[1]

Sarathy SM, Oßwald P, Hansen N, Kohse-Höinghaus K. 2014. Alcohol combustion chemistry. Progress in Energy and Combustion Science 44:40−102

doi: 10.1016/j.pecs.2014.04.003
[2]

International Energy Agency (IEA). 2023. World Energy Outlook 2022. Report. IEA. Paris, France. www.iea.org/reports/world-energy-outlook-2023

[3]

Oh YK, Hwang KR, Kim C, Kim JR, Lee JS. 2018. Recent developments and key barriers to advanced biofuels: a short review. Bioresource Technology 257:320−33

doi: 10.1016/j.biortech.2018.02.089
[4]

Tijjani Usman IM, Ho YC, Baloo L, Lam MK, Sujarwo W. 2022. A comprehensive review on the advances of bioproducts from biomass towards meeting net zero carbon emissions (NZCE). Bioresource Technology 366:128167

doi: 10.1016/j.biortech.2022.128167
[5]

Martins J, Brito FP. 2020. Alternative fuels for internal combustion engines. Energies 13:4086

doi: 10.3390/en13164086
[6]

Baskar G, Aiswarya R. 2016. Trends in catalytic production of biodiesel from various feedstocks. Renewable & Sustainable Energy Reviews 57:496−504

doi: 10.1016/j.rser.2015.12.101
[7]

Johnson C, Ellis T, Grande M, Georges P. 2024. Sustainability Insights Research: Biofuel regulations stoke demand, volatility hits brakes. Report. S&P Global. Andover, MA, United States. www.spglobal.com/ratings/en/regulatory/delegate/getPDF?articleId=3215879&type=COMMENTS&defaultFormat=PDF

[8]

Gravalos I, Moshou D, Gialamas T, Xyradakis P, Kateris D, et al. 2013. Emissions characteristics of spark ignition engine operating on lower–higher molecular mass alcohol blended gasoline fuels. Renewable Energy 50:27−32

doi: 10.1016/j.renene.2012.06.033
[9]

Hua Y. 2024. Research progress of higher alcohols as alternative fuels for compression ignition engines. Fuel 357:129749

doi: 10.1016/j.fuel.2023.129749
[10]

Jeevahan J, Lakshmi Sankar S, Karthikeyan P, Sriram V, Britto Joseph G. 2020. Comparative investigation of the effects of lower and higher alcohols/bio-diesel blends on engine performance and emissions characteristics of a diesel engine. International Journal of Ambient Energy 41:652−58

doi: 10.1080/01430750.2018.1484809
[11]

Ozsezen AN. 2015. The investigation of thermodynamics and combustion properties of alcohol-gasoline blends in an SI engine. International Journal of Green Energy 12:1107−12

doi: 10.1080/15435075.2014.892877
[12]

Wang Z, Liu H, Long Y, Wang J, He X. 2015. Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency. Energy 82:395−405

doi: 10.1016/j.energy.2015.01.049
[13]

Yusri IM, Mamat R, Najafi G, Razman A, Awad OI, et al. 2017. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renewable and Sustainable Energy Reviews 77:169−81

doi: 10.1016/j.rser.2017.03.080
[14]

Cai J, Zhang L, Zhang F, Wang Z, Cheng Z, et al. 2012. Experimental and Kinetic Modeling Study of n-Butanol Pyrolysis and Combustion. Energy & Fuels 26:5550−68

doi: 10.1021/ef3011965
[15]

Togbé C, Dagaut P, Mzé-Ahmed A, Diévart P, Halter F, Foucher F. 2010. Experimental and detailed kinetic modeling study of 1-hexanol oxidation in a pressurized jet-stirred reactor and a combustion bomb. Energy & Fuels 24:5859−75

doi: 10.1021/ef101255w
[16]

Nour M, Attia AMA, Nada SA. 2019. Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Conversion and Management 185:313−29

doi: 10.1016/j.enconman.2019.01.105
[17]

Nour M, Nada S, Li X. 2022. Experimental study on the combustion performance of a stationary CIDI engine fueled with 1-heptanol-diesel mixtures. Fuel 312:122902

doi: 10.1016/j.fuel.2021.122902
[18]

Suhaimi H, Adam A, Mrwan AG, Abdullah Z, Othman MF, et al. 2018. Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends. Fuel 220:682−91

doi: 10.1016/j.fuel.2018.02.019
[19]

