[1]

Zhang J, Jiang L, Yu L, Huan X, Zhou L, et al. 2024. Rice's trajectory from wild to domesticated in East Asia. Science 384:901−6

doi: 10.1126/science.ade4487
[2]

Qiu L, Wu Q, Wang X, Han J, Zhuang G, et al. 2021. Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. Nature Food 2:348−62

doi: 10.1038/s43016-021-00280-2
[3]

Leff B, Ramankutty N, Foley JA. 2004. Geographic distribution of major crops across the world. Global Biogeochemical Cycles 18:2003GB002108

doi: 10.1029/2003GB002108
[4]

Itoh H, Wada KC, Sakai H, Shibasaki K, Fukuoka S, et al. 2018. Genomic adaptation of flowering-time genes during the expansion of rice cultivation area. The Plant Journal 94:895−909

doi: 10.1111/tpj.13906
[5]

Zong W, Guo X, Zhang K, Chen L, Liu YG, et al. 2024. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. Journal of Experimental Botany 75:3762−77

doi: 10.1093/jxb/erae209
[6]

Zhang J, Zhou X, Yan W, Zhang Z, Lu L, et al. 2015. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytologist 208:1056−66

doi: 10.1111/nph.13538
[7]

Zheng XM, Feng L, Wang J, Qiao W, Zhang L, et al. 2016. Nonfunctional alleles of long-day suppressor genes independently regulate flowering time. Journal of Integrative Plant Biology 58:540−48

doi: 10.1111/jipb.12383
[8]

Huang CL, Hung CY, Chiang YC, Hwang CC, Hsu TW, et al. 2012. Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. The Plant Journal 70:769−82

doi: 10.1111/j.1365-313X.2012.04915.x
[9]

Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, et al. 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43−49

doi: 10.1038/s41586-018-0063-9
[10]

Kamboj R, Singh B, Mondal TK, Bisht DS. 2020. Current status of genomic resources on wild relatives of rice. Breeding Science 70:135−44

doi: 10.1270/jsbbs.19064
[11]

Mi J, Li G, Xu C, Yang J, Yu H, et al. 2020. Artificial selection in domestication and breeding prevents speciation in rice. Molecular Plant 13:650−57

doi: 10.1016/j.molp.2020.01.005
[12]

Zuo X, Lu H, Jiang L, Zhang J, Yang X, et al. 2017. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proceedings of the National Academy of Sciences of the United States of America 114:6486−91

doi: 10.1073/pnas.1704304114
[13]

Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, et al. 2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences of the United States of America 108:8351−56

doi: 10.1073/pnas.1104686108
[14]

Sang T, Ge S. 2007. The puzzle of rice domestication. Journal of Integrative Plant Biology 49:760−68

doi: 10.1111/j.1744-7909.2007.00510.x
[15]

Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, et al. 2020. Genomic history and ecology of the geographic spread of rice. Nature Plants 6:492−502

doi: 10.1038/s41477-020-0659-6
[16]

Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, et al. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany 61:143−56

doi: 10.1093/jxb/erp289
[17]

Khush GS. 2001. Green revolution: the way forward. Nature Reviews Genetics 2:815−22

doi: 10.1038/35093585
[18]

Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY. 2007. Progress in research and development on hybrid rice: a super-domesticate in China. Annals of Botany 100:959−66

doi: 10.1093/aob/mcm121
[19]

Yuan L. 2017. Progress in super-hybrid rice breeding. The Crop Journal 5:100−2

doi: 10.1016/j.cj.2017.02.001
[20]

Chen Z, Bu Q, Liu G, Wang M, Wang H, et al. 2023. Genomic decoding of breeding history to guide breeding-by-design in rice. National Science Review 10:nwad029

doi: 10.1093/nsr/nwad029
[21]

Sivakumar MVK, Valentin C. 1997. Agroecological zones and the assessment of crop production potential. Philosophical Transactions of the Royal Society B: Biological Sciences 352:10

doi: 10.1098/rstb.1997.0070
[22]

Ishikawa R, Aoki M, Kurotani KI, Yokoi S, Shinomura T, et al. 2011. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Molecular Genetics and Genomics 285:461−70

doi: 10.1007/s00438-011-0621-4
[23]

