[1]

Bosland PW, Votava EJ. 2012. Introduction. In Peppers: Vegetable and Spice Capsicums, 2nd edition. UK: CABI. pp. 1−12 doi: 10.1079/9781845938253.0000

[2]

Antonio AS, Wiedemann SML, Veiga VF Junior. 2018. The genus Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances 8(45):25767−84

doi: 10.1039/C8RA02067A
[3]

Venkatesh J, Lee SY, Back S, Kim TG, Kim, GW, et al. 2023. Update on the genetic and molecular regulation of the biosynthetic pathways underlying pepper fruit color and pungency. Current Plant Biology 35–36:100303

doi: 10.1016/j.cpb.2023.100303
[4]

FAO – FAOSTAT. 2023. Food and Agriculture Organization of the United Nations. www.fao.org/faostat/en/#data/QCL

[5]

Quesada-Ocampo LM, Parada-Rojas CH, Hansen Z, Vogel G, Smart C, et al. 2023. Phytophthora capsici: recent progress on fundamental biology and disease management 100 years after its description. Annual Review of Phytopathology 61:185−208

doi: 10.1146/annurev-phyto-021622-103801
[6]

Granke LL, Quesada-Ocampo L, Lamour K, Hausbeck MK. 2012. Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease 96(11):1588−600

doi: 10.1094/PDIS-02-12-0211-FE
[7]

Saltos LA, Monteros-Altamirano Á, Reis A, Garcés-Fiallos FR. 2022. Phytophthora capsici: the diseases it causes and management strategies to produce healthier vegetable crops. Horticultura Brasileira 40(1):5−17

doi: 10.1590/s0102-0536-20220101
[8]

Hausbeck MK, Lamour KH. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease 88:1292−303

doi: 10.1094/PDIS.2004.88.12.1292
[9]

Wang W, Liu X, Han T, Li K, Qu Y, et al. 2020. Differential potential of Phytophthora capsica resistance mechanisms to the fungicide metalaxyl in peppers. Microorganisms 8:278

doi: 10.3390/microorganisms8020278
[10]

Siegenthaler TB, Hansen ZR. 2021. Sensitivity of Phytophthora capsica from tennessee to mefenoxam, fluopicolide, oxathiapiprolin, dimethomorph, mandipropamid, and cyazofamid. Plant Disease 105:3000−7

doi: 10.1094/PDIS-08-20-1805-RE
[11]

Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, et al. 2022. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: a comprehensive review. Frontiers in Microbiology 13:962619

doi: 10.3389/fmicb.2022.962619
[12]

Prajapati S, Kumar N, Kumar S, Maurya S. 2020. Biological control a sustainable approach for plant diseases management: a review. Journal of Pharmacognosy and Phytochemistry 9(2):1514−23

[13]

Boro M, Sannyasi S, Chettri D, Verma AK. 2022. Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Archives of Microbiology 204(11):666

doi: 10.1007/s00203-022-03279-w
[14]

Li H, Wang N, Ding J, Liu Y, Ding X, et al. 2022. Spatial distribution of the pepper blight (Phytophthora capsici) suppressive microbiome in the rhizosphere. Frontiers in Plant Science 12:748542

doi: 10.3389/fpls.2021.748542
[15]

Ozyilmaz U. 2020. Evaluation of the effectiveness of antagonistic bacteria against Phytophthora blight disease in pepper with artificial intelligence. Biological Control 151:104379

doi: 10.1016/j.biocontrol.2020.104379
[16]

Wang G, Ma Y, Chenia HY, Govinden R, Luo J, et al. 2020. Biochar-mediated control of Phytophthora blight of pepper is closely related to the improvement of the rhizosphere fungal community. Frontiers in Microbiology 11:1427

doi: 10.3389/fmicb.2020.01427
[17]

Abbasi S, Spor A, Sadeghi A, Safaie N. 2021. Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Scientific Reports 11(1):9317

doi: 10.1038/s41598-021-88495-y
[18]

Abdelrahman O, Yagi S, El Siddig M, El Hussein A, Germanier F, et al. 2022. Evaluating the antagonistic potential of actinomycete strains isolated from Sudan's soils against Phytophthora infestans. Frontiers in Microbiology 13:827824

doi: 10.3389/fmicb.2022.827824
[19]

Etesami H, Jeong BR, Glick BR. 2023. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—a review. Current Research in Biotechnology 5:100128

doi: 10.1016/j.crbiot.2023.100128
[20]

