl iodides from spent-nuclear-fuel-reprocessing off-gas using reduced silver mordenite. Chemical Engineering Journal 482:149083

doi: 10.1016/j.cej.2024.149083
[485]

Ghritalahre B, Bhargav VK, Gangil S, Sahu P, Sahu RK. 2023. Next generation bio-derived 3D-hierarchical porous material for remarkable hydrogen storage – a brief critical review. Journal of Power Sources 587:233648

doi: 10.1016/j.jpowsour.2023.233648
[486]

Sun H, Yang B, Li A. 2019. Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake. Chemical Engineering Journal 372:65−73

doi: 10.1016/j.cej.2019.04.061
[487]

Domán A, Battalgazy B, Dobos G, Kiss G, Tauanov Z, et al. 2022. Iodide removal by resorcinol-formaldehyde carbon aerogels. Materials 15:6885

doi: 10.3390/ma15196885
[488]

Liu B, Ren X, Chen L, Ma X, Chen Q, et al. 2019. High efficient adsorption and storage of iodine on S, N Co-doped graphene aerogel. Journal of Hazardous Materials 373:705−715

doi: 10.1016/j.jhazmat.2019.04.005
[489]

Zhu H, Yu C, Wang B, Zhu W, Duan T, et al. 2022. Sponge-inspired reassembly of 3D hydrolyzed collagen aerogel with polyphenol-functionalization for ultra-capturing iodine from airborne effluents. Chemical Engineering Journal 428:131322

doi: 10.1016/j.cej.2021.131322
[490]

Bhakare MA, Lokhande KD, Dhumal PS, Bondarde MP, Some S. 2021. Multifunctional heteroatom doped sustainable carbon nanocomposite for rapid removal of persistent organic pollutant and iodine from water. Separation and Purification Technology 278:119490

doi: 10.1016/j.seppur.2021.119490
[491]

Zhou Y, Wan H, Zhu Y, Chen D, Li N, et al. 2023. Nitrogen-rich silk fibroin aerogel for effective removal of radioactive iodine. Chemical Engineering Science 282:119217

doi: 10.1016/j.ces.2023.119217
[492]

Chen L, Cui R, Dai J, Wang Y, Pan J. 2024. Fast and efficient capture of iodide ions by silver-modified GO nanosheets: From adsorption to membrane filtration. Separation and Purification Technology 333:125955

doi: 10.1016/j.seppur.2023.125955
[493]

Chen X, Wang L, Ding C, Xie H, Zou H, et al. 2024. Highly efficient removal of radioactive iodine anions by nano silver modified activated carbon fiber. Applied Surface Science 643:158644

doi: 10.1016/j.apsusc.2023.158644
[494]

Fan K, Li LF, Li JJ. 2021. The application of 3D graphene/Ag aerogel in capturing of iodine. High Energy Chemistry 55:140−144

doi: 10.1134/S0018143921020089
[495]

Lei M, Hao M, Chen Z, Yang H, Waterhouse GIN, et al. 2025. Designing metal-organic frameworks for the selective removal of 99TcO4 from nuclear wastewater. Science China Chemistry 68:1639−1641

doi: 10.1007/s11426-025-2556-y
[496]

Zhang X, Hao M, Yang X, Chen Z, Wang S, et al. 2024. Promising porous materials for 99TcO4 removal from nuclear wastes. National Science Open 4:20240007

doi: 10.1360/nso/20240007
[497]

Mahmoud ME, Fekry NA, Abdelfattah AM. 2020. A novel nanobiosorbent of functionalized graphene quantum dots from rice husk with barium hydroxide for microwave enhanced removal of lead (II) and lanthanum (III). Bioresource Technology 298:122514

doi: 10.1016/j.biortech.2019.122514
[498]

Liu X, Xie Y, Li Y, Hao M, Chen Z, et al. 2023. Functional carbon capsules supporting ruthenium nanoclusters for efficient electrocatalytic 99TcO4/ReO4 removal from acidic and alkaline nuclear wastes. Advanced Science 10:2303536

doi: 10.1002/advs.202303536
[499]

Zhang S, Fan Q, Xia R, Meyer TJ. 2020. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Accounts of Chemical Research 53:255−264

doi: 10.1021/acs.accounts.9b00496
[500]

Xu S, Carter EA. 2019. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews 119:6631−6669

doi: 10.1021/acs.chemrev.8b00481
[501]

Chang B, Pang H, Raziq F, Wang S, Huang KW, et al. 2023. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy & Environmental Science 16:4714−4758

doi: 10.1039/D3EE00964E
[502]

Jin S, Hao Z, Zhang K, Yan Z, Chen J. 2021. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angewandte Chemie International Edition 60:20627−20648

doi: 10.1002/anie.202101818
[503]

Zuo C, Su Q, Jiang Z. 2023. Advances in the application of Bi-based compounds in photocatalytic reduction of CO2. Molecules 28:3982

doi: 10.3390/molecules28103982
[504]

Wang LH, Tai XS. 2023. Synthesis, structural characterization, hirschfeld surface analysis and photocatalytic CO2 reduction activity of a new dinuclear Gd(III) complex with 6-phenylpyridine-2-carboxylic acid and 1,10-phenanthroline ligands. Molecules 28:7595

doi: 10.3390/molecules28227595
[505]

Zuo C, Su Q, Yan X. 2023. Research progress of co-catalysts in photocatalytic CO2 reduction: a review of developments, opportunities, and directions. Processes 11:867

doi: 10.3390/pr11030867
[506]

Zhang L, Zhao ZJ, Gong J. 2017. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angewandte Chemie International Edition 56:11326−11353

doi: 10.1002/anie.201612214
[507]

Wang G, Chen J, Ding Y, Cai P, Yi L, et al. 2021. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chemical Society Reviews 50:4993−5061

doi: 10.1039/D0CS00071J
[508]

Duan X, Xu J, Wei Z, Ma J, Guo S, et al. 2017. Metal-free carbon materials for CO2 electrochemical reduction. Advanced Materials 29:1701784

doi: 10.1002/adma.201701784
[509]

Mamaghani AH, Liu J, Zhang Z, Gao R, Wu Y, et al. 2024. Promises of MOF-based and MOF-derived materials for electrocatalytic CO2 reduction. Advanced Energy Materials 14:2402278

doi: 10.1002/aenm.202402278
[510]

Liu S, Yang H, Huang X, Liu L, Cai W, et al. 2018. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Advanced Functional Materials 28:1800499

doi: 10.1002/adfm.201800499
[511]

Zhang Y, Cui S, Yu C, Song X, Li W, et al. 2024. A gradient nitrogen doping along radial direction of carbon nanotubes to promote CO2 electroreduction. Advanced Functional Materials 34:2410755

doi: 10.1002/adfm.202410755
[512]

Chen C, Sun X, Yan X, Wu Y, Liu H, et al. 2020. Boosting CO2 electroreduction on N,P-CO-doped carbon aerogels. Angewandte Chemie 132:11216−11222

doi: 10.1002/ange.202004226
[513]

Wang S, Zhou S, Ma Z, Gao N, Daiyan R, et al. 2025. Oxygen-substituted porous C2N frameworks as efficient electrocatalysts for carbon dioxide electroreduction. Angewandte Chemie International Edition 64:e202501896

doi: 10.1002/anie.202501896
[514]

Fu S, Li M, de Jong W, Kortlever R. 2023. Tuning the properties of N-doped biochar for selective CO2 electroreduction to CO. ACS Catalysis 13:10309−10323

doi: 10.1021/acscatal.3c01773
[515]

Wu J, Ma S, Sun J, Gold JI, Tiwary C, et al. 2016 . A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications 7:13869

doi: 10.1038/ncomms13869
[516]

Hursán D, Samu AA, Janovák L, Artyushkova K, Asset T, et al. 2019. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes. Joule 3:1719−1733

doi: 10.1016/j.joule.2019.05.007
[517]

Tan X, Yu C, Xie Y, Wang Z, Ni L, et al. 2024. Shear field-controlled synthesis of nitrogen-doped carbon nanochains forest with high-density sp3 defects for efficient CO2 electroreduction reaction. ACS Nano 18:14595−14604

doi: 10.1021/acsnano.4c02591
[518]

Liu Y, Zhang Y, Cheng K, Quan X, Fan X, et al. 2017. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-CO-doped nanodiamond. Angewandte Chemie International Edition 56:15607−15611

doi: 10.1002/anie.201706311
[519]

Varela AS, Ranjbar Sahraie N, Steinberg J, Ju W, Oh HS, et al. 2015. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to co and hydrocarbons. Angewandte Chemie International Edition 54:10758−10762

doi: 10.1002/anie.201502099
[520]

Ju W, Bagger A, Hao GP, Varela AS, Sinev I, et al. 2017. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications 8:944

doi: 10.1038/s41467-017-01035-z
[521]

Li H, Fang L, Wang T, Bai R, Zhang J, et al. 2025. In situ modulated nickel single atoms on bicontinuous porous carbon fibers and sheets networks for acidic CO2 reduction. Advanced Materials 37:2416337

doi: 10.1002/adma.202416337
[522]

Cheng YT, Peng JZ, Lai GT, Yue X, Li FZ, et al. 2024. Edge-site Co–Nx model single-atom catalysts for CO2 electroreduction. ACS Catalysis 14:8446−8455

doi: 10.1021/acscatal.4c02079
[523]

Pei J, Shang H, Mao J, Chen Z, Sui R, et al. 2024. A replacement strategy for regulating local environment of single-atom Co-SxN4−x catalysts to facilitate CO2 electroreduction. Nature Communications 15:416

doi: 10.1038/s41467-023-44652-7
[524]

