[1]

Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94

doi: 10.1038/s41580-022-00479-6
[2]

Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, et al. 2014. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eElife 3:e01739

doi: 10.7554/eLife.01739
[3]

Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, et al. 2014. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eElife 3:e01741

doi: 10.7554/eLife.01741
[4]

Herud-Sikimić O, Stiel AC, Kolb M, Shanmugaratnam S, Berendzen KW, et al. 2021. A biosensor for the direct visualization of auxin. Nature 592:768−72

doi: 10.1038/s41586-021-03425-2
[5]

Bukhamsin AH, Shetty SS, Fakeih E, Martinez MS, Lerma C, et al. 2025. In vivo dynamics of indole- and phenol-derived plant hormones: Long-term, continuous, and minimally invasive phytohormone sensor. Science Advances 11:eads8733

doi: 10.1126/sciadv.ads8733
[6]

Yoshida T, Fernie AR. 2024. Hormonal regulation of plant primary metabolism under drought. Journal of Experimental Botany 75:1714−25

doi: 10.1093/jxb/erad358
[7]

Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117−30

doi: 10.1016/j.tplants.2020.06.008
[8]

Castroverde CDM, Dina D. 2021. Temperature regulation of plant hormone signaling during stress and development. Journal of Experimental Botany 72:7436−58

doi: 10.1093/jxb/erab257
[9]

Hussain S, Brookbank BP, Nambara E. 2020. Hydrolysis of abscisic acid glucose ester occurs locally and quickly in response to dehydration. Journal of Experimental Botany 71:1753−56

doi: 10.1093/jxb/eraa026
[10]

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology 61:651−79

doi: 10.1146/annurev-arplant-042809-112122
[11]

Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science 15:395−401

doi: 10.1016/j.tplants.2010.04.006
[12]

Saruhashi M, Kumar Ghosh T, Arai K, Ishizaki Y, Hagiwara K, et al. 2015. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proceedings of the National Academy of Sciences of the United States of America 112:E6388−E6396

doi: 10.1073/pnas.1511238112
[13]

Katsuta S, Masuda G, Bak H, Shinozawa A, Kamiyama Y, et al. 2020. Arabidopsis Raf-like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. The Plant Journal 103:634−44

doi: 10.1111/tpj.14756
[14]

Lin Z, Li Y, Zhang Z, Liu X, Hsu CC, et al. 2020. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nature Communications 11:613

doi: 10.1038/s41467-020-14477-9
[15]

Soma F, Takahashi F, Suzuki T, Shinozaki K, Yamaguchi-Shinozaki K. 2020. Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nature Communications 11:1373

doi: 10.1038/s41467-020-15239-3
[16]

Takahashi Y, Zhang J, Hsu PK, Ceciliato PHO, Zhang L, et al. 2020. MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nature Communications 11:12

doi: 10.1038/s41467-019-13875-y
[17]

Lin Z, Li Y, Wang Y, Liu X, Ma L, et al. 2021. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications 12:2456

doi: 10.1038/s41467-021-22812-x
[18]

Soma F, Takahashi F, Kidokoro S, Kameoka H, Suzuki T, et al. 2023. Constitutively active B2 Raf-like kinases are required for drought-responsive gene expression upstream of ABA-activated SnRK2 kinases. Proceedings of the National Academy of Sciences of the United States of America 120:e2221863120

doi: 10.1073/pnas.2221863120
[19]

Boudsocq M, Barbier-Brygoo H, Laurière C. 2004. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Journal of Biological Chemistry 279:41758−66

doi: 10.1074/jbc.M405259200
[20]

Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. 2004. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. The Plant Cell 16:1163−77

doi: 10.1105/tpc.019943
[21]

Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27

doi: 10.1111/j.1399-3054.2012.01635.x
[22]

Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal 105:307−21

doi: 10.1111/tpj.15067
[23]

Soma F, Mogami J, Yoshida T, Abekura M, Takahashi F, et al. 2017. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nature Plants 3:16204

doi: 10.1038/nplants.2016.204
[24]

Kawa D, Meyer AJ, Dekker HL, Abd-El-Haliem AM, Gevaert K, et al. 2020. SnRK2 protein kinases and mRNA decapping machinery control root development and response to salt. Plant Physiology 182:361−77

doi: 10.1104/pp.19.00818
[25]

Shahzad Z, Tournaire-Roux C, Canut M, Adamo M, Roeder J, et al. 2024. Protein kinase SnRK2.4 is a key regulator of aquaporins and root hydraulics in Arabidopsis. The Plant Journal 117:264−79

doi: 10.1111/tpj.16494
[26]

Krzywińska E, Bucholc M, Kulik A, Ciesielski A, Lichocka M, et al. 2016. Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase. BMC Plant Biology 16:136

doi: 10.1186/s12870-016-0817-1
[27]