Bacon CW, Palencia ER, Hinton DM. 2015. Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. In Plant Microbes Symbiosis: Applied Facets, ed. Arora N. New Delhi: Springer. pp. 163–77 doi: 10.1007/978-81-322-2068-8_8

[21]

Etesami H, Jeong BR, Glick BR. 2023. Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology 126:102048

doi: 10.1016/j.pmpp.2023.102048
[22]

Irabor A, Mmbaga MT. 2017. Evaluation of selected bacterial endophytes for biocontrol potential against Phytophthora blight of bell pepper (Capsicum annuum L.). Journal of Plant Pathology and Microbiology 8:10

doi: 10.4172/2157-7471.1000424
[23]

Fira D, Dimkić I, Berić T, Lozo J, Stanković S. 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology 285:44−55

doi: 10.1016/j.jbiotec.2018.07.044
[24]

Albayrak ÇB. 2019. Bacillus species as biocontrol agents for fungal plant pathogens. In Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol, eds Islam M, Rahman M, Pandey P, Boehme M, Haesaert G. Cham: Springer. pp. 239−65 doi: 10.1007/978-3-030-15175-1_13

[25]

Golnari M, Bahrami N, Milanian Z, Rabbani Khorasgani M, Ali Asadollahi M, et al. 2024. Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Scientific Reports 14(1):1457

doi: 10.1038/s41598-024-51823-z
[26]

Bhusal B, Mmbaga MT. 2020. Biological control of Phytophthora blight and growth promotion in sweet pepper by Bacillus species. Biological Control 150:104373

doi: 10.1016/j.biocontrol.2020.104373
[27]

Salwan R, Sharma M, Sharma A, Sharma V. 2023. Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress 7:100140

doi: 10.1016/j.stress.2023.100140
[28]

Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP. 1997. Signaling in plant-microbe interactions. Science 276:726−33

doi: 10.1126/science.276.5313.726
[29]

Vallad GE, Goodman RM. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science 44(6):1920−34

doi: 10.2135/cropsci2004.1920
[30]

Yang YX, J Ahammed G, Wu C, Fan SY, Zhou YH. 2015. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein & Peptide Science 16(5):450−61

doi: 10.2174/1389203716666150330141638
[31]

Ali S, Ahmad Ganai B, Kamili AN, Ali Bhat A, Ahmad Mir Z, et al. 2018. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research 212−213:9−37

doi: 10.1016/j.micres.2018.04.008
[32]

Zribi I, Ghorbel M, Brini F. 2024. Pathogenesis-related proteins and plant defense response. In Defense-Related Proteins in Plants, ed. Upadhyay SK. US: Academic Press. pp. 53−97 doi: 10.1016/B978-0-443-13236-0.00003-8

[33]

Wu G, Liu Y, Xu Y, Zhang G, Shen Q, et al. 2018. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Molecular Plant-Microbe Interactions 31(5):560−67

doi: 10.1094/MPMI-11-17-0273-R
[34]

Fu HZ, Marian M, Enomoto T, Hieno A, Ina H, et al. 2020. Biocontrol of tomato bacterial wilt by foliar spray application of a novel strain of endophytic Bacillus sp. Microbes and Environments 35:ME20078

doi: 10.1264/jsme2.ME20078
[35]

Gupta VK, Shivasharanappa N, Kumar V, Kumar, A. 2014. Diagnostic evaluation of serological assays and different gene based PCR for detection of Brucella melitensis in goat. Small Ruminant Research 117(1):94−102

doi: 10.1016/j.smallrumres.2013.11.022
[36]

Yamamoto S, Harayama S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology 61(3):3768

doi: 10.1128/aem.61.3.1104-1109.1995
[37]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7):3022−27

doi: 10.1093/molbev/msab120
[38]

Li W, Lee SY, Cho YJ, Ghim SY, Jung HY. 2020. Mediation of induced systemic resistance by the plant growth-promoting rhizobacteria Bacillus pumilus S2-3-2. Molecular Biology Reports 47(11):8429−38

doi: 10.1007/s11033-020-05883-9
[39]

Wu Z, Huang Y, Li Y, Dong J, Liu X, et al. 2019. Biocontrol of Rhizoctonia solani via induction of the defense mechanism and antimicrobial compounds produced by Bacillus subtilis SL-44 on pepper (Capsicum annuum L.). Frontiers in Microbiology 10:2676

doi: 10.3389/fmicb.2019.02676
[40]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[41]

He DC, He MH, Amalin DM, Liu W, Alvindia DG, et al. 2022. Biological control of plant diseases: an evolutionary and eco-economic consideration. Pathogens 10:1311

doi: 10.3390/pathogens10101311
[42]