Wang B, Wang M, Fan Z, Ma C, Xi S, et al. 2024. Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts. Nature Communications 15:1719

doi: 10.1038/s41467-024-46175-1
[525]

Heng JM, Zhu HL, Zhao ZH, Liao PQ, Chen XM. 2025. Fabrication of ultrahigh-loading dual copper sites in nitrogen-doped porous carbons boosting electroreduction of CO2 to C2H4 under neutral conditions. Advanced Materials 37:2415101

doi: 10.1002/adma.202415101
[526]

Hursán D, Timoshenko J, Ortega E, Jeon HS, Rüscher M, et al. 2024. Reversible structural evolution of metal-nitrogen-doped carbon catalysts during CO2 electroreduction: an operando x-ray absorption spectroscopy study. Advanced Materials 36:2307809

doi: 10.1002/adma.202307809
[527]

Cui Y, Ren C, Li Q, Ling C, Wang J. 2024. Hybridization state transition under working conditions: activity origin of single-atom catalysts. Journal of the American Chemical Society 146:15640−15647

doi: 10.1021/jacs.4c05630
[528]

Wang X, Zeng W, Liu W, Cao X, Hou C, et al. 2020. CO2 adsorption of lignite chars after one-step koh activation. New Journal of Chemistry 44:13755−13763

doi: 10.1039/D0NJ02250K
[529]

Xin C, Ren Y, Zhang Z, Liu L, Wang X, et a;. 2021. Enhancement of hydrothermal stability and CO2 adsorption of Mg-MOF-74/MCF composites. ACS Omega 6:7739−7745

doi: 10.1021/acsomega.1c00098
[530]

Zhang X, Wang Y, Gu M, Wang M, Zhang Z, et al. 2020. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy 5:684−692

doi: 10.1038/s41560-020-0667-9
[531]

Su J, Musgrave CB, Song Y, Huang L, Liu Y, et al. 2023. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis 6:818−828

doi: 10.1038/s41929-023-01005-3
[532]

Guo W, Cao X, Tan D, Wulan B, Ma J, et al. 2024. Thermal-driven dispersion of bismuth nanoparticles among carbon matrix for efficient carbon dioxide reduction. Angewandte Chemie International Edition 63:e202401333

doi: 10.1002/anie.202401333
[533]

Wang H, Tzeng YK, Ji Y, Li Y, Li J, et al. 2020a. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nature Nanotechnology 15:131−137

doi: 10.1038/s41565-019-0603-y
[534]

Wang M, Li Y, Jia J, Ghosh T, Luo P, et al. 2025. Tuning catalyst-support interactions enable steering of electrochemical CO2 reduction pathways. Science Advances 11:eado5000

doi: 10.1126/sciadv.ado5000
[535]

Fan F, Lei B, Song X, Liang J, Cai W, et al. 2025. Applicable descriptors under weak metal-oxygen d–p interaction for the oxygen evolution reaction. Angewandte Chemie International Edition 64:e202419718

doi: 10.1002/anie.202419718
[536]

Zhou T, Cao Z, Tai X, Yu L, Ouyang J, et al. 2022. Hierarchical Co(OH)2 dendrite enriched with oxygen vacancies for promoted electrocatalytic oxygen evolution reaction. Polymers 14:1510

doi: 10.3390/polym14081510
[537]

Dionigi F, Zeng Z, Sinev I, Merzdorf T, Deshpande S, et al. 2020. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature Communications 11:2522

doi: 10.1038/s41467-020-16237-1
[538]

Wu Q, Gao Q, Sun L, Guo H, Tai X, et al. 2021. Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chinese Journal of Catalysis 42:482−489

doi: 10.1016/S1872-2067(20)63663-4
[539]

Gao C, Yao H, Wang P, Zhu M, Shi XR, et al. 2024. Carbon-based composites for oxygen evolution reaction electrocatalysts: design, fabrication, and application. Materials 17:2265

doi: 10.3390/ma17102265
[540]

Lam E, Luong JHT. 2014. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catalysis 4:3393−3410

doi: 10.1021/cs5008393
[541]

Zhou T, Liu Z, Yang B, Cao Z, Jiang Z, et al. 2022. Dealloying fabrication of hierarchical porous nickel–iron foams for efficient oxygen evolution reaction. Frontiers in Chemistry 10:1047398

doi: 10.3389/fchem.2022.1047398
[542]

Mazloomi K, Gomes C. 2012. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 16:3024−3033

doi: 10.1016/j.rser.2012.02.028
[543]

Zhu X, Zhou E, Tai X, Zong H, Yi J, et al. 2025. G-C3N4 S-scheme homojunction through van der waals interface regulation by intrinsic polymerization tailoring for enhanced photocatalytic H2 evolution and CO2 reduction. Angewandte Chemie International Edition 64:e202425439

doi: 10.1002/anie.202425439
[544]

Yang Z, Huang T, Li M, Wang X, Zhou X, et al. 2024. Unveiling the synergistic role of frustrated lewis pairs in carbon-encapsulated Ni/NiOx photothermal cocatalyst for enhanced photocatalytic hydrogen production. Advanced Materials 36:2313513

doi: 10.1002/adma.202313513
[545]

Wu Q, Li J, Wu T, Ji L, Zhang R, et al. 2019. One-step preparation of cobalt-nanoparticle-embedded carbon for effective water oxidation electrocatalysis. ChemElectroChem 6:1996−1999

doi: 10.1002/celc.201900094
[546]

Yu M, Budiyanto E, Tüysüz H. 2022. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angewandte Chemie 134:e202103824

doi: 10.1002/ange.202103824
[547]

Yang Y, Wang H, Qin W, Guo Y, Yao H, et al. 2020. MoS2/Au0/N-CNT derived from Au(III) extraction by polypyrrole/MoS4 as an electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science 561:298−306

doi: 10.1016/j.jcis.2019.10.102
[548]

Ghosh A, Mondal M, Nath Manna R, Bhaumik A. 2024. Targeted synthesis of a metal-free thiadiazolate based nitrogen and sulfur rich porous organic polymer for an unprecedented hydrogen evolution in the electrochemical water splitting. Journal of Colloid and Interface Science 658:415−424

doi: 10.1016/j.jcis.2023.12.076
[549]

Tang H, Wang L, He P, Huang Q, Wang X. 2024. Bulk hydrophobic gas diffusion layer with interpenetrating network for high-performance fuel cells. Chemical Engineering Journal 495:152968

doi: 10.1016/j.cej.2024.152968
[550]

Wang YJ, Fang B, Zhang D, Li A, Wilkinson DP, et al. 2018b. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries. Electrochemical Energy Reviews 1:1−34

doi: 10.1007/s41918-018-0002-3
[551]

Gong T, Zhang J, Liu Y, Hou L, Deng J, et al. 2023. Construction of hetero-phase Mo2C-CoO@N-CNFs film as a self-supported Bi-functional catalyst towards overall water splitting. Chemical Engineering Journal 451:139025

doi: 10.1016/j.cej.2022.139025
[552]

Pan X, Kong F, Xing M. 2022. Spatial separation of photo-generated carriers in g-C3N4/MnO2/Pt with enhanced H2 evolution and organic pollutant control. Research on Chemical Intermediates 48:2837−2855

doi: 10.1007/s11164-022-04748-z
[553]

Nairan A, Liang C, Chiang SW, Wu Y, Zou P, et al. 2021. Proton selective adsorption on Pt–Ni nano-thorn array electrodes for superior hydrogen evolution activity. Energy & Environmental Science 14:1594−1601

doi: 10.1039/D1EE00106J
[554]

Zhou C-A, Ma K, Zhuang Z, Ran M, Shu G, et al. 2024. Tuning the local environment of Pt species at CNT@MO2–x (M = Sn and Ce) heterointerfaces for boosted alkaline hydrogen evolution. Journal of the American Chemical Society 146:21453−21465

doi: 10.1021/jacs.4c04189
[555]

Hanan A, Lakhan MN, Bibi F, Khan A, Soomro IA, et al. 2024. MOFs coupled transition metals, graphene, and MXenes: emerging electrocatalysts for hydrogen evolution reaction. Chemical Engineering Journal 482:148776

doi: 10.1016/j.cej.2024.148776
[556]

Zou X, Zhang Y. 2015. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 44:5148−5180

doi: 10.1039/C4CS00448E
[557]

Hu F, Yu D, Ye M, Wang H, Hao Y, et al. 2022. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe–O–Cu bridges. Advanced Energy Materials 12:2200067

doi: 10.1002/aenm.202200067
[558]

Li Z, Zhang X, Ou C, Zhang Y, Wang W, et al. 2023. Transition metal-based self-supported anode for electrocatalytic water splitting at a large current density. Coordination Chemistry Reviews 495:215381

doi: 10.1016/j.ccr.2023.215381
[559]

Sam DK, Li H, Xu YT, Cao Y. 2024. Advances in porous carbon materials for a sustainable future: a review. Advances in Colloid and Interface Science 333:103279

doi: 10.1016/j.cis.2024.103279
[560]

Wu J, Peng B. 2025. Smallest [5,6] fullerene as building blocks for 2D networks with superior stability and enhanced photocatalytic performance. Journal of the American Chemical Society 147:1749−1757

doi: 10.1021/jacs.4c13167
[561]

Zhang R, Li Y, Zhou X, Yu A, Huang Q, et al. 2023. Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution. Nature Communications 14:2460

doi: 10.1038/s41467-023-38126-z
[562]