Ruschhaupt M, Mergner J, Mucha S, Papacek M, Doch I, et al. 2019. Rebuilding core abscisic acid signaling pathways of Arabidopsis in yeast. EMBO Journal 38:e101859

doi: 10.15252/embj.2019101859
[28]

Yuan XP, Zhao Y. 2025. SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition. Science Advances 11:eadr8250

doi: 10.1126/sciadv.adr8250
[29]

McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, et al. 2012. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. The Plant Journal 72:436−49

doi: 10.1111/j.1365-313X.2012.05089.x
[30]

Ding Y, Lv J, Shi Y, Gao J, Hua J, et al. 2019. EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. EMBO Journal 38:e99819

doi: 10.15252/embj.201899819
[31]

Ding Y, Li H, Zhang X, Xie Q, Gong Z, et al. 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell 32:278−89

doi: 10.1016/j.devcel.2014.12.023
[32]

Bohn L, Huang J, Weidig S, Yang Z, Heidersberger C, et al. 2024. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis. Nature 629:1126−32

doi: 10.1038/s41586-024-07424-x
[33]

Xu X, Liu H, Praat M, Pizzio GA, Jiang Z, et al. 2025. Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3-AHA1 module. Nature Plants 11:105−17

doi: 10.1038/s41477-024-01859-w
[34]

Harb A, Krishnan A, Ambavaram MMR, Pereira A. 2010. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology 154:1254−71

doi: 10.1104/pp.110.161752
[35]

Mahmud S, Ullah C, Kortz A, Bhattacharyya S, Yu P, et al. 2022. Constitutive expression of JASMONATE RESISTANT 1 induces molecular changes that prime the plants to better withstand drought. Plant, Cell & Environment 45:2906−22

doi: 10.1111/pce.14402
[36]

Marquis V, Smirnova E, Graindorge S, Delcros P, Villette C, et al. 2022. Broad-spectrum stress tolerance conferred by suppressing jasmonate signaling attenuation in Arabidopsis JASMONIC ACID OXIDASE mutants. Plant Journal 109:856−72

doi: 10.1111/tpj.15598
[37]

Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, et al. 2016. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Scientific Reports 6:28941

doi: 10.1038/srep28941
[38]

Jaffe MJ. 1973. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. Planta 114:143−57

doi: 10.1007/BF00387472
[39]

Chehab EW, Yao C, Henderson Z, Kim S, Braam J. 2012. Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Current Biology 22:701−6

doi: 10.1016/j.cub.2012.02.061
[40]

Darwish E, Ghosh R, Ontiveros-Cisneros A, Tran HC, Petersson M, et al. 2022. Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. Science Advances 8:eabm2091

doi: 10.1126/sciadv.abm2091
[41]

Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB. 2014. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Current Biology 24:1887−92

doi: 10.1016/j.cub.2014.06.064
[42]

Wang L, Ma C, Wang S, Yang F, Sun Y, et al. 2024. Ethylene and jasmonate signaling converge on gibberellin catabolism during thigmomorphogenesis in Arabidopsis. Plant Physiology 194:758−73

doi: 10.1093/plphys/kiad556
[43]

Zhu T, Herrfurth C, Xin M, Savchenko T, Feussner I, et al. 2021. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth. Nature Communications 12:4804

doi: 10.1038/s41467-021-24883-2
[44]

Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, et al. 2020. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal 102:138−52

doi: 10.1111/tpj.14618
[45]

Agrawal R, Sharma M, Dwivedi N, Maji S, Thakur P, et al. 2022. MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis. Plant Physiology 189:2259−80

doi: 10.1093/plphys/kiac220
[46]

Monte I, Ishida S, Zamarreño AM, Hamberg M, Franco-Zorrilla JM, et al. 2018. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nature Chemical Biology 14:480−88

doi: 10.1038/s41589-018-0033-4
[47]

Kneeshaw S, Soriano G, Monte I, Hamberg M, Zamarreño ÁM, et al. 2022. Ligand diversity contributes to the full activation of the jasmonate pathway in Marchantia polymorpha. Proceedings of the National Academy of Sciences of the United States of America 119:e2202930119

doi: 10.1073/pnas.2202930119
[48]

Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, et al. 2024. Phytohormone profiling in an evolutionary framework. Nature Communications 15:3875

doi: 10.1038/s41467-024-47753-z
[49]

Senaratna T, Touchell D, Bunn E, Dixon K. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30:157−61

doi: 10.1023/A:1006386800974
[50]

Chu W, Chang S, Lin J, Zhang C, Li J, et al. 2024. Methyltransferase TaSAMT1 mediates wheat freezing tolerance by integrating brassinosteroid and salicylic acid signaling. The Plant Cell 36:2607−28

doi: 10.1093/plcell/koae100
[51]