Dimkić I, Janakiev T, Petrović M, Degrassi G, Fira D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - a review. Physiological and Molecular Plant Pathology 117:101754

doi: 10.1016/j.pmpp.2021.101754
[43]

Hamaoka K, Aoki Y, Suzuki S. 2021. Isolation and characterization of endophyte Bacillus velezensis KOF112 from grapevine shoot xylem as biological control agent for fungal diseases. Plants 10(9):1815

doi: 10.3390/plants10091815
[44]

Asaturova AM, Bugaeva LN, Homyak AI, Slobodyanyuk GA, Kashutina EV, et al. 2022. Bacillus velezensis strains for protecting cucumber plants from root-knot Nematode Meloidogyne incognita in a greenhouse. Plants 11(3):275

doi: 10.3390/plants11030275
[45]

Chen M, Lin H, Zu W, Wang L, Dai W, et al. 2024. Evaluating native Bacillus strains as potential biocontrol agents against tea anthracnose caused by Colletotrichum fructicola. Plants 13:2889

doi: 10.3390/plants13202889
[46]

Shen Y, Shi Z, Zhao J, Li M, Tang J, et al. 2023. Whole genome sequencing provides evidence for Bacillus velezensis SH-1471 as a beneficial rhizosphere bacterium in plants. Scientific Reports 13(1):20929

doi: 10.1038/s41598-023-48171-9
[47]

Ki JS, Zhang W, Qian PY. 2009. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. Journal of Microbiological Methods 77(1):48−57

doi: 10.1016/j.mimet.2009.01.003
[48]

Lim SM, Yoon MY, Choi GJ, Choi YH, Jang KS, et al. 2017. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. The Plant Pathology Journal 33:488−98

doi: 10.5423/PPJ.OA.04.2017.0073
[49]

Cui L, Yang C, Wei L, Li T, Chen X. 2020. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biological Control 141:104156

doi: 10.1016/j.biocontrol.2019.104156
[50]

Ruiz-García C, Béjar V, Martínez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology 55:191−95

doi: 10.1099/ijs.0.63310-0
[51]

Satomi M, La Duc MT, Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. International Journal of Systematic and Evolutionary Microbiology 56(8):1735−40

doi: 10.1099/ijs.0.64189-0
[52]

Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, et al. 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24(6):1046

doi: 10.3390/molecules24061046
[53]

Kenfaoui J, Dutilloy E, Benchlih S, Lahlali R, Ait-Barka E, et al. 2024. Bacillus velezensis: a versatile ally in the battle against phytopathogens—insights and prospects. Applied Microbiology and Biotechnology 108(1):439

doi: 10.1007/s00253-024-13255-7
[54]

Sun L, Wang W, Zhang X, Gao Z, Cai S, et al. 2023. Bacillus velezensis BVE7 as a promising agent for biocontrol of soybean root rot caused by Fusarium oxysporum. Frontiers in Microbiology 14:1275986

doi: 10.3389/fmicb.2023.1275986
[55]

Wei J, Zhao J, Suo M, Wu H, Zhao M, et al. 2023. Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng. Biological Control 182:105222

doi: 10.1016/j.biocontrol.2023.105222
[56]

Rong S, Xu H, Li L, Chen R, Gao X, et al. 2020. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pesticide Biochemistry and Physiology 162:69−77

doi: 10.1016/j.pestbp.2019.09.003
[57]

Bai X, Li Q, Zhang D, Zhao Y, Zhao D, et al. 2023. Bacillus velezensis strain HN-Q-8 induced resistance to Alternaria solani and stimulated growth of potato plant. Biology 12(6):856

doi: 10.3390/biology12060856
[58]

Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, et al. 2015. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science 6:566

doi: 10.3389/fpls.2015.00566
[59]

Jadhav HP, Shaikh SS, Sayyed RZ. 2017. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. Rhizotrophs: Plant Growth Promotion to Bioremediation, ed. Mehnaz S. Volume 2. Singapore: Springer. pp. 183–203 doi: 10.1007/978-981-10-4862-3_9

[60]

Jamali H, Sharma A, Roohi H, Srivastava AK. 2019. Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. Journal of Basic Microbiology 60(3):268−80

doi: 10.1002/jobm.201900347
[61]

Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. 2020. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology 128(6):1583−94

doi: 10.1111/jam.14506
[62]

Yuan S, Wang L, Wu K, Shi J, Wang M, et al. 2014. Evaluation of Bacillus-fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Applied Soil Ecology 75:86−94

doi: 10.1016/j.apsoil.2013.11.004