Huang Q, Yang W, Yan Y, Xie S, Yu A, et al. 2024. Regulation of d-band center of ruthenium sites via electronic complementary effect of C60 fullerene molecules and manganese atoms for efficient alkaline hydrogen evolution. Advanced Functional Materials 34:2409406

doi: 10.1002/adfm.202409406
[563]

Luo T, Huang J, Hu Y, Yuan C, Chen J, et al. 2023. Fullerene lattice-confined Ru nanoparticles and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Advanced Functional Materials 33:2213058

doi: 10.1002/adfm.202213058
[564]

Liu Z, Li B, Feng Y, Jia D, Li C, et al. 2021. Strong electron coupling of Ru and vacancy-rich carbon dots for synergistically enhanced hydrogen evolution reaction. Small 17:2102496

doi: 10.1002/smll.202102496
[565]

Liu M, Jiang Y, Cao Z, Liu L, Chen H, et al. 2024. Accelerating H* desorption of hollow Mo2C nanoreactor via in-situ grown carbon dots for electrocatalytic hydrogen evolution. Journal of Energy Chemistry 96:464−471

doi: 10.1016/j.jechem.2024.04.045
[566]

Li W, Liu Y, Wu M, Feng X, Redfern SAT, et al. 2018. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Advanced Materials 30:1800676

doi: 10.1002/adma.201800676
[567]

Baeck U, Kim MC, Nguyen DN, Kim J, Lim J, et al. 2025. Machine-learning-assisted design and optimization of single-atom transition metal-incorporated carbon quantum dot catalysts for electrocatalytic hydrogen evolution reaction. Carbon Energy 7:e70006

doi: 10.1002/cey2.70006
[568]

Xie Z, Gao Q, Hussain S, Yang J, Li Q. 2024. Supermolecule polymer derived porous carbon nitride microspheres with controllable energy band structure for photocatalytic hydrogen evolution reaction. Small 20:2309032

doi: 10.1002/smll.202309032
[569]

Sundriyal S, Shrivastav V, Kaur H, Mishra S, Deep A. 2018. High-performance symmetrical supercapacitor with a combination of a ZIF-67/rGO composite electrode and a redox additive electrolyte. ACS Omega 3:17348−17358

doi: 10.1021/acsomega.8b02065
[570]

Chen Y, Rong J, Fan Q, Sun M, Deng Q, et al. 2025. Facile engineering of CoS/rGO heterostructures on carbon cloth for efficient all-ph hydrogen evolution reaction and alkaline water electrolysis. Journal of Materials Chemistry A 13:486−498

doi: 10.1039/D4TA06710J
[571]

Mai HD, Park PM, Bae GN, Jeong S, Seo B, et al. 2024. Metallic cobalt/cobalt sulfide hetero-nanostructures embedded within N-doped graphitic carbon nanocages for the hydrogen evolution reaction. Journal of Materials Chemistry A 12:4761−4769

doi: 10.1039/D3TA07125A
[572]

Zhang R, Chen J, Huang Y, Tang J, Zhao R, et al. 2025. One-step laser synthesis of dual-atom alloy catalysts for hydrogen evolution reaction. Advanced Functional Materials 35:2502205

doi: 10.1002/adfm.202502205
[573]

Amirpoor S, Dolati A. 2025. Optimization of synthesis conditions for enhanced hydrogen evolution reaction performance in Fe–CoP@NC/N-rGO electrocatalysts. International Journal of Hydrogen Energy 109:1023−1036

doi: 10.1016/j.ijhydene.2025.02.185
[574]

Yu Z, Li Y, Torres-Pinto A, LaGrow AP, Diaconescu VM, et al. 2022. Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 310:121318

doi: 10.1016/j.apcatb.2022.121318
[575]

Ng SF, Chen X, Foo JJ, Xiong M, Ong WJ. 2023. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide ph range photocatalytic hydrogen evolution reaction. Chinese Journal of Catalysis 47:150−160

doi: 10.1016/S1872-2067(23)64417-1
[576]

Ding Y, Zhu C, Xu Z, Yang W, Lu H, et al. 2025. Mo2C–CoNi heterostructure-knotted CNFs for efficient hydrogen and oxygen evolution reaction. International Journal of Hydrogen Energy 102:866−873

doi: 10.1016/j.ijhydene.2025.01.078
[577]

Zhang S, Le F, Jia W, Yang X, Hu P, et al. 2025. Electrospun Co-MoC nanoparticles embedded in carbon nanofibers for highly efficient pH-universal hydrogen evolution reaction and alkaline overall water splitting. Small Methods 9:2401103

doi: 10.1002/smtd.202401103
[578]

Wang L, He W, Yin D, Zhang H, Liu D, et al. 2023. CoN/MoC embedded in nitrogen-doped multi-channel carbon nanofibers as an efficient acidic and alkaline hydrogen evolution reaction electrocatalysts. Renewable and Sustainable Energy Reviews 181:113354

doi: 10.1016/j.rser.2023.113354
[579]

Zhang C, Song H, Wang Z, Ye Q, Zhang D, et al. 2024. Titanium dioxide and N-doped carbon hybrid nanofiber modulated Ru nanoclusters for high-efficient hydrogen evolution reaction electrocatalyst. Small 20:2311667

doi: 10.1002/smll.202311667
[580]

Jiao Y, Zheng Y, Davey K, Qiao SZ. 2016. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy 1:16130

doi: 10.1038/nenergy.2016.130
[581]

Liu Y, Liu P, Cai Y, Zhu M, Dou N, et al. 2025. Platinum/(carbon-nanotube) electrocatalyst boosts hydrogen evolution reaction in acidic, neutral and alkaline solutions. Small 21:2411181

doi: 10.1002/smll.202411181
[582]

Yan H, Wang Y, Xin Y, Jiang Z, Deng B, et al. 2024. Carbon nanotube support, carbon loricae and oxygen defect co-promoted superior activities and excellent durability of RuO2 nanoparticles towards the pH-universal H2 evolution. Small 20:2406070

doi: 10.1002/smll.202406070
[583]

Zhao W, Shen S, Zhao Y, Wu T, Ding S, et al. 2024. Curvature-switched activity of carbon nanotube-supported single atom catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 12:16476−16481

doi: 10.1039/D4TA01719F
[584]

Gong T, Liu Y, Cui K, Xu J, Hou L, et al. 2023. Binary molten salt in situ synthesis of sandwich-structure hybrids of hollow β-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction. Carbon Energy 5:e349

doi: 10.1002/cey2.349
[585]

Sun J, Guo F, Ai X, Tian Y, Yang J, et al. 2024. Constructing heterogeneous interface by growth of carbon nanotubes on the surface of MoB2 for boosting hydrogen evolution reaction in a wide pH range. Small 20:2304573

doi: 10.1002/smll.202304573
[586]

Hu T, Zhang D, He N, Wei S, Kang X, et al. 2025. Laser ultrafast confined alloying of sub-5 nm RuM (M = Cu, Rh, and Pd) particles on carbon nanotubes for hydrogen evolution reaction. Advanced Science 12:2415065

doi: 10.1002/advs.202415065
[587]

Zhang Y, Chen B, Qiao Y, Duan Y, Qi X, et al. 2024. FeNi alloys incorporated N-doped carbon nanotubes as efficient bifunctional electrocatalyst with phase-dependent activity for oxygen and hydrogen evolution reactions. Journal of Materials Science & Technology 201:157−165

doi: 10.1016/j.jmst.2024.03.046
[588]

Yang X, Takada R, Li X, Narimatsu K, Miyake K, et al. 2025. Undemanding synthesis of N, P Co-doped carbon nanosheets for the hydrogen evolution reaction: combining experimental quantitative analysis and DFT calculation corroboration. Journal of Materials Chemistry A 13:13884−13897

doi: 10.1039/D4TA06226D
[589]

Liu B, Yang J, Li F, Liu J, Zhao L, et al. 2024. WOx-Carbon nanorods catalyzed photoelectrochemical hydrogen evolution reaction of silicon-photocathode in acidic media. Chemical Engineering Journal 497:154402

doi: 10.1016/j.cej.2024.154402
[590]

Zhang L, Hu H, Sun C, Xiao D, Wang HT, et al. 2024. Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis. Nature Communications 15:7179

doi: 10.1038/s41467-024-51370-1
[591]

García-Dalí S, Quílez-Bermejo J, Castro-Gutiérrez J, Baccile N, Izquierdo MT, et al. 2023. Green and easy synthesis of p-doped carbon-based hydrogen evolution reaction electrocatalysts. Carbon 212:118154

doi: 10.1016/j.carbon.2023.118154
[592]

Lin X, Chen D, Qiu X, Liu B, Liu J, et al. 2024. Lignin-metal supramolecular framework strategy of self-healing carbon-coated CoRu alloy nanocatalyst for efficient overall water splitting. Advanced Energy Materials 14:2303442

doi: 10.1002/aenm.202303442
[593]

Zhang C, Ndayisenga F, Wang C, Yu Z. 2025. Electronic configuration of carbon regulated by Mo2C clusters encapsulated in nitrogen self-doped biochar for efficient hydrogen evolution reaction. Chemical Engineering Journal 505:159709

doi: 10.1016/j.cej.2025.159709
[594]

Liu B, Zhu Y, Sha S, Ge R, Cheng C, et al. 2024. Strong interaction between molybdenum compounds and mesoporous CMK-5 supports boosts hydrogen evolution reaction. Advanced Functional Materials 34:2408613

doi: 10.1002/adfm.202408613
[595]

Park JW, Park G, Kim M, Han M, Jang J, et al. 2023. Ni-single atom decorated mesoporous carbon electrocatalysts for hydrogen evolution reaction. Chemical Engineering Journal 468:143733

doi: 10.1016/j.cej.2023.143733
[596]