Devarajan Y, Munuswamy DB, Radhakrishnan S, Mahalingam A, Nagappan B. 2019. Experimental testing and evaluation of neat biodiesel and heptanol blends in diesel engine. Journal of Testing and Evaluation 47:987−97

doi: 10.1520/JTE20170307
[20]

Xiao Z, Ladommatos N, Zhao H. 2000. The effect of aromatic hydrocarbons and oxygenates on diesel engine emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214:307−32

doi: 10.1243/0954407001527448
[21]

Cai L, Uygun Y, Togbé C, Pitsch H, Olivier H, et al. 2015. An experimental and modeling study of n-octanol combustion. Proceedings of the Combustion Institute 35:419−27

doi: 10.1016/j.proci.2014.05.088
[22]

Dagaut P, Sarathy SM, Thomson MJ. 2009. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proceedings of the Combustion Institute 32:229−37

doi: 10.1016/j.proci.2008.05.005
[23]

Dagaut P, Togbé C. 2008. Experimental and modeling study of the kinetics of oxidation of ethanol−gasoline surrogate mixtures (E85 surrogate) in a jet-stirred reactor. Energy & Fuels 22:3499−505

doi: 10.1021/ef800214a
[24]

Dagaut P, Togbé C. 2008. Oxidation kinetics of butanol−gasoline surrogate mixtures in a jet-stirred reactor: experimental and modeling study. Fuel 87:3313−21

doi: 10.1016/j.fuel.2008.05.008
[25]

EL-Seesy AI, He Z, Kosaka H. 2021. Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures. Energy 214:118972

doi: 10.1016/j.energy.2020.118972
[26]

EL-Seesy AI, Kayatas Z, Hawi M, Kosaka H, He Z. 2020. Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends. Renewable Energy 147:2064−76

doi: 10.1016/j.renene.2019.09.132
[27]

EL-Seesy AI, Kosaka H, Hassan H, Sato S. 2019. Combustion and emission characteristics of a common rail diesel engine and RCEM fueled by n-heptanol-diesel blends and carbon nanomaterial additives. Energy Conversion and Management 196:370−94

doi: 10.1016/j.enconman.2019.05.049
[28]

El-Seesy AI, Nour M, Attia AMA, He Z, Hassan H. 2020. Investigation the effect of adding graphene oxide into diesel/higher alcohols blends on a diesel engine performance. International Journal of Green Energy 17:233−53

doi: 10.1080/15435075.2020.1722132
[29]

Heufer KA, Sarathy SM, Curran HJ, Davis AC, Westbrook CK, et al. 2012. Detailed kinetic modeling study of n-pentanol oxidation. Energy & Fuels 26:6678−85

doi: 10.1021/ef3012596
[30]

Nour M, Elseesy AI, Attia A, Li X, Nada S. 2021. Adding n-butanol, n-heptanol, and n-octanol to improve vaporization, combustion, and emission characteristics of diesel/used frying oil biodiesel blends in DICI engine. Environmental Progress & Sustainable Energy 40:e13549

doi: 10.1002/ep.13549
[31]

Sarathy SM, Thomson MJ, Togbé C, Dagaut P, Halter F, et al. 2009. An experimental and kinetic modeling study of n-butanol combustion. Combustion and Flame 156:852−64

doi: 10.1016/j.combustflame.2008.11.019
[32]

Togbé C, Ahmed AM, Dagaut P. 2009. Experimental and modeling study of the kinetics of oxidation of methanol-gasoline surrogate mixtures (M85 surrogate) in a jet-stirred reactor. Energy & Fuels 23:1936−41

doi: 10.1021/ef801070q
[33]

Togbé C, Halter F, Foucher F, Mounaim-Rousselle C, Dagaut P. 2011. Experimental and detailed kinetic modeling study of 1-pentanol oxidation in a JSR and combustion in a bomb. Proceedings of the Combustion Institute 33:367−74

doi: 10.1016/j.proci.2010.05.003
[34]

Welz O, Zádor J, Savee JD, Sheps L, Osborn DL,et al. 2013. Low-temperature combustion chemistry of n-butanol: principal oxidation pathways of hydroxybutyl radicals. The Journal of Physical Chemistry A 117:11983−2001

doi: 10.1021/jp403792t
[35]

