[1]

Klein R, Klein BEK, Knudtson MD, Meuer SM, Swift M, et al. 2007. Fifteen-year cumulative incidence of age-related macular degeneration: the beaver dam eye Study. Ophthalmology 114:253−62

doi: 10.1016/j.ophtha.2006.10.040
[2]

Wong WL, Su X, Li X, Cheung CMG, Klein R, et al. 2014. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2:e106−e116

doi: 10.1016/S2214-109X(13)70145-1
[3]

Sadda SR, Guymer R, Holz FG, Schmitz-Valckenberg S, Curcio CA, et al. 2018. Consensus definition for atrophy associated with age-related macular degeneration on OCT: classification of atrophy report 3. Ophthalmology 125:537−48

doi: 10.1016/j.ophtha.2017.09.028
[4]

Varma R, Fraser-Bell S, Tan S, Klein R, Azen SP, et al. 2004. Prevalence of age-related macular degeneration in latinos: the los angeles latino eye study. Ophthalmology 111:1288−97

doi: 10.1016/j.ophtha.2004.01.023
[5]

Seddon JM, George S, Rosner B. 2006. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US twin study of age-related macular degeneration. Arch Ophthalmol 124:995−1001

doi: 10.1001/archopht.124.7.995
[6]

Maguire MG, Martin DF, Ying GS, Jaffe GJ, Daniel E, et al. 2016. Five-year outcomes with anti−vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology 123:1751−61

doi: 10.1016/j.ophtha.2016.03.045
[7]

Gehrs KM, Anderson DH, Johnson LV, Hageman GS. 2006. Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Annals of Medicine 38:450−71

doi: 10.1080/07853890600946724
[8]

Fritsche LG, Igl W, Bailey JNC, Grassmann F, Sengupta S, et al. 2016. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics 48:134−43

doi: 10.1038/ng.3448
[9]

Kakihara S, Matsuda Y, Hirabayashi K, Imai A, Iesato Y, et al. 2023. Role of adrenomedullin 2/intermedin in the pathogenesis of neovascular age-related macular degeneration. Laboratory Investigation 103:100038

doi: 10.1016/j.labinv.2022.100038
[10]

Qi S, Zhang Y, Kong L, Bi D, Kong H, et al. 2024. SPI1-mediated macrophage polarization aggravates age-related macular degeneration. Frontiers in Immunology 15:1421012

doi: 10.3389/fimmu.2024.1421012
[11]

Li S, Qiu Y, Li Y, Wu J, Yin N, et al. 2025. Serum metabolite biomarkers for the early diagnosis and monitoring of age-related macular degeneration. Journal of Advanced Research 74:443−54

doi: 10.1016/j.jare.2024.10.001
[12]

Burgess S, Davey Smith G. 2017. Mendelian randomization implicates high-density lipoprotein cholesterol-associated mechanisms in etiology of age-related macular degeneration. Ophthalmology 124:1165−74

doi: 10.1016/j.ophtha.2017.03.042
[13]

Cheng L, Chen C, Guo W, Liu K, Zhao Q, et al. 2021. EFEMP1 overexpression contributes to neovascularization in age-related macular degeneration. Frontiers in Pharmacology 11:547436

doi: 10.3389/fphar.2020.547436
[14]

Thee EF, Acar İE, Colijn JM, Meester-Smoor MA, Verzijden T, et al. 2023. Systemic metabolomics in a framework of genetics and lifestyle in age-related macular degeneration. Metabolites 13:701

doi: 10.3390/metabo13060701
[15]

Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I, et al. 2019. Metabolomics and age-related macular degeneration. Metabolites 9:4

doi: 10.3390/metabo9010004
[16]

Han X, Lains I, Li J, Li J, Chen Y, et al. 2023. Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration. Cell Reports Medicine 4:101085

doi: 10.1016/j.xcrm.2023.101085
[17]

Sim RZH, Tham YC, Betzler BK, Zhou L, Wang X, et al. 2022. Relationships between lipid-related metabolites and age-related macular degeneration vary with complement genotype. Ophthalmology Science 2:100211

doi: 10.1016/j.xops.2022.100211
[18]

Yuan Q, Zhu S, Yue S, Han Y, Peng G, et al. 2023. Alterations in faecal and serum metabolic profiles in patients with neovascular age-related macular degeneration. Nutrients 15:2984

doi: 10.3390/nu15132984
[19]