Li Y, Niu S, Liu P, Pan R, Zhang H, et al. 2024. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angewandte Chemie International Edition 63:e202316755

doi: 10.1002/anie.202316755
[597]

Zhang D, Chen P, Qin R, Li H, Pu X, et al. 2025. Effect of surface carbon layer on hydrogen evolution activity of NiFe2O4@C/Cd0.9Zn0.1S S-scheme heterojunction photocatalyst. Applied Catalysis B: Environment and Energy 361:124690

doi: 10.1016/j.apcatb.2024.124690
[598]

Adam A, Díez-García MI, Morante JR, Ali M, Chen Z, et al. 2024. Ultrathin carbon layer-coated mesoporous core–shell-type FeP/Fe2O3/C for the hydrogen evolution reaction. Journal of Materials Chemistry A 12:31262−31275

doi: 10.1039/D4TA02746A
[599]

Hu M, Cai Z, Yang S, Wang Z, Shen F, et al. 2023. Direct growth of uniform bimetallic core-shell or intermetallic nanoparticles on carbon via a surface-confinement strategy for electrochemical hydrogen evolution reaction. Advanced Functional Materials 33:2212097

doi: 10.1002/adfm.202212097
[600]

Xiao J, Zhang S, Sun Y, Liu X, He G, et al. 2023. Urchin-like structured MoO2/Mo3P/Mo2C triple-interface heterojunction encapsulated within nitrogen-doped carbon for enhanced hydrogen evolution reaction. Small 19:2206472

doi: 10.1002/smll.202206472
[601]

Escobar-Teran F, Perrot H, Sel O. 2023. Carbon-based materials for energy storage devices: types and characterization techniques. Physchem 3:355−384

doi: 10.3390/physchem3030025
[602]

Tariq M, Hussain T, Mujahid A, Nadeem Ahmad M, Imran Din M, et al. 2021. Applications of carbon based materials in developing advanced energy storage devices. In Carbon nanotubes - redefining the world of electronics, ed. Kumar Ghosh P, Datta K, Dinkarrao Rushi A. London, UK: IntechOpen. 182 pp. doi: 10.5772/intechopen.87724

[603]

Yu X, Manthiram A. 2021. Sustainable battery materials for next-generation electrical energy storage. Advanced Energy and Sustainability Research 2:2000102

doi: 10.1002/aesr.202000102
[604]

Xie L, Su F, Xie L, Guo X, Wang Z, et al. 2020. Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Materials Chemistry Frontiers 4:2610−2634

doi: 10.1039/D0QM00180E
[605]

Kiciński W, Szala M, Bystrzejewski M. 2014. Sulfur-doped porous carbons: Synthesis and applications. Carbon 68:1−32

doi: 10.1016/j.carbon.2013.11.004
[606]

Saju SK, Chattopadhyay S, Xu J, Alhashim S, Pramanik A, et al. 2024. Hard carbon anode for lithium-, sodium-, and potassium-ion batteries: Advancement and future perspective. Cell Reports Physical Science 5:101851

doi: 10.1016/j.xcrp.2024.101851
[607]

Li G, Ma H, Tong Y, Wang H, Luo Y, et al. 2025. Research progress on carbon-based anode materials for sodium-ion batteries. Journal of Energy Storage 107:114977

doi: 10.1016/j.est.2024.114977
[608]

Eifert L, Jusys Z, Behm RJ, Zeis R. 2020. Side reactions and stability of pre-treated carbon felt electrodes for vanadium redox flow batteries: a DEMS study. Carbon 158:580−587

doi: 10.1016/j.carbon.2019.11.029
[609]

Dong X, Xu P, Gao L, Han X, Zhang J, et al. 2025. Preparation and combustion behavior of carbon-based synfuel from biomass/coal/CaO by co-carbonization process. Materials Today Sustainability 29:101081

doi: 10.1016/j.mtsust.2025.101081
[610]

Yuan S, Lai Q, Duan X, Wang Q. 2023. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review. Journal of Energy Storage 61:106716

doi: 10.1016/j.est.2023.106716
[611]

Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. 1980. LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density. Materials Research Bulletin 15:783−789

doi: 10.1016/0025-5408(80)90012-4
[612]

Aurbach D, Levi MD, Levi E. 2008. A review on the solid-state ionics of electrochemical intercalation processes: How to interpret properly their electrochemical response. Solid State Ionics 179:742−751

doi: 10.1016/j.ssi.2007.12.070
[613]

Spătaru T, Marcu M, Preda L, Osiceanu P, Moreno JMC, et al. 2011. Platinum–polytyramine composite material with improved performances for methanol oxidation. Journal of Solid State Electrochemistry 15:1149−1157

doi: 10.1007/s10008-010-1179-5
[614]

Gueye AB, Thomas S. 2025. Review: a critical analysis of recent advancements on carbon-based materials for lithium–sulfur batteries. Journal of Materials Science 60:7797−7825

doi: 10.1007/s10853-025-10768-y
[615]

Cao D, Jiao Y, Cai Q, Han D, Zhang Q, et al. 2019. Stable lithium–sulfur full cells enabled by dual functional and interconnected mesocarbon arrays. Journal of Materials Chemistry A 7:3289−3297

doi: 10.1039/C8TA10351H
[616]

Chen YT, Ali Abbas S, Kaisar N, Wu SH, Chen HA, et al. 2019. Mitigating metal dendrite formation in lithium–sulfur batteries via morphology-tunable graphene oxide interfaces. ACS Applied Materials & Interfaces 11:2060−2070

doi: 10.1021/acsami.8b18379
[617]

Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, et al. 2015. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 9:3002−3011

doi: 10.1021/nn507178a
[618]

Ding N, Zhou L, Zhou C, Geng D, Yang J, et al. 2016. Building better lithium-sulfur batteries: from liNO3 to solid oxide catalyst. Scientific Reports 6:33154

doi: 10.1038/srep33154
[619]

Paolella A, Demers H, Chevallier P, Gagnon C, Girard G, et al. 2019. A platinum nanolayer on lithium metal as an interfacial barrier to shuttle effect in Li-S batteries. Journal of Power Sources 427:201−206

doi: 10.1016/j.jpowsour.2019.04.078
[620]

Pei F, Fu A, Ye W, Peng J, Fang X, et al. 2019. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium–sulfur batteries. ACS Nano 13:8337−8346

doi: 10.1021/acsnano.9b03784
[621]

Jiang S, Chen M, Wang X, Wu Z, Zeng P, et al. 2018. MoS2-coated N-doped mesoporous carbon spherical composite cathode and CNT/chitosan modified separator for advanced lithium sulfur batteries. ACS Sustainable Chemistry & Engineering 6:16828−16837

doi: 10.1021/acssuschemeng.8b04157
[622]

Dae S, Ho C, Yoon B, Hyuk K, Young Y. 2019. Dual functional effect of the ferroelectricity embedded interlayer in lithium sulfur battery. Journal of Power Sources 419:35−41

doi: 10.1016/j.jpowsour.2019.02.014
[623]

Yao M, Wang R, Zhao Z, Liu Y, Niu Z, et al. 2018. A flexible all-in-one lithium-sulfur battery. ACS Nano 12:12503−12511

doi: 10.1021/acsnano.8b06936
[624]

Guo Y, Tang J, Henzie J, Jiang B, Xia W, et al. 2020. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic–metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 14:4141−4152

doi: 10.1021/acsnano.9b08904
[625]

Balach J, Jaumann T, Klose M, Oswald S, Eckert J, et al. 2015. Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries. Advanced Functional Materials 25:5285−5291

doi: 10.1002/adfm.201502251
[626]

Fan Z, Liu Y, Yan J, Ning G, Wang Q, et al. 2012. Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Advanced Energy Materials 2:419−424

doi: 10.1002/aenm.201100654
[627]

Lin T, Chen IW, Liu F, Yang C, Bi H, et al. 2015. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508−1513

doi: 10.1126/science.aab3798
[628]

Qian S, Wu X, Shi Z, Li X, Sun X, et al. 2022. Tuning electrospinning hierarchically porous nanowires anode for enhanced bioelectrocatalysis in microbial fuel cells. Nano Research 15:5089−5097

doi: 10.1007/s12274-022-4120-1
[629]

Wang F, Han Y, Feng X, Xu R, Li A, et al. 2023. Mesoporous carbon-based materials for enhancing the performance of lithium-sulfur batteries. International Journal of Molecular Sciences 24:7291

doi: 10.3390/ijms24087291
[630]

Ferdous AR, Shah SS, Ali Shah SN, Johan BA, Al Bari MA, et al. 2024. Transforming waste into wealth: advanced carbon-based electrodes derived from refinery and coal by-products for next-generation energy storage. Molecules 29:2081

doi: 10.3390/molecules29092081
[631]

Miao Y, Zong J, Liu X. 2017. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries. Materials Letters 188:355−358

doi: 10.1016/j.matlet.2016.11.110
[632]

Tang J, Etacheri V, Pol VG. 2016. Wild fungus derived carbon fibers and hybrids as anodes for lithium-ion batteries. ACS Sustainable Chemistry & Engineering 4:2624−2631

doi: 10.1021/acssuschemeng.6b00114
[633]

Zhao H, Shang W, Zhang C, Song H, Lai C, et al. 2024. High thiophene-S doped soft carbons for sodium storage. Chemical Engineering Journal 493:152505

doi: 10.1016/j.cej.2024.152505
[634]