Çelebi Y, Aydın H. 2019. An overview on the light alcohol fuels in diesel engines. Fuel 236:890−911

doi: 10.1016/j.fuel.2018.08.138
[36]

Wallington TJ, Dagaut P, Liu R, Kurylo MJ. 1988. Rate constants for the gas phase reactions of OH with C5 through C7 aliphatic alcohols and ethers: predicted and experimental values. International Journal of Chemical Kinetics 20:541−47

doi: 10.1002/KIN.550200704
[37]

Tran LS, Sirjean B, Glaude PA, Fournet R, Battin-Leclerc F. 2012. Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels. Energy 43:4−18

doi: 10.1016/j.energy.2011.11.013
[38]

Heufer KA, Bugler J, Curran HJ. 2013. A comparison of longer alkane and alcohol ignition including new experimental results for n-pentanol and n-hexanol. Proceedings of the Combustion Institute 34:511−18

doi: 10.1016/j.proci.2012.05.103
[39]

Banapurmath NR, Khandal SV, RanganathaSwamy L, Chandrashekar TK. 2015. Alcohol (ethanol and diethyl ethyl ether)-diesel blended fuels for diesel engine applications-a feasible solution. Advances in Automobile Engineering 4:1−8

doi: 10.4172/2167-7670.1000117
[40]

Lapuerta M, García-Contreras R, Campos-Fernández J, Dorado MP. 2010. Stability, lubricity, viscosity, and cold-flow properties of alcohol-diesel blends. Energy & Fuels 24:4497−502

doi: 10.1021/ef100498u
[41]

Porter R, Glaude PA, Buda F, Battin-Leclerc F. 2008. A tentative modeling study of the effect of wall reactions on oxidation phenomena. Energy & Fuels 22:3736−43

doi: 10.1021/ef8004256
[42]

Zhou Z, Du X, Yang J, Wang Y, Li C, et al. 2016. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research. Journal of Synchrotron Radiation 23:1035−45

doi: 10.1107/S1600577516005816
[43]

Cool TA, Wang J, Nakajima K, Taatjes CA, Mcllroy A. 2005. Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry 247:18−27

doi: 10.1016/j.ijms.2005.08.018
[44]

National Synchrotron Radiation Laboratory(NSRL). 2017. Photonionization Crosss Section Database (Version 2.0). Hefei, China. http://flame.nsrl.ustc.edu.cn/database/

[45]

Reaction Design. 2013. CHEMKIN-PRO Release 15131. Reaction Design, San Diego, CA. http://reactiondesign.com/

[46]

Le Cong T, Dagaut P. 2007. Kinetics of natural gas, natural gas/syngas mixtures oxidation and effect of burnt gas recirculation: experimental and detailed modeling. Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Volume 1: Turbo Expo 2007, Montreal, Canada, 14–17 May, 2007. USA: ASME. pp. 387−95 doi:10.1115/gt2007-27146

[47]

Dagaut P. 2002. On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Physical Chemistry Chemical Physics 4:2079−94

doi: 10.1039/b110787a
[48]

Muller C, Michel V, Scacchi G, Côme G. 1995. THERGAS: a computer program for the evaluation of thermochemical data of molecules and free radicals in the gas phase. Journal de Chimie Physique 92:1154−78

doi: 10.1051/jcp/1995921154
[49]

Zhang K, Banyon C, Bugler J, Curran HJ, Rodriguez A, et al. 2016. An updated experimental and kinetic modeling study of n-heptane oxidation. Combustion and Flame 172:116−35

doi: 10.1016/j.combustflame.2016.06.028
[50]

Li Q, Liu H, Zhang Y, Yan Z, Deng F, et al. 2019. Experimental and kinetic modeling study of laminar flame characteristics of higher mixed alcohols. Fuel Processing Technology 188:30−42

doi: 10.1016/j.fuproc.2019.01.010
[51]

Pelucchi M, Namysl S, Ranzi E, Rodriguez A, Rizzo C, et al. 2020. Combustion of n-C3-C6 linear alcohols: an experimental and kinetic modeling study. Part I: reaction classes, rate rules, model lumping, and validation. Energy & Fuels 34:14688−707

doi: 10.1021/acs.energyfuels.0c02251