Lin X, Huang Y, Rao Y, Ouyang L, Zhou D, et al. 2022. A base substitution in OsphyC disturbs its Interaction with OsphyB and affects flowering time and chlorophyll synthesis in rice. BMC Plant Biology 22:612

doi: 10.1186/s12870-022-04011-y
[24]

Han SH, Yoo SC, Lee BD, An G, Paek NC. 2015. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Plant, Cell & Environment 38:2527−40

doi: 10.1111/pce.12549
[25]

Wang F, Han T, Jeffrey Chen Z. 2024. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Communications Biology 7:579

doi: 10.1038/s42003-024-06275-6
[26]

González-Delgado A, Jiménez-Gómez JM, Wabnik K. 2025. Regulatory principles of photoperiod-driven clock function in plants. Trends in Plant Science 30:594−602

doi: 10.1016/j.tplants.2025.01.008
[27]

Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, et al. 2011. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. The Plant Journal 66:603−12

doi: 10.1111/j.1365-313X.2011.04517.x
[28]

González-Delgado A, Martínez-Rivas FJ, Jiménez-Gómez JM, Zsögön A. 2025. Photoperiod insensitivity in crops. Journal of Experimental Botany 00:eraf153

doi: 10.1093/jxb/eraf153
[29]

Cai Z, Zhang Y, Tang W, Chen X, Lin C, et al. 2022. LUX ARRHYTHMO interacts with ELF3a and ELF4a to coordinate vegetative growth and photoperiodic flowering in rice. Frontiers in Plant Science 13:853042

doi: 10.3389/fpls.2022.853042
[30]

Wang X, He Y, Wei H, Wang L. 2021. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant, Cell & Environment 44:3283−301

doi: 10.1111/pce.14167
[31]

Xu P, Zhang Y, Wen X, Yang Q, Liu L, et al. 2023. The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7. Journal of Advanced Research 48:17−31

doi: 10.1016/j.jare.2022.08.001
[32]

Liu C, Qu X, Zhou Y, Song G, Abiri N, et al. 2018. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant, Cell & Environment 41:630−45

doi: 10.1111/pce.13135
[33]

Qiu L, Zhou P, Wang H, Zhang C, Du C, et al. 2023. Photoperiod genes contribute to daylength-sensing and breeding in rice. Plants 12:899

doi: 10.3390/plants12040899
[34]

Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, et al. 2013. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. The Plant Journal 76:36−46

doi: 10.1111/tpj.12268
[35]

Zhu X, Dong Z, Zhu M, Hu W, Hu J, et al. 2023. The significance of florigen activation complex in controlling flowering in rice. Critical Reviews in Plant Sciences 42:300−23

doi: 10.1080/07352689.2023.2233241
[36]

Sohail A. 2023. Genetic and signaling pathways of flowering regulation in rice (Oryza sativa L.). Brazilian Journal of Botany 46:599−608

doi: 10.1007/s40415-023-00910-y
[37]

Song J, Tang L, Cui Y, Fan H, Zhen X, et al. 2024. Research progress on photoperiod gene regulation of heading date in rice. Current Issues in Molecular Biology 46:10299−311

doi: 10.3390/cimb46090613
[38]

Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719−22

doi: 10.1038/nature01549
[39]

Peng Q, Zhu C, Liu T, Zhang S, Feng S, et al. 2021. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice. Molecular Plant 14:1135−48

doi: 10.1016/j.molp.2021.04.003
[40]

Taoka KI, Ohki I, Tsuji H, Furuita K, Hayashi K, et al. 2011. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332−35

doi: 10.1038/nature10272
[41]

Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316:1033−36

doi: 10.1126/science.1141753
[42]

Brambilla V, Martignago D, Goretti D, Cerise M, Somssich M, et al. 2017. Antagonistic transcription factor complexes modulate the floral transition in rice. The Plant Cell 29:2801−16

doi: 10.1105/tpc.17.00645
[43]

Zhang X, Feng Q, Miao J, Zhu J, Zhou C, et al. 2023. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). The Plant Cell 35:4002−19

doi: 10.1093/plcell/koad223
[44]

Zeng L, Liu X, Zhou Z, Li D, Zhao X, et al. 2018. Identification of a G2-like transcription factor, OsPHL3, functions as a negative regulator of flowering in rice by co-expression and reverse genetic analysis. BMC Plant Biology 18:157

doi: 10.1186/s12870-018-1382-6
[45]