Mishra R, Panigrahy S, Barman S. 2022. Single-source-derived nitrogen-doped soft carbons for application as anode for sodium-ion storage. Energy & Fuels 36:6483−6491

doi: 10.1021/acs.energyfuels.2c00564
[635]

Jia Q, Li Z, Ruan H, Luo D, Wang J, et al. 2024. A review of carbon anode materials for sodium-ion batteries: key materials, sodium-storage mechanisms, applications, and large-scale design principles. Molecules 29:4331

doi: 10.3390/molecules29184331
[636]

Bayeh AW, Kabtamu DM, Chang YC, Wondimu TH, Huang HC, et al. 2021. Carbon and metal-based catalysts for vanadium redox flow batteries: a perspective and review of recent progress. Sustainable Energy & Fuels 5:1668−1707

doi: 10.1039/D0SE01723J
[637]

Jiang Y, Li Y, Zhu J, He Z, Meng W, et al. 2018. Fungi-derived, functionalized, and wettability-improved porous carbon materials: An excellent electrocatalyst toward VO2+/VO2+ redox reaction for vanadium redox flow battery. Journal of The Electrochemical Society 165:A1813−A1821

doi: 10.1149/2.1221809jes
[638]

Young C, Liao ZQ, Li DR, Li PL, Wang CY, et al. 2024. Enhancing vanadium redox flow battery performance with ZIF-67-derived cobalt-based electrode materials. Molecules 29:5061

doi: 10.3390/molecules29215061
[639]

Cheng D, Tian M, Wang B, Zhang J, Chen J, et al. 2020. One-step activation of high-graphitization n-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery. Journal of Colloid and Interface Science 572:216−226

doi: 10.1016/j.jcis.2020.03.069
[640]

Wang R, Li Y. 2019. Twin-cocoon-derived self-standing nitrogen-oxygen-rich monolithic carbon material as the cost-effective electrode for redox flow batteries. Journal of Power Sources 421:139−146

doi: 10.1016/j.jpowsour.2019.03.023
[641]

Doǧan H, Taş M, Meşeli T, Elden G, Genc G. 2023. Review on the applications of biomass-derived carbon materials in vanadium redox flow batteries. ACS Omega 8:34310−34327

doi: 10.1021/acsomega.3c03648
[642]

He Z, Cheng G, Jiang Y, Li Y, Zhu J, et al. 2020. Novel 2D porous carbon nanosheet derived from biomass: Ultrahigh porosity and excellent performances toward v2+/v3+ redox reaction for vanadium redox flow battery. International Journal of Hydrogen Energy 45:3959−3970

doi: 10.1016/j.ijhydene.2019.12.045
[643]

Han J, Li H, Yang QH. 2021. Compact energy storage enabled by graphenes: Challenges, strategies and progress. Materials Today 51:552−565

doi: 10.1016/j.mattod.2021.07.026
[644]

Lee MH, Lee J, Jung SK, Kang D, Park MS, et al. 2021. A biodegradable secondary battery and its biodegradation mechanism for eco-friendly energy-storage systems. Advanced Materials 33:2004902

doi: 10.1002/adma.202004902
[645]

Nuwayhid RB, Kozen AC, Long DM, Ahuja K, Rubloff GW, et al. 2023. Dynamic electrode–electrolyte intermixing in solid-state sodium nano-batteries. ACS Applied Materials & Interfaces 15:24271−24283

doi: 10.1021/acsami.2c23256
[646]

Sun S, Li J, Xu C, Zhai T, Xia H. 2022. Manganese-based layered oxides for electrochemical energy storage: a review of degradation mechanisms and engineering strategies at the atomic level. Journal of Materials Chemistry A 10:19231−19253

doi: 10.1039/D2TA02242G
[647]

Ahmed MMS, Hasan MJ, Chowdhury MS, Rahman MK, Islam MS, et al. 2024. Prospects and challenges of energy storage materials: a comprehensive review. Chemical Engineering Journal Advances 20:100657

doi: 10.1016/j.ceja.2024.100657
[648]

Tong Y, Liang J, Liu HK, Dou SX. 2019. Energy storage in Oceania. Energy Storage Materials 20:176−187

doi: 10.1016/j.ensm.2019.04.031
[649]

Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. 2013. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891−2897

doi: 10.1021/nn401196a
[650]

Delplace V, Nicolas J. 2015. Degradable vinyl polymers for biomedical applications. Nature Chemistry 7:771−784

doi: 10.1038/nchem.2343
[651]

Woltman SJ, Jay GD, Crawford GP. 2007. Liquid-crystal materials find a new order in biomedical applications. Nature Materials 6:929−938

doi: 10.1038/nmat2010
[652]

Ali Q, Malik S, Malik A, Hafeez MN, Salman S. 2020. Role of modern technologies in tissue engineering. Archives of Neuroscience 7 https://doi.org/10.5812/ans.90394

[653]

Dash BS, Lu YJ, Huang YS, Chen JP. 2024. Chitosan-coated magnetic graphene oxide for targeted delivery of doxorubicin as a nanomedicine approach to treat glioblastoma. International Journal of Biological Macromolecules 260:129401

doi: 10.1016/j.ijbiomac.2024.129401
[654]

Gul G, Faller R, Ileri-Ercan N. 2022. Polystyrene-modified carbon nanotubes: Promising carriers in targeted drug delivery. Biophysical Journal 121:4271−4279

doi: 10.1016/j.bpj.2022.10.014
[655]

Moniriyan F, Jamal Tabatabaei Rezaei S, Javad Sabounchei S. 2024. Pegylated magnetic carbon nanotubes for efficient and safe delivery of poorly water-soluble platinum anticancer drugs. Results in Chemistry 7:101275

doi: 10.1016/j.rechem.2023.101275
[656]

Elugoke SE, Fayemi OE, Adekunle AS, Mamba BB, Nkambule TTI, et al. 2022. Electrochemical sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modified electrode. FlatChem 33:100372

doi: 10.1016/j.flatc.2022.100372
[657]

Gao X, Zhang H, Liu L, Jia M, Li X, et al. 2024. Nano-biosensor based on manganese dioxide nanosheets and carbon dots for dual-mode determination of staphylococcus aureus. Food Chemistry 432:137144

doi: 10.1016/j.foodchem.2023.137144
[658]

Mishra S, Aamna B, Parida S, Dan AK. 2023. Carbon-based biosensors: Next-generation diagnostic tool for target-specific detection of SARS-CoV-2 (COVID-19). Talanta Open 7:100218

doi: 10.1016/j.talo.2023.100218
[659]

Sravani ANKV, Chandrasekaran N, Thomas J, Mukherjee A. 2023. Formulation and characterization of cisplatin-loaded hydroxyl functionalized single-walled carbon nanotubes for targeting gastric cancer stem cells. Heliyon 9:e18798

doi: 10.1016/j.heliyon.2023.e18798
[660]

Molaei MJ. 2024. Synthesis and application of carbon quantum dots derived from carbon black in bioimaging. Journal of Fluorescence 34:213−226

doi: 10.1007/s10895-023-03252-w
[661]

Sharker SM, Kim SM, Lee JE, Jeong JH, In I, et al. 2015. In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale 7:5468−5475

doi: 10.1039/C4NR07422J
[662]

Lin H, Huang J, Ding L. 2019. Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging. Journal of Nanomaterials 2019:5037243

doi: 10.1155/2019/5037243
[663]

Ganji Arjenaki R, Samieepour G, Sadat Ebrahimi SE, Pirali Hamedani M, Saffari M, et al. 2024. Development of novel radiolabeled antibody-conjugated graphene quantum dots for targeted in vivo breast cancer imaging and biodistribution studies. Arabian Journal of Chemistry 17:105518

doi: 10.1016/j.arabjc.2023.105518
[664]

Adel M, Keyhanvar P, Zare I, Tavangari Z, Akbarzadeh A, et al. 2023. Nanodiamonds for tissue engineering and regeneration. Journal of Drug Delivery Science and Technology 90:105130

doi: 10.1016/j.jddst.2023.105130
[665]

Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE, et al. 2010. Testing the critical size in calvarial bone defects: Revisiting the concept of a critical-size defect. Plastic and Reconstructive Surgery 125:1685−1692

doi: 10.1097/PRS.0b013e3181cb63a3
[666]

Pei B, Wang W, Dunne N, Li X. 2019. Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Nanomaterials 9:1501

doi: 10.3390/nano9101501
[667]

Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, et al. 2015. Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine 11:1253−1263

doi: 10.1016/j.nano.2015.02.013
[668]

Zietz C, Bergschmidt P, Lange R, Mittelmeier W, Bader R. 2013. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. The International Journal of Artificial Organs 36:47−55

doi: 10.5301/ijao.5000189
[669]

Akturk O. 2024. Biocompatibility, toxicity, and immunological effects of functionalized carbon nanostructures. In Handbook of functionalized carbon nanostructures, ed. Barhoum A, Deshmukh K. Cham: Springer. pp. 1−43 doi: 10.1007/978-3-031-14955-9_73-1

[670]

Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. 2025. Current nanocomposite advances for biomedical and environmental application diversity. Medicinal Research Reviews 45:576−628

doi: 10.1002/med.22082
[671]

Steyn JD, Haasbroek-Pheiffer A, Pheiffer W, Weyers M, Van Niekerk SE, et al. 2025. Evaluation of drug permeation enhancement by using in vitro and ex vivo models. Pharmaceuticals 18:195

doi: 10.3390/ph18020195
[672]

De Wrachien D, Schultz B, Goli MB. 2021. Impacts of population growth and climate change on food production and irrigation and drainage needs: a world-wide view*. Irrigation and Drainage 70:981−995

doi: 10.1002/ird.2597
[673]

