[1]

Zhang Y, Xiao Z, Ager E, Kong L, Tan L. 2021. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. Journal of Future Foods 1:58−66

doi: 10.1016/j.jfutfo.2021.07.001
[2]

Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, et al. 2019. Functional quality in novel food sources: genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry 277:107−18

doi: 10.1016/j.foodchem.2018.10.098
[3]

Treadwell D, Hochmuth R, Landrum L, Laughlin W. 2020. Microgreens: a new specialty crop. HS1164. University of Florida Institute of Food and Agricultural Sciences, Live Oak, FL, USA. doi: 10.32473/edis-hs1164-2020 (accessed on 26 June 2025)

[4]

Galieni A, Falcinelli B, Stagnari F, Datti A, Benincasa P. 2020. Sprouts and microgreens: trends, opportunities, and horizons for novel research. Agronomy 10:1424

doi: 10.3390/agronomy10091424
[5]

Turner ER, Luo Y, Buchanan RL. 2020. Microgreen nutrition, food safety, and shelf life: a review. Journal of Food Science 85:870−82

doi: 10.1111/1750-3841.15049
[6]

Singh A, Singh J, Kaur S, Gunjal M, Kaur J, et al. 2024. Emergence of microgreens as a valuable food, current understanding of their market and consumer perception: a review. Food Chemistry: X 23:101527

doi: 10.1016/j.fochx.2024.101527
[7]

Samuolienė G, Brazaitytė A, Viršilė A, Miliauskienė J, Vaštakaitė-Kairienė V, et al. 2019. Nutrient levels in Brassicaceae microgreens increase under tailored light-emitting diode spectra. Frontiers in Plant Science 10:1475

doi: 10.3389/fpls.2019.01475
[8]

Choe U, Yu LL, Wang TTY. 2018. The science behind microgreens as an exciting new food for the 21st century. Journal of Agricultural and Food Chemistry 66:11519−30

doi: 10.1021/acs.jafc.8b03096
[9]

Ebert AW. 2022. Sprouts and microgreens—novel food sources for healthy diets. Plants 11:571

doi: 10.3390/plants11040571
[10]

Di Gioia F, De Bellis P, Mininni C, Santamaria P, Serio F. 2017. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. Journal of the Science of Food and Agriculture 97:1212−19

doi: 10.1002/jsfa.7852
[11]

Li T, Arthur JD, Bi G. 2023. Shoot yield and mineral nutrient concentrations of six microgreens in the Brassicaceae family affected by fertigation rate. Horticulturae 9:1217

doi: 10.3390/horticulturae9111217
[12]

Xiao Z, Codling EE, Luo Y, Nou X, Lester GE, et al. 2016. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis 49:87−93

doi: 10.1016/j.jfca.2016.04.006
[13]

Newman RG, Moon Y, Sams CE, Tou JC, Waterland, NL. 2021. Biofortification of sodium selenate improves dietary mineral contents and antioxidant capacity of culinary herb microgreens. Frontiers in Plant Science 12:716437

doi: 10.3389/fpls.2021.716437
[14]

Di Gioia F, Hong JC, Pisani C, Petropoulos SA, Bai J, et al. 2023. Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. Frontiers in Plant Science 14:1220691

doi: 10.3389/fpls.2023.1220691
[15]

Yi D, Wang Z, Peng M. 2025. Comprehensive review of Perilla frutescens: chemical composition, pharmacological mechanisms, and industrial applications in food and health products. Foods 14:1252

doi: 10.3390/foods14071252
[16]

Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Soteriou GA, et al. 2020. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 9:252

doi: 10.3390/antiox9030252
[17]

Nolan DA. 2018. Effects of seed density and other factors on the yield of microgreens grown hydroponically on burlap. Report. Virginia Tech, Blacksburg, VA, USA. http://hdl.handle.net/10919/86642 (accessed on 26 June 2025)

[18]

Allah SM, Dimita R, Negro C, Luvisi A, Gadaleta A, et al. 2023. Quality evaluation of mustard microgreens grown on peat, and jute substrate. Horticulturae 9:598

doi: 10.3390/horticulturae9050598
[19]

Li T, Arthur JD, Bi G, White S. 2024. Hydroponic fiber mats altered shoot growth and mineral nutrient composition of five herbal microgreens. Horticulturae 10:1298

doi: 10.3390/horticulturae10121298
[20]

