[1]

Zhang C, Zhang W, Yan H, Ni Y, Akhlaq M, et al. 2022. Effect of micro-spray on plant growth and chlorophyll fluorescence parameter of tomato under high temperature condition in a greenhouse. Scientia Horticulturae 306:111441

doi: 10.1016/j.scienta.2022.111441
[2]

Zhang C, Li X, Yan H, Ullah I, Zuo Z, et al. 2020. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agricultural Water Management 241:106263

doi: 10.1016/j.agwat.2020.106263
[3]

Goh YS, Hum YC, Lee YL, Lai KW, Yap WS, et al. 2023. A meta-analysis: Food production and vegetable crop yields of hydroponics. Scientia Horticulturae 321:112339

doi: 10.1016/j.scienta.2023.112339
[4]

Fussy A, Papenbrock J. 2022. An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants 11:1153

doi: 10.3390/plants11091153
[5]

Ragaveena S, Shirly Edward A, Surendran U. 2021. Smart controlled environment agriculture methods: a holistic review. Reviews in Environmental Science and Bio/Technology 20:887−913

doi: 10.1007/s11157-021-09591-z
[6]

Zhou D, Chretien RL, South K, Evans M, Lowman S, et al. 2024. Beneficial bacterial endophytes promote spinach plant growth under indoor vertical hydroponics. Technology in Horticulture 4:e015

doi: 10.48130/tihort-0024-0012
[7]

Regmi A, Rueda-Kunz D, Liu H, Trevino J, Kathi S, et al. 2024. Comparing resource use efficiencies in hydroponic and aeroponic production systems. Technology in Horticulture 4:e005

doi: 10.48130/tihort-0024-0002
[8]

Kumar VA, Singh J. 2023. Trends in hydroponics practice/technology in horticultural crops: a review. International Journal of Plant & Soil Science 35:57−65

doi: 10.9734/ijpss/2023/v35i22759
[9]

Farvardin M, Taki M, Gorjian S, Shabani E, Sosa-Savedra JC. 2024. Assessing the physical and environmental aspects of greenhouse cultivation: a comprehensive review of conventional and hydroponic methods. Sustainability 16:1273

doi: 10.3390/su16031273
[10]

Barghash MA, Shurbaji TR, Romman R. 2023. Applying operation research methodologies to hydroponic crop scheduling in a closed system: an integer programming approach. The Open Agriculture Journal 17:e187433152303150

doi: 10.2174/18743315-v17-e230404-2022-53
[11]

Miller A, Adhikari R, Nemali K. 2020. Recycling nutrient solution can reduce growth due to nutrient deficiencies in hydroponic production. Frontiers in Plant Science 11:607643

doi: 10.3389/fpls.2020.607643
[12]

Tola E, Al-Gaadi KA, Madugundu R, Patil VC, Sygrimis N. 2023. Impact of water salinity levels on the spectral behavior and yield of tomatoes in hydroponics. Journal of King Saud University − Science 35:102515

doi: 10.1016/j.jksus.2022.102515
[13]

Fayezizadeh MR, Ansari NAZ, Albaji M, Khaleghi E. 2021. Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars. Agricultural Water Management 258:107171

doi: 10.1016/j.agwat.2021.107171
[14]

Vardar G, Altıkatoğlu M, Ortaç D, Cemek M, Işıldak I. 2015. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables. Biotechnology and Applied Biochemistry 62:663−68

doi: 10.1002/bab.1317
[15]

Naciri R, Rajib W, Chtouki M, Zeroual Y, Oukarroum A. 2022. Potassium and phosphorus content ratio in hydroponic culture affects tomato plant growth and nutrient uptake. Physiology and Molecular Biology of Plants 28:763−74

doi: 10.1007/s12298-022-01178-4
[16]

Moya C, Oyanedel E, Verdugo G, Flores MF, Urrestarazu M, et al. 2017. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. Hortscience 52:868−72

doi: 10.21273/HORTSCI12026-17
[17]

Venezia A, Colla G, Di Cesare C, Stipic M, Massa D. 2022. The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system. Agricultural Water Management 262:107408

doi: 10.1016/j.agwat.2021.107408
[18]

Al-Gaadi KA, Tola E, Madugundu R, Zeyada AM, Alameen AA, et al. 2024. Response of leaf photosynthesis, chlorophyll content and yield of hydroponic tomatoes to different water salinity levels. PLoS One 19:e0293098

doi: 10.1371/journal.pone.0293098
[19]

Zhang C, Akhlaq M, Yan H, Ni Y, Liang S, et al. 2023. Chlorophyll fluorescence parameter as a predictor of tomato growth and yield under CO2 enrichment in protective cultivation. Agricultural Water Management 284:108333

doi: 10.1016/j.agwat.2023.108333
[20]

Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, et al. 2014. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America 111:E1327−E1333

doi: 10.1073/pnas.1320008111
[21]

Romero JM, Cordon GB, Lagorio MG. 2018. Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sensing of Environment 204:138−46

doi: 10.1016/j.rse.2017.10.035
[22]