Hussain S. 2024. Advancing plant health management: challenges, strategies, and implications for global agriculture. International Journal of Agriculture and Sustainable Development 6:73−89

[674]

Zhang W, Jiang F, Ou J. 2011. Global pesticide consumption and pollution: with china as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences 1:125−144

[675]

Zhu L, Chen L, Gu J, Ma H, Wu H. 2022. Carbon-based nanomaterials for sustainable agriculture: their application as light converters, nanosensors, and delivery tools. Plants 11:511

doi: 10.3390/plants11040511
[676]

Pretty J. 2018. Intensification for redesigned and sustainable agricultural systems. Science 362:eaav0294

doi: 10.1126/science.aav0294
[677]

Ashfaq M, Gupta G, Verma N. 2025. Carbon-based nanocarriers for plant growth promotion: fuelling when needed. Nanoscale 17:616−634

doi: 10.1039/D4NR03268C
[678]

Bangar SP, Whiteside WS, Kajla P, Tavassoli M. 2025. A review of advancements, properties, and challenges of carbon nanotubes in food packaging. Journal of Food Measurement and Characterization 19:2172−2194

doi: 10.1007/s11694-025-03127-7
[679]

Hegde V, Bhat MP, Lee JH, Kurkuri MD, Kim CS, et al. 2024. Carbon-based nanomaterials: multifaceted role in agrochemical recognition, remediation, and release. Nano Today 57:102388

doi: 10.1016/j.nantod.2024.102388
[680]

Kamle M, Mahato DK, Devi S, Soni R, Tripathi V, et al. 2020. Nanotechnological interventions for plant health improvement and sustainable agriculture. 3 Biotech 10:168

doi: 10.1007/s13205-020-2152-3
[681]

Mathew S, Victório CP. 2021. Carbon nanotubes applications in agriculture. In Handbook of carbon nanotubes, ed. Abraham J, Thomas S, Kalarikkal N. Cham: Springer. pp. 1−15 doi: 10.1007/978-3-319-70614-6_35-1

[682]

Li Y, Xu X, Wu Y, Zhuang J, Zhang X, et al. 2020. A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers 4:437−448

doi: 10.1039/C9QM00614A
[683]

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. 2015. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620−1636

doi: 10.1002/smll.201402648
[684]

Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. 2012. Nanotechnologies in the food industry – recent developments, risks and regulation. Trends in Food Science & Technology 24:30−46

doi: 10.1016/j.jpgs.2011.10.006
[685]

Mitura K, Kornacka J, Kopczyńska E, Kalisz J, Czerwińska E, et al. 2021. Active carbon-based nanomaterials in food packaging. Coatings 11:161

doi: 10.3390/coatings11020161
[686]

Singh Yadav SP, Bhandari S, Bhatta D, Poudel A, Bhattarai S, et al. 2023. Biochar application: a sustainable approach to improve soil health. Journal of Agriculture and Food Research 11:100498

doi: 10.1016/j.jafr.2023.100498
[687]

Lee J-H, Park S-J. 2020. Recent advances in preparations and applications of carbon aerogels: a review. Carbon 163:1−18

doi: 10.1016/j.carbon.2020.02.073
[688]

Bhattacharya T, Khan A, Ghosh T, Kim JT, Rhim JW. 2024. Advances and prospects for biochar utilization in food processing and packaging applications. Sustainable Materials and Technologies 39:e00831

doi: 10.1016/j.susmat.2024.e00831
[689]

Egbedina AO, Bolade OP, Ewuzie U, Lima EC. 2022. Emerging trends in the application of carbon-based materials: a review. Journal of Environmental Chemical Engineering 10:107260

doi: 10.1016/j.jece.2022.107260
[690]

Lagos KJ, García D, Cuadrado CF, De Souza LM, Mezzacappo NF, et al. 2023. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. Current status and future perspectives. WIREs Nanomedicine and Nanobiotechnology 15:e1887

doi: 10.1002/wnan.1887
[691]

Jasim SA, Rachchh N, Pallathadka H, Sanjeevi R, Bokov DO, et al. 2024. Recent advances in carbon-based materials derived from diverse green biowaste for sensing applications: a comprehensive overview from the perspective of synthesis method and application. RSC Advances 14:39787−39803

doi: 10.1039/D4RA07693A
[692]

Nabeel MI, Hussain D, Ahmad N, Najam-Ul-Haq M, Musharraf SG. 2023. Recent advancements in the fabrication and photocatalytic applications of graphitic carbon nitride-tungsten oxide nanocomposites. Nanoscale Advances 5:5214−5255

doi: 10.1039/D3NA00159H
[693]

Ilyas RA, Sapuan SM, Bayraktar E. 2022. Current progress in biopolymer-based bionanocomposites and hybrid materials. Polymers 14:3479

doi: 10.3390/polym14173479
[694]

Chen D, Feng H, Li J. 2012. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 112:6027−6053

doi: 10.1021/cr300115g
[695]

Hussain A, Kamal MA. 2015. Energy efficient sustainable building materials: An overview. Key Engineering Materials 650:38−50

doi: 10.4028/www.scientific.net/KEM.650.38
[696]

Mai H, Le TC, Chen D, Winkler DA, Caruso RA. 2022. Machine learning in the development of adsorbents for clean energy application and greenhouse gas capture. Advanced Science 9:2203899

doi: 10.1002/advs.202203899
[697]

Wang C, Cheng X, Luo KH, Nandakumar K, Wang Z, et al. 2025. A guided review of machine learning in the design and application for pore nanoarchitectonics of carbon materials. Materials Science and Engineering: R: Reports 165:101010

doi: 10.1016/j.mser.2025.101010
[698]

Mashhadimoslem H, Ali Abdol M, Karimi P, Zanganeh K, Shafeen A, et al. 2024. Computational and machine learning methods for CO2 capture using metal–organic frameworks. ACS Nano 18:23842−23875

doi: 10.1021/acsnano.3c13001
[699]

Han XQ, Wang XD, Xu MY, Feng Z, Yao BW, et al. 2025. Ai-driven inverse design of materials: past, present, and future. Chinese Physics Letters 42:027403

doi: 10.1088/0256-307X/42/2/027403
[700]

Förster GD, Castan A, Loiseau A, Nelayah J, Alloyeau D, et al. 2020. A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images. Carbon 169:465−474

doi: 10.1016/j.carbon.2020.06.086
[701]

Zhang J, Perrin ML, Barba L, Overbeck J, Jung S, et al. 2022. High-speed identification of suspended carbon nanotubes using Raman spectroscopy and deep learning. Microsystems & Nanoengineering 8:19

doi: 10.1038/s41378-022-00350-w
[702]

Shi Z, Yang W, Deng X, Cai C, Yan Y, et al. 2020. Machine-learning-assisted high-throughput computational screening of high performance metal–organic frameworks. Molecular Systems Design & Engineering 5:725−742

doi: 10.1039/D0ME00005A
[703]

Yin H, Xu M, Luo Z, Bi X, Li J, et al. 2024. Machine learning for membrane design and discovery. Green Energy & Environment 9:54−70

doi: 10.1016/j.gee.2022.12.001
[704]

Fanourgakis GS, Gkagkas K, Tylianakis E, Froudakis GE. 2020. A universal machine learning algorithm for large-scale screening of materials. Journal of the American Chemical Society 142:3814−3822

doi: 10.1021/jacs.9b11084
[705]

Moosavi SM, Novotny BÁ, Ongari D, Moubarak E, Asgari M, et al. 2022. A data-science approach to predict the heat capacity of nanoporous materials. Nature Materials 21:1419−1425

doi: 10.1038/s41563-022-01374-3
[706]

Zhu Q, Gu Y, Liang X, Wang X, Ma J. 2022. A machine learning model to predict CO2 reduction reactivity and products transferred from metal-zeolites. ACS Catalysis 12:12336−12348

doi: 10.1021/acscatal.2c03250
[707]

Fernandez M, Barnard AS. 2016. Geometrical properties can predict CO2 and N2 adsorption performance of metal–organic frameworks (MOFs) at low pressure. ACS Combinatorial Science 18:243−252

doi: 10.1021/acscombsci.5b00188
[708]

Song Y, Siriwardane EMD, Zhao Y, Hu J. 2021. Computational discovery of new 2D materials using deep learning generative models. ACS Applied Materials & Interfaces 13:53303−53313

doi: 10.1021/acsami.1c01044
[709]

Bai X, Zhang X. 2025. Artificial intelligence-powered materials science. Nano-Micro Letters 17:135

doi: 10.1007/s40820-024-01634-8
[710]

Mo Y, Deng X, Liu P, Guo J, Wang W, et al. 2023. Insights into the application of carbon materials in heterojunction solar cells. Materials Science and Engineering: R: Reports 152:100711

doi: 10.1016/j.mser.2022.100711
[711]

He Y, Cubuk ED, Allendorf MD, Reed EJ. 2018. Metallic metal–organic frameworks predicted by the combination of machine learning methods and ab initio calculations. The Journal of Physical Chemistry Letters 9:4562−4569

doi: 10.1021/acs.jpclett.8b01707
[712]

Reiser P, Neubert M, Eberhard A, Torresi L, Zhou C, et al. 2022. Graph neural networks for materials science and chemistry. Communications Materials 3:93

doi: 10.1038/s43246-022-00315-6
[713]

Zhang X, Zhang K, Lee Y. 2020. Machine learning enabled tailor-made design of application-specific metal–organic frameworks. ACS Applied Materials & Interfaces 12:734−743

doi: 10.1021/acsami.9b17867
[714]

