[1]

Pörtner H-O, Roberts DC, Tignor MMB, Poloczanska E, Mintenbeck K, et al. 2022. Climate change 2022: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

[2]

Beldomenico PM, Begon M. 2010. Disease spread, susceptibility and infection intensity: vicious circles? Trends in Ecology & Evolution 25:21−27

doi: 10.1016/j.tree.2009.06.015
[3]

Cabrol JC. 2011. War, drought, malnutrition, measles—a report from Somalia. New England Journal of Medicine 365:1856−1858

doi: 10.1056/NEJMp1111238
[4]

Jones BA, Grace D, Kock R, Alonso S, Rushton J, et al. 2013. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America 110:8399−8404

doi: 10.1073/pnas.1208059110
[5]

Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, et al. 2022. Over half of known human pathogenic diseases can be aggravated by climate change. Nature Climate Change 12:869−875

doi: 10.1038/s41558-022-01426-1
[6]

Bezabih YM, Sabiiti W, Alamneh E, Bezabih A, Peterson GM, et al. 2021. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. Journal of Antimicrobial Chemotherapy 76:22−29

doi: 10.1093/jac/dkaa399
[7]

Devleesschauwer B, Pires SM, Young I, Gill A, Majowicz SE, et al. 2019. Associating sporadic, foodborne illness caused by Shiga toxin-producing Escherichia coli with specific foods: a systematic review and meta-analysis of case-control studies. Epidemiology and Infection 147:e235

doi: 10.1017/S0950268819001183
[8]

Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, et al. 2006. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles 20:GB4003

doi: 10.1029/2005GB002672
[9]

Larssen T, Lydersen E, Tang DG, He Y, Gao JX, et al. 2006. Acid rain in China. Environmental Science & Technology 40:418−425

doi: 10.1021/es0626133
[10]

Baldrian P. 2017. Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology 37:128−134

doi: 10.1016/j.mib.2017.06.008
[11]

Naz M, Dai Z, Hussain S, Tariq M, Danish S, et al. 2022. The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management 321:115770

doi: 10.1016/j.jenvman.2022.115770
[12]

Ren B, Hu Y, Chen B, Zhang Y, Thiele J, et al. 2018. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Scientific Reports 8:5619

doi: 10.1038/s41598-018-24040-8
[13]

Zhang Y, Li J, Tan J, Li W, Singh BP, et al. 2023. An overview of the direct and indirect effects of acid rain on plants: relationships among acid rain, soil, microorganisms, and plants. Science of The Total Environment 873:162388

doi: 10.1016/j.scitotenv.2023.162388
[14]

Liu Z, Wei H, Zhang J, Saleem M, He Y, et al. 2021. Higher sensitivity of microbial network than community structure under acid rain. Microorganisms 9:118

doi: 10.3390/microorganisms9010118
[15]

Philippot L, Griffiths BS, Langenheder S. 2021. Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews 85:e00026-20

doi: 10.1128/mmbr.00026-20
[16]

Wall DH, Nielsen UN, Six J. 2015. Soil biodiversity and human health. Nature 528:69−76

doi: 10.1038/nature15744
[17]

WHO. 2015. WHO estimates of the global burden of foodborne diseases. World Health Organization, Geneva, Switzerland

[18]

Ekman J, Goldwater A, Bradbury M, Matthews J, Rogers G. 2021. Persistence of human pathogens in manure-amended Australian soils used for production of leafy vegetables. Agriculture 11:14

doi: 10.3390/agriculture11010014
[19]

Chlebicz A, Śliżewska K. 2018. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. International Journal of Environmental Research and Public Health 15:863

doi: 10.3390/ijerph15050863
[20]

Ibekwe AM, Grieve CM, Yang CH. 2007. Survival of Escherichia coli O157:H7 in soil and on lettuce after soil fumigation. Canadian Journal of Microbiology 53:623−635

doi: 10.1139/w07-003
[21]

Liang C, Yao Z, Du S, Hong M, Wang K, et al. 2019. Sediment pH, not the bacterial diversity, determines Escherichia coli O157: H7 survival in estuarine sediments. Environmental Pollution 252:1078−1086

doi: 10.1016/j.envpol.2019.06.019
[22]