Xia Q, Tang H, Fu L, Tan J, Govindjee G, et al. 2023. Determination of Fv/Fm from chlorophyll a fluorescence without dark adaptation by an LSSVM model. Plant Phenomics 5:0034

doi: 10.34133/plantphenomics.0034
[23]

Torres R, Romero JM, Lagorio MG. 2021. Effects of sub-optimal illumination in plants. Comprehensive chlorophyll fluorescence analysis. Journal of Photochemistry and Photobiology B: Biology 218:112182

doi: 10.1016/j.jphotobiol.2021.112182
[24]

Ospina Calvo B, Lagorio MG. 2019. Quantitative effects of pigmentation on the re-absorption of chlorophyll a fluorescence and energy partitioning in leaves. Photochemistry and Photobiology 95:1360−68

doi: 10.1111/php.13149
[25]

Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, et al. 2017. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research 132:13−66

doi: 10.1007/s11120-016-0318-y
[26]

Tietz S, Hall CC, Cruz JA, Kramer DM. 2017. NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant Cell & Environment 40:1243−55

doi: 10.1111/pce.12924
[27]

Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, et al. 2016. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science 3:160592

doi: 10.1098/rsos.160592
[28]

Zait Y, Shemer OE, Cochavi A. 2024. Dynamic responses of chlorophyll fluorescence parameters to drought across diverse plant families. Physiologia Plantarum 176:e14527

doi: 10.1111/ppl.14527
[29]

Akkem Y, Biswas SK, Varanasi A. 2023. Smart farming using artificial intelligence: a review. Engineering Applications of Artificial Intelligence 120:105899

doi: 10.1016/j.engappai.2023.105899
[30]

Ayoub Shaikh T, Rasool T, Rasheed Lone F. 2022. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture 198:107119

doi: 10.1016/j.compag.2022.107119
[31]

Guo Y, Gao J, Tunio MH, Wang L. 2023. Study on the identification of mildew disease of cuttings at the base of mulberry cuttings by aeroponics rapid propagation based on a BP neural network. Agronomy 13:106

doi: 10.3390/agronomy13010106
[32]

Dai C, Sun J, Huang X, Zhang X, Tian X, et al. 2023. Application of hyperspectral imaging as a nondestructive technology for identifying tomato maturity and quantitatively predicting lycopene content. Foods 12:2957

doi: 10.3390/foods12152957
[33]

Zeng C, Zhang F, Luo M. 2022. A deep neural network-based decision support system for intelligent geospatial data analysis in intelligent agriculture system. Soft Computing 26:10813−26

doi: 10.1007/s00500-022-07018-7
[34]

Chen W, Rao Y, Wang F, Zhang Y, Wang T, et al. 2024. MLP-based multimodal tomato detection in complex scenarios: Insights from task-specific analysis of feature fusion architectures. Computers and Electronics in Agriculture 221:108951

doi: 10.1016/j.compag.2024.108951
[35]

Chen X, Jiang Z, Yang J, Ren J, Rao Y, et al. 2023. Data-driven decision support scheme for multi-area light environment control in greenhouse. Computers and Electronics in Agriculture 211:108033

doi: 10.1016/j.compag.2023.108033
[36]

Nguyen B, Graham PJ, Sinton D. 2016. Dual gradients of light intensity and nutrient concentration for full-factorial mapping of photosynthetic productivity. Lab on a Chip 16:2785−90

doi: 10.1039/C6LC00619A
[37]

Shi D, Yuan P, Liang L, Gao L, Li M, et al. 2024. Integration of deep learning and sparrow search algorithms to optimize greenhouse microclimate prediction for seedling environment suitability. Agronomy 14:254

doi: 10.3390/agronomy14020254
[38]

Sodini M, Cacini S, Navarro A, Traversari S, Massa D. 2024. Estimation of pore-water electrical conductivity in soilless tomatoes cultivation using an interpretable machine learning model. Computers and Electronics in Agriculture 218:108746

doi: 10.1016/j.compag.2024.108746
[39]

Wang H, Fu T, Du Y, Gao W, Huang K, et al. 2023. Scientific discovery in the age of artificial intelligence. Nature 620:47−60

doi: 10.1038/s41586-023-06221-2
[40]

Xu Y, Liu X, Cao X, Huang C, Liu E, et al. 2021. Artificial intelligence: a powerful paradigm for scientific research. The Innovation 2:100179

doi: 10.1016/j.xinn.2021.100179
[41]

Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E. 2015. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum 153:284−98

doi: 10.1111/ppl.12245
[42]

El-Desouki Z, Xia H, Abouseif Y, Cong M, Zhang M, et al. 2024. Improved chlorophyll fluorescence, photosynthetic rate, and plant growth of Brassica napus L. after co-application of biochar and phosphorus fertilizer in acidic soil. Journal of Plant Nutrition and Soil Science 187:260−73

doi: 10.1002/jpln.202300052
[43]