Hajilounezhad T, Bao R, Palaniappan K, Bunyak F, Calyam P, et al. 2021. Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning. npj Computational Materials 7:134

doi: 10.1038/s41524-021-00603-8
[715]

Desgranges C, Delhommelle J. 2020. Ensemble learning of partition functions for the prediction of thermodynamic properties of adsorption in metal–organic and covalent organic frameworks. The Journal of Physical Chemistry C 124:1907−1917

doi: 10.1021/acs.jpcc.9b07936
[716]

Rao R, Carpena-Núñez J, Nikolaev P, Susner MA, Reyes KG, et al. 2021. Advanced machine learning decision policies for diameter control of carbon nanotubes. NPJ Computational Materials 7:157

doi: 10.1038/s41524-021-00629-y
[717]

Lin D, Muroga S, Kimura H, Jintoku H, Tsuji T, et al. 2023. Addressing the trade-off between crystallinity and yield in single-walled carbon nanotube forest synthesis using machine learning. ACS Nano 17:22821−22829

doi: 10.1021/acsnano.3c07587
[718]

Yao Z, Sánchez-Lengeling B, Bobbitt NS, Bucior BJ, Kumar SGH, et al. 2021. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence 3:76−86

doi: 10.1038/s42256-020-00271-1
[719]

Zheng Z, Zhang O, Borgs C, Chayes JT, Yaghi OM. 2023. Chatgpt chemistry assistant for text mining and the prediction of MOF synthesis. Journal of the American Chemical Society 145:18048−18062

doi: 10.1021/jacs.3c05819
[720]

Li Y, Wang S, Lv Z, Wang Z, Zhao Y, et al. 2025. Transforming the synthesis of carbon nanotubes with machine learning models and automation. Matter 8:101913

doi: 10.1016/j.matt.2024.11.007
[721]

Szymanski NJ, Rendy B, Fei Y, Kumar RE, He T, et al. 2023. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624:86−91

doi: 10.1038/s41586-023-06734-w
[722]

Jiang Y, Salley D, Sharma A, Keenan G, Mullin M, et al. 2022. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Science Advances 8:eabo2626

doi: 10.1126/sciadv.abo2626
[723]

Zhang C, Li D, Xie Y, Stalla D, Hua P, et al. 2021. Machine learning assisted rediscovery of methane storage and separation in porous carbon from material literature. Fuel 290:120080

doi: 10.1016/j.fuel.2020.120080
[724]

Burner J, Schwiedrzik L, Krykunov M, Luo J, Boyd PG, et al. 2020. High-performing deep learning regression models for predicting low-pressure CO2 adsorption properties of metal–organic frameworks. The Journal of Physical Chemistry C 124:27996−28005

doi: 10.1021/acs.jpcc.0c06334
[725]

Hasan MM, Alev O, Skrabanek P, Cheffena M. 2025. Molecularly imprinted polymer-based electronic nose for ultrasensitive, selective detection, and concentration estimation of VOC mixtures. IEEE Sensors Journal 25:18277−18290

doi: 10.1109/JSEN.2025.3556500
[726]

Lin S, Xu H, Wang Y, Zeng XC, Chen Z. 2020. Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. Journal of Materials Chemistry A 8:5663−5670

doi: 10.1039/C9TA13404B
[727]

Wan X, Zhang Z, Niu H, Yin Y, Kuai C, et al. 2021. Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-metal-site catalysts for CO2 reduction. The Journal of Physical Chemistry Letters 12:6111−6118

doi: 10.1021/acs.jpclett.1c01526
[728]

Zafari M, Nissimagoudar AS, Umer M, Lee G, Kim KS. 2021. First principles and machine learning based superior catalytic activities and selectivities for N2 reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts. Journal of Materials Chemistry A 9:9203−9213

doi: 10.1039/D1TA00751C
[729]

Muzyka R, Misztal E, Hrabak J, Banks SW, Sajdak M. 2023. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 263:126128

doi: 10.1016/j.energy.2022.126128
[730]

Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, et al. 2021. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angewandte Chemie International Edition 60:5114−5120

doi: 10.1002/anie.202013951
[731]

Boppella R, Austeria P M, Kim Y, Kim E, Song I, et al. 2022. Pyrrolic N-stabilized monovalent ni single-atom electrocatalyst for efficient CO2 reduction: Identifying the role of pyrrolic–N and synergistic electrocatalysis. Advanced Functional Materials 32:2202351

doi: 10.1002/adfm.202202351
[732]

Tang Y, Qiu M, Yang J, Shen F, Wang X, et al. 2021. One-pot self-assembly synthesis of Ni-doped ordered mesoporous carbon for quantitative hydrogenation of furfural to furfuryl alcohol. Green Chemistry 23:1861−1870

doi: 10.1039/D0GC04029K
[733]

Josline MJ, Ghods S, Kosame S, Choi JH, Kim W, et al. 2024. Uniform synthesis of bilayer hydrogen substituted graphdiyne for flexible piezoresistive applications. Small 20:2307276

doi: 10.1002/smll.202307276
[734]

Geim AK, Novoselov KS. 2007. The rise of graphene. Nature Materials 6:183−191

doi: 10.1038/nmat1849
[735]

Parviz D, Irin F, Shah SA, Das S, Sweeney CB, et al. 2016. Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene. Advanced Materials 28:8796−8818

doi: 10.1002/adma.201601889
[736]

Danial WH, Norhisham NA, Ahmad Noorden AF, Abdul Majid Z, Matsumura K, Iqbal A. 2021. A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Letters 31:371−388

doi: 10.1007/s42823-020-00212-3
[737]

Ochi T, Kamada M, Yokosawa T, Mukai K, Yoshinobu J, et al. 2023. Termination of graphene edges created by hydrogen and deuterium plasmas. Carbon 203:727−731

doi: 10.1016/j.carbon.2022.12.020
[738]

Ngueta G, Prévost M, Deshommes E, Abdous B, Gauvin D, et al. 2014. Exposure of young children to household water lead in the montreal area (canada): the potential influence of winter-to-summer changes in water lead levels on children's blood lead concentration. Environment International 73:57−65

doi: 10.1016/j.envint.2014.07.005
[739]

Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. 2013. Mercury as a global pollutant: sources, pathways, and effects. Environmental Science & Technology 47:4967−4983

doi: 10.1021/es305071v
[740]

Gupta A, Vidyarthi SR, Sankararamakrishnan N. 2014. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. Journal of Hazardous Materials 274:132−144

doi: 10.1016/j.jhazmat.2014.03.020
[741]

Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA. 2017. Cadmium toxicity and treatment: an update. Caspian Journal of Internal Medicine 8:135−45

doi: 10.22088/cjim.8.3.135
[742]

Sun L, Lu M, Li Q, Jiang H, Yin S. 2019. Research progress of arsenic removal from wastewater. IOP Conference Series: Earth and Environmental Science 218:012142

doi: 10.1088/1755-1315/218/1/012142
[743]

Liang P, Liu S, Li M, Xiong W, Yao X, et al. 2024. Effective adsorption and removal of Cr(VI) from wastewater using magnetic composites prepared by synergistic effect of polypyrrole and covalent organic frameworks. Separation and Purification Technology 336:126222

doi: 10.1016/j.seppur.2023.126222
[744]

Djaenudin, Widyarani, Hariyadi HR, Wulan DR, Cahyaningsih S. 2017. Removal of nickel ion from electroplating wastewater using double chamber electrodeposition cell (DCEC) reactor partitioned with water hyacinth (eichhornia crassipes) leaves. IOP Conference Series: Earth and Environmental Science 60:012020

doi: 10.1088/1755-1315/60/1/012020
[745]

Li Q, Wang Y, Chang Z, El Kolaly W, Fan F, et al. 2024. Progress in the treatment of copper(II)-containing wastewater and wastewater treatment systems based on combined technologies: A review. Journal of Water Process Engineering 58:104746

doi: 10.1016/j.jwpe.2023.104746
[746]

Lim SS, Fontmorin JM, Pham HT, Milner E, Abdul PM, et al. 2021. Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of The Total Environment 776:145934

doi: 10.1016/j.scitotenv.2021.145934
[747]

Frisbie SH, Mitchell EJ, Dustin H, Maynard DM, Sarkar B. 2012. World health organization discontinues its drinking-water guideline for manganese. Environmental Health Perspectives 120:775−778

doi: 10.1289/ehp.1104693
[748]

Saleh TA, Agarwal S, Gupta VK. 2011. Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Applied Catalysis B: Environmental: S0926337311002049. https://doi.org/10.1016/j.apcatb.2011.05.003

[749]

Goel J, Kadirvelu K, Rajagopal C, Garg VK. 2005. Removal of lead(II) from aqueous solution by adsorption on carbon aerogel using a response surface methodological approach. Industrial & Engineering Chemistry Research 44:1987−1994

doi: 10.1021/ie0490684
[750]

Hu C, Dai L. 2017. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Advanced Materials 29:1604942

doi: 10.1002/adma.201604942
[751]

Khalid A, Madni A, Raza B, Islam MU, Hassan A, et al. 2022. Multiwalled carbon nanotubes functionalized bacterial cellulose as an efficient healing material for diabetic wounds. International Journal of Biological Macromolecules 203:256−267

doi: 10.1016/j.ijbiomac.2022.01.146
[752]

Choppadandi M, Guduru AT, Gondaliya P, Arya N, Kalia K, et al. 2021. Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging. Materials Science and Engineering: C 129:112366

doi: 10.1016/j.msec.2021.112366
[753]