Liu X, Gao C, Ji D, Walker SL, Huang Q, et al. 2017. Survival of Escherichia coli O157:H7 in various soil particles: importance of the attached bacterial phenotype. Biology and Fertility of Soils 53:209−219

doi: 10.1007/s00374-016-1172-y
[23]

Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM. 2019. Microbial contamination of fresh produce: what, where, and how? Comprehensive Reviews in Food Science and Food Safety 18:1727−1750

doi: 10.1111/1541-4337.12487
[24]

Shi Z, Zhang J, Xiao Z, Lu T, Ren X, et al. 2021. Effects of acid rain on plant growth: a meta-analysis. Journal of Environmental Management 297:113213

doi: 10.1016/j.jenvman.2021.113213
[25]

March SB, Ratnam S. 1986. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. Journal of Clinical Microbiology 23:869−872

doi: 10.1128/jcm.23.5.869-872.1986
[26]

Ahlstrom CA, Manuel CS, Den Bakker HC, Wiedmann M, Nightingale KK. 2018. Molecular ecology of Listeria spp., Salmonella, Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli in pristine natural environments in Northern Colorado. Journal of Applied Microbiology 124: 511−521

doi: 10.1111/jam.13657
[27]

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37:852−857

doi: 10.1038/s41587-019-0209-9
[28]

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41:D590−D596

doi: 10.1093/nar/gks1219
[29]

Huang Z, Wang YH, Zhu HZ, Andrianova EP, Jiang CY, et al. 2019. Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation. mBio 10:e02876-18

doi: 10.1128/mbio.02876-18
[30]

Huang Z, Ni B, Jiang CY, Wu YF, He YZ, et al. 2016. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni. Molecular Microbiology 101:224−237

doi: 10.1111/mmi.13385
[31]

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722−736

doi: 10.1101/gr.215087.116
[32]

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963

doi: 10.1371/journal.pone.0112963
[33]

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35:W182−W185

doi: 10.1093/nar/gkm321
[34]

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068−2069

doi: 10.1093/bioinformatics/btu153
[35]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−1760

doi: 10.1093/bioinformatics/btp324
[36]

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−1303

doi: 10.1101/gr.107524.110
[37]

Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402

doi: 10.1186/1471-2164-12-402
[38]

Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009−1010

doi: 10.1093/bioinformatics/btr039
[39]

Wang J, Qiu M, Shen Z, Chen L, Ge Y. 2025. Microbial modulation of soil pH: a self-benefiting mechanism exemplified by Bacillus. Soil Biology and Biochemistry 210:109949

doi: 10.1016/j.soilbio.2025.109949
[40]

Wang J, Zhu YG, Ge Y. 2024. Global distribution pattern of soil phosphorus-cycling microbes under the influence of human activities. Global Change Biology 30:e17477

doi: 10.1111/gcb.17477
[41]

Rendón MA, Saldaña Z, Erdem AL, Monteiro-Neto V, Vázquez A, et al. 2007. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proceedings of the National Academy of Sciences of the United States of America 104:10637−10642

doi: 10.1073/pnas.0704104104
[42]

Foster JW. 2004. Escherichia coli acid resistance: tales of an amateur acidophile. Nature Reviews Microbiology 2:898−907

doi: 10.1038/nrmicro1021
[43]

Liu Z, Chen J, Su Z, Liu Z, Li Y, et al. 2023. Acid rain reduces plant-photosynthesized carbon sequestration and soil microbial network complexity. Science of The Total Environment 873:162030

doi: 10.1016/j.scitotenv.2023.162030
[44]

Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, et al. 2021. Climate warming enhances microbial network complexity and stability. Nature Climate Change 11:343−348

doi: 10.1038/s41558-021-00989-9
[45]

Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, et al. 2010. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B: Biological Sciences 277:1789−1797

doi: 10.1098/rspb.2010.0018
[46]

de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, et al. 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications 9:3033

doi: 10.1038/s41467-018-05516-7
[47]

Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, et al. 2018. Biodiversity increases and decreases ecosystem stability. Nature 563:109−112

doi: 10.1038/s41586-018-0627-8
[48]

Wu MH, Chen SY, Chen JW, Xue K, Chen SL, et al. 2021. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proceedings of the National Academy of Sciences of the United States of America 118:e2025321118

doi: 10.1073/pnas.2025321118
[49]

Coyte KZ, Schluter J, Foster KR. 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:663−666

doi: 10.1126/science.aad2602
[50]

Stouffer DB, Bascompte J. 2011. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America 108:3648−3652

doi: 10.1073/pnas.1014353108
[51]

Case TJ. 1990. Invasion resistance arises in strongly interacting species-rich model competition communities. Proceedings of the National Academy of Sciences of the United States of America 87:9610−9614

doi: 10.1073/pnas.87.24.9610
[52]

Shea K, Chesson P. 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution 17:170−176

doi: 10.1016/S0169-5347(02)02495-3
[53]

Xu J, Zhang N, Yao Z, Zhang T, Xing J, et al. 2025. Available phosphorus and opportunistic pathogens drive geographic variation in Escherichia coli O157:H7 survival in soils across Eastern China. Nature Food 6:777−786

doi: 10.1038/s43016-025-01191-2
[54]

Chase AB, Weihe C, Martiny JBH. 2021. Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proceedings of the National Academy of Sciences of the United States of America 118:e2101254118

doi: 10.1073/pnas.2101254118
[55]

Simonsen AK. 2022. Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria. The ISME Journal 16:423−434

doi: 10.1038/s41396-021-01082-x
[56]

Guo XP, Sun YC. 2017. New Insights into the Non-orthodox Two Component Rcs Phosphorelay System. Frontiers in Microbiology 8:2014

doi: 10.3389/fmicb.2017.02014
[57]

Nepper JF, Lin YC, Weibel DB. 2019. Rcs phosphorelay activation in cardiolipin-deficient escherichia coli reduces biofilm formation. Journal of Bacteriology 201:e00804-18

doi: 10.1128/jb.00804-18
[58]

Carter MQ, Parker CT, Louie JW, Huynh S, Fagerquist CK, et al. 2012. RcsB contributes to the distinct stress fitness among Escherichia coli O157:H7 curli variants of the 1993 hamburger-associated outbreak strains. Applied and Environmental Microbiology 78:7706−7719

doi: 10.1128/AEM.02157-12
[59]

Masuda N, Church GM. 2003. Regulatory network of acid resistance genes in Escherichia coli. Molecular Microbiology 48:699−712

doi: 10.1046/j.1365-2958.2003.03477.x
[60]

Nishino K, Senda Y, Hayashi-Nishino M, Yamaguchi A. 2009. Role of the AraC–XylS family regulator YdeO in multi-drug resistance of Escherichia coli. The Journal of Antibiotics 62:251−257

doi: 10.1038/ja.2009.23
[61]

Chanin RB, West PT, Wirbel J, Gill MO, Green GZM, et al. 2024. Intragenic DNA inversions expand bacterial coding capacity. Nature 634:234−242

doi: 10.1038/s41586-024-07970-4
[62]

McLean MM, Chang Y, Dhar G, Heiss JK, Johnson RC. 2013. Multiple interfaces between a serine recombinase and an enhancer control site-specific DNA inversion. eLife 2:e01211

doi: 10.7554/eLife.01211
[63]

Islam M, Doyle MP, Phatak SC, Millner P, Jiang X. 2004. Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. Journal of Food Protection 67:1365−1370

doi: 10.4315/0362-028X-67.7.1365
[64]

Xicohtencatl-Cortes J, Chacón ES, Saldaña Z, Freer E, Girón JA. 2009. Interaction of Escherichia coli O157:H7 with leafy green produce. Journal of Food Protection 72:1531−1537

doi: 10.4315/0362-028x-72.7.1531
[65]

Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, et al. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology 12:2385−2397

doi: 10.1111/j.1462-2920.2010.02297.x