Bulgari R, Negri M, Santoro P, Ferrante A. 2021. Quality evaluation of indoor-grown microgreens cultivated on three different substrates. Horticulturae 7:96

doi: 10.3390/horticulturae7050096
[21]

Du M, Xiao Z, Luo Y. 2022. Advances and emerging trends in cultivation substrates for growing sprouts and microgreens toward safe and sustainable agriculture. Current Opinion in Food Science 46:100863

doi: 10.1016/j.cofs.2022.100863
[22]

Kyriacou MC, Rouphael Y, Di Gioia F, Kyratzis A, Serio F, et al. 2016. Micro-scale vegetable production and the rise of microgreens. Trends in Food Science & Technology 57:103−15

doi: 10.1016/j.jpgs.2016.09.005
[23]

Signore A, Somma A, Leoni B, Santamaria P. 2024. Optimising sowing density for microgreens production in rapini, kale and cress. Horticulturae 10:274

doi: 10.3390/horticulturae10030274
[24]

Delian E, Chira A, Bădulescu L, Chira L. 2015. Insights into microgreens physiology. Scientific Papers. Series B, Horticulture 59:447−54

[25]

Murphy C, Pill W. 2010. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). The Journal of Horticultural Science and Biotechnology 85:171−76

doi: 10.1080/14620316.2010.11512650
[26]

Kaiser C, Ernst M. 2018. Microgreens. CCD-CP-104. University of Kentucky College of Agriculture, Food and Environment Extension, Lexington, KY, USA. https://ccd.uky.edu/sites/default/files/2024-11/ccd-cp-104_microgreens.pdf (accessed on 25 June 2025)

[27]

Bulgari R, Baldi A, Ferrante A, Lenzi A. 2017. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horticultural Science 45:119−29

doi: 10.1080/01140671.2016.1259642
[28]

Dubey S, Harbourne N, Harty M, Hurley D, Elliott-Kingston C. 2024. Microgreens production: exploiting environmental and cultural factors for enhanced agronomical benefits. Plants 13:2631

doi: 10.3390/plants13182631
[29]

Murphy CJ, Llort KF, Pill WG. 2010. Factors affecting the growth of microgreen table beet. International Journal of Vegetable Science 16:253−266

doi: 10.1080/19315261003648241
[30]

Li T, Lalk GT, Arthur JD, Johnson MH, Bi G. 2021. Shoot production and mineral nutrients of five microgreens as affected by hydroponic substrate type and post-emergent fertilization. Horticulturae 7:129

doi: 10.3390/horticulturae7060129
[31]

Hoang GM, Vu TT. 2022. Selection of suitable growing substrates and quality assessment of Brassica microgreens cultivated in greenhouse. Academia Journal of Biology 44:133−42

doi: 10.15625/2615-9023/16833
[32]

Palmitessa OD, Renna M, Crupi P, Lovece A, Corbo F, et al. 2020. Yield and quality characteristics of Brassica microgreens as affected by the NH4: NO3 molar ratio and strength of the nutrient solution. Foods 9:677

doi: 10.3390/foods9050677
[33]

Petropoulos SA, Di Gioia F, Polyzos N, Tzortzakis N. 2020. Natural antioxidants, health effects and bioactive properties of wild Allium species. Current Pharmaceutical Design 26:1816−37

doi: 10.2174/1381612826666200203145851
[34]

Di Gioia F, Petropoulos SA, Ozores-Hampton M, Morgan K, Rosskopf EN. 2019. Zinc and iron agronomic biofortification of Brassicaceae microgreens. Agronomy 9:677

doi: 10.3390/agronomy9110677
[35]

Ntsoane MLL, Manhivi VE, Shoko T, Seke F, Maboko MM, et al. 2023. The phytonutrient content and yield of Brassica microgreens grown in soilless media with different seed densities. Horticulturae 9:1218

doi: 10.3390/horticulturae9111218
[36]

Kopsell DA, Sams CE, Barickman TC, Morrow RC. 2014. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. Journal of the American Society for Horticultural Science 139:469−77

doi: 10.21273/JASHS.139.4.469
[37]

Weber CF. 2017. Broccoli microgreens: a mineral-rich crop that can diversify food systems. Frontiers in Nutrition 4:7

doi: 10.3389/fnut.2017.00007