Cho LH, Yoon J, Pasriga R, An G. 2016. Homodimerization of Ehd1 is required to induce flowering in rice. Plant Physiology 170:2159−71

doi: 10.1104/pp.15.01723
[46]

Xue W, Xing Y, Weng X, Zhao Y, Tang W, et al. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics 40:761−67

doi: 10.1038/ng.143
[47]

Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, et al. 2010. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. The Plant Cell 22:3193−205

doi: 10.1105/tpc.110.073858
[48]

Li X, Tian X, He M, Liu X, Li Z, et al. 2022. bZIP71 delays flowering by suppressing Ehd1 expression in rice. Journal of Integrative Plant Biology 64:1352−63

doi: 10.1111/jipb.13275
[49]

Wu W, Zheng XM, Lu G, Zhong Z, Gao H, et al. 2013. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences of the United States of America 110:2775−80

doi: 10.1073/pnas.1213962110
[50]

Wu W, Zheng XM, Chen D, Zhang Y, Ma W, et al. 2017. OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice. Plant Science 260:60−69

doi: 10.1016/j.plantsci.2017.04.004
[51]

Lin X, Fang C, Liu B, Kong F. 2021. Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. aBIOTECH 2:156−69

doi: 10.1007/s42994-021-00039-0
[52]

Izawa T. 2007. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. Journal of Experimental Botany 58:3091−97

doi: 10.1093/jxb/erm159
[53]

Zheng Y, Crawford GW, Jiang L, Chen X. 2016. Rice domestication revealed by reduced shattering of archaeological rice from the Lower Yangtze valley. Scientific Reports 6:28136

doi: 10.1038/srep28136
[54]

Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, et al. 2013. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Molecular Plant 6:1877−88

doi: 10.1093/mp/sst088
[55]

Gao H, Jin M, Zheng XM, Chen J, Yuan D, et al. 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proceedings of the National Academy of Sciences of the United States of America 111:16337−42

doi: 10.1073/pnas.1418204111
[56]

Kim SR, Torollo G, Yoon MR, Kwak J, Lee CK, et al. 2018. Loss-of-function alleles of Heading date 1 (Hd1) are associated with adaptation of temperate Japonica rice plants to the tropical region. Frontiers in Plant Science 9:1827

doi: 10.3389/fpls.2018.01827
[57]

Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, et al. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development 18:926−36

doi: 10.1101/gad.1189604
[58]

Wu CC, Wei FJ, Chiou WY, Tsai YC, Wu HP, et al. 2020. Studies of rice Hd1 haplotypes worldwide reveal adaptation of flowering time to different environments. PLoS One 15:e0239028

doi: 10.1371/journal.pone.0239028
[59]

Lu T, Goretti D, Martignago D, Landini M, Brambilla V, Gómez-Ariza J, et al. 2017. Transcriptional and post-transcriptional mechanisms Limit Heading Date 1 (Hd1) function to adapt rice to high latitudes. PLoS Genetics 13:e1006530

doi: 10.1371/journal.pgen.1006530
[60]

Zheng XM, Wu FQ, Zhang X, Lin QB, Wang J, et al. 2016. Evolution of the PEBP gene family and selective signature on FT-like clade. Journal of Systematics and Evolution 54:502−10

doi: 10.1111/jse.12199
[61]

Kobayashi A, Suganami M, Yoshida H, Morinaka Y, Watanabe S, et al. 2024. How have breeders adapted rice flowering to the growing region? Journal of Integrative Plant Biology 66:2736−53

doi: 10.1111/jipb.13785
[62]

Li S, Hu Y, An C, Wen Q, Fan X, et al. 2023. The amino acid residue E96 of Ghd8 is crucial for the formation of the flowering repression complex Ghd7-Ghd8-OsHAP5C in rice. Journal of Integrative Plant Biology 65:1012−25

doi: 10.1111/jipb.13426
[63]

Li J, Xu R, Wang C, Qi L, Zheng X, et al. 2018. A heading date QTL, qHD7.2, from wild rice (Oryza rufipogon) delays flowering and shortens panicle length under long-day conditions. Scientific Reports 8:2928

doi: 10.1038/s41598-018-21330-z
[64]