Vats A, Xi Y, Wolf-Johnston AS, Clinger OD, Arbuckle RK, et al. 2025. Oral 8-aminoguanine against age-related retinal degeneration. Communications Biology 8:812

doi: 10.1038/s42003-025-08242-1
[20]

Acar İE, Lores-Motta L, Colijn JM, Meester-Smoor MA, Verzijden T, et al. 2020. Integrating metabolomics, genomics, and disease pathways in age-related macular degeneration: The EYE-RISK Consortium. Ophthalmology 127:1693−1709

doi: 10.1016/j.ophtha.2020.06.020
[21]

Koller J, Herzog H, Zhang L. 2021. The distribution of neuropeptide FF and neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 90:102198

doi: 10.1016/j.npep.2021.102198
[22]

Satoh A, Brace CS, Rensing N, Imai SI. 2015. Deficiency of prdm13, a dorsomedial hypothalamus-enriched gene, mimics age-associated changes in sleep quality and adiposity. Aging Cell 14:209−18

doi: 10.1111/acel.12299
[23]

Li X, Zhang H, Hu W, Wu K, Li S, et al. 2025. Structural basis of peptide recognition and modulation for neuropeptide FF receptors. Cell Reports 44:116160

doi: 10.1016/j.celrep.2025.116160
[24]

Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, et al. 2017. Genetic and neuronal regulation of sleep by neuropeptide VF. eLife 6:e25727

doi: 10.7554/elife.25727
[25]

Moran KM, Milewski TM, Curley JP, Delville Y. 2025. Stress alters hypothalamic gene expression in adolescent male Golden hamsters. Journal of Neuroendocrinology 37:e70067

doi: 10.1111/jne.70067
[26]

Yu H, Wang Y, Gao J, Gao Y, Zhong C, et al. 2023. Application of the neuropeptide NPVF to enhance angiogenesis and osteogenesis in bone regeneration. Communications Biology 6:197

doi: 10.1038/s42003-023-04567-x
[27]

Shen Y, Li M, Liu K, Xu X, Zhu S, et al. 2020. Integrated bioinformatics analysis of aberrantly-methylated differentially-expressed genes and pathways in age-related macular degeneration. BMC Ophthalmology 20:119

doi: 10.1186/s12886-020-01392-2
[28]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[29]

Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284−87

doi: 10.1089/omi.2011.0118
[30]

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, et al. 2023. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51:D638−D646

doi: 10.1093/nar/gkac1000
[31]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[32]

Barben M, Schori C, Samardzija M, Grimm C. 2018. Targeting Hif1a rescues cone degeneration and prevents subretinal neovascularization in a model of chronic hypoxia. Molecular Neurodegeneration 13:12

doi: 10.1186/s13024-018-0243-y
[33]

Ashimori A, Higashijima F, Ogata T, Sakuma A, Hamada W, et al. 2024. HIF-1α-dependent upregulation of angiogenic factors by mechanical stimulation in retinal pigment epithelial cells. Disease Models & Mechanisms 17:dmm050640

doi: 10.1242/dmm.050640
[34]

Pugh CW, Ratcliffe PJ. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Medicine 9:677−84

doi: 10.1038/nm0603-677
[35]

Babapoor-Farrokhran S, Qin Y, Flores-Bellver M, Niu Y, Bhutto IA, et al. 2023. Pathologic vs. protective roles of hypoxia-inducible factor 1 in RPE and photoreceptors in wet vs. dry age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 120:e2302845120

doi: 10.1073/pnas.2302845120
[36]

Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, et al. 2014. Glycolysis in patients with age-related macular degeneration. The Open Ophthalmology Journal 8:39−47

doi: 10.2174/1874364101408010039
[37]

Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. 2017. Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. Journal of Molecular Neuroscience 62:368−79

doi: 10.1007/s12031-017-0947-4
[38]

Rajala A, Rajala RVS. 2024. Age-related changes in the glycolytic enzymes of M2-isoform of pyruvate kinase and fructose-1, 6-bisphosphate aldolase: implications to age-related macular degeneration. Aging and Disease 15:2271−83

doi: 10.14336/AD.2024.0077
[39]

CATT Research Group; Martin DF, Maguire MG, Ying GS, Grunwald JE, et al. 2011. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. The New England Journal of Medicine 364:1897−908

doi: 10.1056/NEJMoa1102673
[40]

Wolf AT, Harris A, Oddone F, Siesky B, Verticchio Vercellin A, et al. 2022. Disease progression pathways of wet AMD: opportunities for new target discovery. Expert Opinion on Therapeutic Targets 26:5−12

doi: 10.1080/14728222.2022.2030706