Zlatev Z. 2009. Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment 23:438−41

doi: 10.1080/13102818.2009.10818458
[44]

Jiang H, Liu Z, Wang J, Yang P, Zhang R, et al. 2023. Combining chlorophyll fluorescence and vegetation reflectance indices to estimate non-photochemical quenching (NPQ) of rice at the leaf scale. Remote Sensing 15:4222

doi: 10.3390/rs15174222
[45]

Nauš J, Prokopová J, Rebíček J, Spundová M. 2010. SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. Photosynthesis Research 105:265−71

doi: 10.1007/s11120-010-9587-z
[46]

Kong L, Wen Y, Jiao X, Liu X, Xu Z. 2021. Interactive regulation of light quality and temperature on cherry tomato growth and photosynthesis. Environmental and Experimental Botany 182:104326

doi: 10.1016/j.envexpbot.2020.104326
[47]

Chen D, Zhang J, Zhang Z, Wan X, Hu J. 2022. Analyzing the effect of light on lettuce Fv/Fm and growth by machine learning. Scientia Horticulturae 306:111444

doi: 10.1016/j.scienta.2022.111444
[48]

Sun Y, Ding S, Zhang Z, Jia W. 2021. An improved grid search algorithm to optimize SVR for prediction. Soft Computing 25:5633−44

doi: 10.1007/s00500-020-05560-w
[49]

Ding SF, Qi BJ, Tan HY. 2011. An overview on theory and algorithm of support vector machines. Journal of University of Electronic Science and Technology of China 40:1−10 (in Chinese)

doi: 10.3969/j.issn.1001-0548.2011.01.001
[50]

da Silva Santos CE, Sampaio RC, dos Santos Coelho L, Bestard GA, Llanos CH. 2021. Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection. Pattern Recognition 110:107649

doi: 10.1016/j.patcog.2020.107649
[51]

Luo Z, Hasanipanah M, Bakhshandeh Amnieh H, Brindhadevi K, Tahir MM. 2021. GA-SVR: a novel hybrid data-driven model to simulate vertical load capacity of driven piles. Engineering with Computers 37:823−31

doi: 10.1007/s00366-019-00858-2
[52]

Yang J, Xiao J, Hou SY, Li YL, Peng ZH. 2023. Effects of nutrient solution concentration and spraying frequency on growth of cucumber under aeroponics. Water Saving Irrigation 4:18−24

doi: 10.12396/jsgg.2022329
[53]

Capo L, Battisti M, Blandino M. 2024. The role of zinc fertilization and its interaction with nitrogen and phosphorus starter fertilization on early maize development and grain yield. Field Crops Research 307:109245

doi: 10.1016/j.fcr.2023.109245
[54]

Recalde L, Cabrera AV, Mansur NMG, Rossi FR, Groppa MD, et al. 2024. Seed priming with spermine improves early wheat growth under nitrogen deficiency. Journal of Plant Growth Regulation 43:3761−75

doi: 10.1007/s00344-024-11360-5
[55]

Jia Z, Giehl RFH, von Wirén N. 2020. The root foraging response under low nitrogen depends on DWARF1-mediated brassinosteroid biosynthesis. Plant Physiology 183:998−1010

doi: 10.1104/pp.20.00440
[56]

Francis B, Aravindakumar CT, Brewer PB, Simon S. 2023. Plant nutrient stress adaptation: a prospect for fertilizer limited agriculture. Environmental and Experimental Botany 213:105431

doi: 10.1016/j.envexpbot.2023.105431
[57]

Neocleous D, Savvas D. 2019. The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Scientia Horticulturae 252:379−87

doi: 10.1016/j.scienta.2019.04.007
[58]

Martín-Cardoso H, San Segundo B. 2025. Impact of nutrient stress on plant disease resistance. International Journal of Molecular Sciences 26:1780

doi: 10.3390/ijms26041780
[59]

El Amrani B. 2024. Nutrient transporters as plant strategy to adapt to nutrient fluctuations in the soil. Journal of Plant Nutrition 47:3272−83

doi: 10.1080/01904167.2024.2377815
[60]

Singh K, Gupta S, Singh AP. 2024. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. Plant Science 342:112024

doi: 10.1016/j.plantsci.2024.112024
[61]

Lamalakshmi Devi E, Kumar S, Basanta Singh T, Sharma SK, Beemrote A, et al. 2017. Adaptation strategies and defence mechanisms of plants during environmental stress. Medicinal Plants and Environmental Challenges 359−413

doi: 10.1007/978-3-319-68717-9_20
[62]

Zhang Z, Zhu G, Peng X. 2024. Photorespiration in plant adaptation to environmental changes. Crop and Environment 3:203−12

doi: 10.1016/j.crope.2024.07.001
[63]

Shi Y, Ke X, Yang X, Liu Y, Hou X. 2022. Plants response to light stress. Journal of Genetics and Genomics 49:735−47

doi: 10.1016/j.jgg.2022.04.017