Carneiro PG, Pereira DG, Da Silva BMO, Ribeiro H, Barbosa LA, et al. 2023. Multifunctional modified carbon nanotubes as potential anti-tumor drug delivery. Surfaces and Interfaces 41:103211

doi: 10.1016/j.surfin.2023.103211
[754]

Zhang J, Xu J, Ma H, Bai H, Liu L, et al. 2019. Designing an amino-fullerene derivative C70–(EDA)8 to fight superbacteria. ACS Applied Materials & Interfaces 11:14597−14607

doi: 10.1021/acsami.9b01483
[755]

Abdel Aziz Ibrahim I, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, et al. 2023. Chitosan biopolymer functionalized with graphene oxide and titanium dioxide with escin metallic nanocomposites for anticancer potential against colon cancer. International Journal of Biological Macromolecules 253:127334

doi: 10.1016/j.ijbiomac.2023.127334
[756]

Gavrilov AN, Gladkikh TV, Emelyanov AE, Ivanov AV, Bukuru LC, et al. 2025. Exploring the potential of fullerenes in food and agriculture. Proc. BIO Web of Conferences 161:00010

doi: 10.1051/bioconf/202516100010
[757]

Manzocco L, Mikkonen KS, García-González CA. 2021. Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Structure 28:100188

doi: 10.1016/j.foostr.2021.100188
[758]

Rafieian F, Dufresne A, Askari G, Rezaei A, seyedhosseini-Ghaheh H, et al. 2024. Aerogels as novel ingredients: production, properties and applications in medical, food and environmental sectors. Colloids and Surfaces A: Physicochemical and Engineering Aspects 687:133410

doi: 10.1016/j.colsurfa.2024.133410
[759]

Gupta D, Priyadarshi R, Tammina SK, Rhim JW, Agrawal G. 2025. Fruit processing wastes as sustainable sources to produce multifunctional carbon quantum dots for application in active food packaging. Food and Bioprocess Technology 18:2145−2169

doi: 10.1007/s11947-024-03578-8
[760]

Naseer MS, Imran A, Jameel QY, Bishoyi AK, Ahmed F, et al. 2025. Application of carbon quantum dots in food business: A comprehensive review. eFood 6:e70054

doi: 10.1002/efd2.70054
[761]

Choudhury KP, Protik TI, Neogi N, Nipu SH. 2022. CNT based nanomaterials for food industry: a review. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES) 8:68−75

doi: 10.5109/5909064
[762]

Hashim N, Abdullah S, Yusoh K. 2022. Graphene nanomaterials in the food industries: quality control in promising food safety to consumers. Graphene and 2D Materials 7:1−29

doi: 10.1007/s41127-021-00045-5
[763]

Badgar K, Abdalla N, El-Ramady H, Prokisch J. 2022. Sustainable applications of nanofibers in agriculture and water treatment: a review. Sustainability 14:464

doi: 10.3390/su14010464
[764]

Kerna N, Flores J. 2020. The application of fullerene materials in agriculture. EC Agric 6:1−5

doi: 10.31080/ecag.2020.06.00324
[765]

Yunus ZM, G Y, Al-Gheethi A, Othman N, Hamdan R, et al. 2022. Advanced methods for activated carbon from agriculture wastes; a comprehensive review. International Journal of Environmental Analytical Chemistry 102:134−158

doi: 10.1080/03067319.2020.1717477
[766]

Riaz U, Salman S, Shahzad L, Lodhi N. 2025. Applications of carbon nanotubes in agriculture and environment under changing climate. In Carbon nanotubes in agriculture. Amsterdam: Elsevier. pp. 119−147 doi: 10.1016/B978-0-443-19047-6.00006-0

[767]

Momina, Ahmad K, Kapoor RT, Rafatullah M. 2022. An overview of application of carbon nanotubes in various agricultural practices. In Agricultural nanobiotechnology. Amsterdam: Elsevier. pp. 217−241 doi: 10.1016/B978-0-323-91908-1.00002-X

[768]

Yuan L, Xu M, Zhang Y, Gao Z, Zhang L, et al. 2024. Machine learning-assisted screening of metal-organic frameworks (MOFs) for the removal of heavy metals in aqueous solution. Separation and Purification Technology 339:126732

doi: 10.1016/j.seppur.2024.126732
[769]

Zeng M, Yuan S, Huang D, Cheng Z. 2019. Accelerated design of catalytic water-cleaning nanomotors via machine learning. ACS Applied Materials & Interfaces 11:40099−40106

doi: 10.1021/acsami.9b14792
[770]

Aghaji MZ, Fernandez M, Boyd PG, Daff TD, Woo TK. 2016. Quantitative structure–property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2 /CH4 selectivity for methane purification. European Journal of Inorganic Chemistry 2016:4505−4511

doi: 10.1002/ejic.201600365
[771]

Deng X, Yang W, Li S, Liang H, Shi Z, et al. 2020. Large-scale screening and machine learning to predict the computation-ready, experimental metal-organic frameworks for CO2 capture from air. Applied Sciences 10:569

doi: 10.3390/app10020569
[772]

Fernandez M, Woo TK, Wilmer CE, Snurr RQ. 2013. Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks. The Journal of Physical Chemistry C 117:7681−7689

doi: 10.1021/jp4006422
[773]

Guda AA, Guda SA, Martini A, Bugaev AL, Soldatov MA, et al. 2020. Machine learning approaches to XANES spectra for quantitative 3D structural determination: The case of CO2 adsorption on CPO-27-Ni MOF. Radiation Physics and Chemistry 175:108430

doi: 10.1016/j.radphyschem.2019.108430
[774]

Dureckova H, Krykunov M, Aghaji MZ, Woo TK. 2019. Robust machine learning models for predicting high CO2 working capacity and CO2 /H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture. The Journal of Physical Chemistry C123:4133−4139

doi: 10.1021/acs.jpcc.8b10644
[775]

Evans JD, Coudert FX. 2017. Predicting the mechanical properties of zeolite frameworks by machine learning. Chemistry of Materials 29:7833−7839

doi: 10.1021/acs.chemmater.7b02532
[776]

Guan K, Xu F, Huang X, Li Y, Guo S, et al. 2024. Deep learning and big data mining for metal–organic frameworks with high performance for simultaneous desulfurization and carbon capture. Journal of Colloid and Interface Science 662:941−952

doi: 10.1016/j.jcis.2024.02.098
[777]

Lu C, Wan X, Ma X, Guan X, Zhu A. 2022. Deep-learning-based end-to-end predictions of CO2 capture in metal–organic frameworks. Journal of Chemical Information and Modeling 62:3281−3290

doi: 10.1021/acs.jcim.2c00092
[778]

Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón DA. 2018. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chemistry of Materials 30:6325−6337

doi: 10.1021/acs.chemmater.8b02257
[779]

Chen J, Yu X, Qu Y, Wang X, Wang Y, et al. 2024. High-performance metabolic profiling of high-risk thyroid nodules by ZrMOF hybrids. ACS Nano 18:21336−21346

doi: 10.1021/acsnano.4c05700
[780]

Fernandez M, Boyd PG, Daff TD, Aghaji MZ, Woo TK. 2014. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture. The Journal of Physical Chemistry Letters 5:3056−3060

doi: 10.1021/jz501331m
[781]

Korolev VV, Mitrofanov A, Marchenko EI, Eremin NN, Tkachenko V, et al. 2020. Transferable and extensible machine learning-derived atomic charges for modeling hybrid nanoporous materials. Chemistry of Materials 32:7822−7831

doi: 10.1021/acs.chemmater.0c02468
[782]

Fanourgakis GS, Gkagkas K, Tylianakis E, Klontzas E, Froudakis G. 2019. A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials. The Journal of Physical Chemistry A 123:6080−6087

doi: 10.1021/acs.jpca.9b03290
[783]

Guo W, Liu J, Dong F, Chen R, Das J, et al. 2022. Deep learning models for predicting gas adsorption capacity of nanomaterials. Nanomaterials 12:3376

doi: 10.3390/nano12193376
[784]

Moghadam PZ, Rogge SMJ, Li A, Chow CM, Wieme J, et al. 2019. Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter 1:219−234

doi: 10.1016/j.matt.2019.03.002
[785]

Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A, et al. 2019. Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design & Engineering 4:162−174

doi: 10.1039/C8ME00050F
[786]

Zhang X, Zhang K, Yoo H, Lee Y. 2021. Machine learning-driven discovery of metal–organic frameworks for efficient CO2 capture in humid condition. ACS Sustainable Chemistry & Engineering 9:2872−2879

doi: 10.1021/acssuschemeng.0c08806
[787]

Hung TH, Xu ZX, Kang DY, Lin LC. 2022. Chemistry-encoded convolutional neural networks for predicting gaseous adsorption in porous materials. The Journal of Physical Chemistry C 126:2813−2822

doi: 10.1021/acs.jpcc.1c09649
[788]

Choudhary K, Yildirim T, Siderius DW, Kusne AG, McDannald A, et al. 2022. Graph neural network predictions of metal organic framework CO2 adsorption properties. Computational Materials Science 210:111388

doi: 10.1016/j.commatsci.2022.111388
[789]

Han J, Cen J, Wu L, Li Z, Kong X, et al. 2025. A survey of geometric graph neural networks: Data structures, models and applications. Frontiers of Computer Science 19:1911375

doi: 10.1007/s11704-025-41426-w
[790]

Ghommem M, Puzyrev V, Sabouni R, Najar F. 2022. Deep learning for gas sensing using MOFs coated weakly-coupled microbeams. Applied Mathematical Modelling 105:711−728

doi: 10.1016/j.apm.2022.01.008