Wei H, Wang X, Xu H, Wang L. 2020. Molecular basis of heading date control in rice. aBIOTECH 1:219−32

doi: 10.1007/s42994-020-00019-w
[65]

Sun B, Zhan XD, Lin ZC, Wu WX, Yu P, et al. 2016. Fine mapping and candidate gene analysis of qHD5, a novel major QTL with pleiotropism for yield-related traits in rice (Oryza sativa L.). Theoretical and Applied Genetics 130:247−58

doi: 10.1007/s00122-016-2787-y
[66]

Chen L, Zhong Z, Wu W, Liu L, Lu G, et al. 2015. Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice. Molecular Breeding 35:206

doi: 10.1007/s11032-015-0401-7
[67]

Han Z, Lei X, Sha H, liu J, Zhang C, et al. 2023. Adaptation to high latitudes through a novel allele of Hd3a strongly promoting heading date in rice. Theoretical and Applied Genetics 136:141

doi: 10.1007/s00122-023-04391-1
[68]

Zheng X, Peng Y, Qiao J, Henry R, Qian Q. 2024. Wild rice: unlocking the future of rice breeding. Plant Biotechnology Journal 22:3218−26

doi: 10.1111/pbi.14443
[69]

Fan C, Zheng X, Yuan Q, Wang T, Qian Q, et al. 2024. Grow rice under sunshine of Xizang/Tibet: promise and challenges. Journal of Genetics and Genomics 51:265−67

doi: 10.1016/j.jgg.2023.11.004
[70]

Li S, Luo Y, Wei G, Zong W, Zeng W, et al. 2023. Improving yield-related traits by editing the promoter of the heading date gene Ehd1 in rice. Theoretical and Applied Genetics 136:239

doi: 10.1007/s00122-023-04489-6
[71]

Gómez-Ariza J, Galbiati F, Goretti D, Brambilla V, Shrestha R, et al. 2015. Loss of floral repressor function adapts rice to higher latitudes in Europe. Journal of Experimental Botany 66:2027−39

doi: 10.1093/jxb/erv004
[72]

Arbelaez JD, Moreno LT, Singh N, Tung CW, Maron LG, et al. 2015. Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga. Molecular Breeding 35:81

doi: 10.1007/s11032-015-0276-7
[73]

Bohra A, Kilian B, Sivasankar S, Caccamo M, Mba C, et al. 2022. Reap the crop wild relatives for breeding future crops. Trends in Biotechnology 40:412−31

doi: 10.1016/j.tibtech.2021.08.009
[74]

Singh N, Wang DR, Ali L, Kim H, Akther KM, et al. 2020. A coordinated suite of wild-introgression lines in Indica and Japonica elite backgrounds. Frontiers in Plant Science 11:564824

doi: 10.3389/fpls.2020.564824
[75]

Yu H, Lin T, Meng X, Du H, Zhang J, et al. 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184:1156−1170.e14

doi: 10.1016/j.cell.2021.01.013
[76]

Xie Y, Zhang T, Yang M, Lyu H, Zou Y, et al. 2025. Engineering crop flower morphology facilitates robotization of cross-pollination and speed breeding. Cell 188:5809−5830.e27

doi: 10.1016/j.cell.2025.07.028
[77]

Chen TS, Aoike T, Yamasaki M, Kajiya-Kanegae H, Iwata H. 2020. Predicting rice heading date using an integrated approach combining a machine learning method and a crop growth model. Frontiers in Genetics 11:599510

doi: 10.3389/fgene.2020.599510
[78]

Desai SV, Balasubramanian VN, Fukatsu T, Ninomiya S, Guo W. 2019. Automatic estimation of heading date of paddy rice using deep learning. Plant Methods 15:76

doi: 10.1186/s13007-019-0457-1
[79]

Chen R, Lu H, Wang Y, Tian Q, Zhou C, et al. 2024. High-throughput UAV-based rice panicle detection and genetic mapping of heading-date-related traits. Frontiers in Plant Science 15:1327507

doi: 10.3389/fpls.2024.1327507
[80]

Itoh H, Yamashita H, Wada KC, Yonemaru JI. 2024. Real- time emulation of future global warming reveals realistic impacts on the phenological response and quality deterioration in rice. Proceedings of the National Academy of Sciences of the United States of America 121:e2316497121

doi: 10.1073/pnas.2316497121