Rossi FR, Gárriz A, Marina M, Pieckenstain FL. 2021. Modulation of polyamine metabolism in Arabidopsis thaliana by salicylic acid. Physiologia Plantarum 173:843−55

doi: 10.1111/ppl.13478
[52]

Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, et al. 2013. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. The Plant Journal 73:91−104

doi: 10.1111/tpj.12014
[53]

Castro PH, Couto D, Santos MÂ, Freitas S, Lourenço T, et al. 2022. SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. Plant Physiology 189:934−54

doi: 10.1093/plphys/kiac085
[54]

Li S, He L, Yang Y, Zhang Y, Han X, et al. 2024. INDUCER OF CBF EXPRESSION 1 promotes cold-enhanced immunity by directly activating salicylic acid signaling. The Plant Cell 36:2587−606

doi: 10.1093/plcell/koae096
[55]

Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17:1043−54

doi: 10.1101/gad.1077503
[56]

Kidokoro S, Kim JS, Ishikawa T, Suzuki T, Shinozaki K, Yamaguchi-Shinozaki K. 2020. DREB1A/CBF3 is repressed by transgene-induced DNA methylation in the Arabidopsis ice1-1 mutant. The Plant Cell 32:1035−48

doi: 10.1105/tpc.19.00532
[57]

Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, et al. 2008. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. The Plant Cell 20:1775−85

doi: 10.1105/tpc.108.060848
[58]

Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, et al. 2013. ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiology 162:319−32

doi: 10.1104/pp.113.216341
[59]

Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, et al. 2012. Making sense of low oxygen sensing. Trends in Plant Science 17:129−38

doi: 10.1016/j.tplants.2011.12.004
[60]

Xie Z, Jin L, Sun Y, Zhan C, Tang S, et al. 2024. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. Plant Communications 5:100782

doi: 10.1016/j.xplc.2023.100782
[61]

Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D. 2017. Exploiting DELLA signaling in cereals. Trends in Plant Science 22:880−93

doi: 10.1016/j.tplants.2017.07.010
[62]

Feng X, Xiong J, Zhang W, Guan H, Zheng D, et al. 2022. ZmLBD5, a class-II LBD gene, negatively regulates drought tolerance by impairing abscisic acid synthesis. The Plant Journal 112:1364−76

doi: 10.1111/tpj.16015
[63]

Band LR, Nelissen H, Preston SP, Rymen B, Prinsen E, et al. 2022. Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold. Proceedings of the National Academy of Sciences of the United States of America 119:e2121288119

doi: 10.1073/pnas.2121288119
[64]

Zheng L, Hu Y, Yang T, Wang Z, Wang D, et al. 2024. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis. Nature Communications 15:2061

doi: 10.1038/s41467-024-46482-7
[65]

Zhang Y, Li Y, de Zeeuw T, Duijts K, Kawa D, et al. 2024. Root branching under high salinity requires auxin-independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function. The Plant Cell 36:899−918

doi: 10.1093/plcell/koad317
[66]

Duan E, Lin Q, Wang Y, Ren Y, Xu H, et al. 2023. The transcriptional hub SHORT INTERNODES1 integrates hormone signals to orchestrate rice growth and development. The Plant Cell 35:2871−86

doi: 10.1093/plcell/koad130
[67]

Waidmann S, Béziat C, Ferreira Da Silva Santos J, Feraru E, Feraru MI, et al. 2023. Endoplasmic reticulum stress controls PIN-LIKES abundance and thereby growth adaptation. Proceedings of the National Academy of Sciences of the United States of America 120:e2218865120

doi: 10.1073/pnas.2218865120
[68]

Ai H, Bellstaedt J, Bartusch KS, Eschen-Lippold L, Babben S, et al. 2023. Auxin-dependent regulation of cell division rates governs root thermomorphogenesis. EMBO Journal 42:e111926

doi: 10.15252/embj.2022111926
[69]

Sun Y, Zheng Y, Wang W, Yao H, Ali Z, et al. 2025. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. The Plant Cell 37:koae303

doi: 10.1093/plcell/koae303
[70]

Yamauchi T, Nakazono M. 2022. Mechanisms of lysigenous aerenchyma formation under abiotic stress. Trends in Plant Science 27:13−15

doi: 10.1016/j.tplants.2021.10.012
[71]

Tivendale ND, Belt K, Berkowitz O, Whelan J, Millar AH, et al. 2021. Knockdown of succinate dehydrogenase assembly factor 2 induces reactive oxygen species-mediated auxin hypersensitivity causing pH-dependent root elongation. Plant & Cell Physiology 62:1185−98

doi: 10.1093/pcp/pcab061
[72]

El Arbi N, Nardeli SM, Šimura J, Ljung K, Schmid M. 2024. The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. New Phytologist 244:1408−21

doi: 10.1111/nph.20153
[73]

Zhao Q, Zhao PX, Wu Y, Zhong CQ, Liao H, et al. 2023. SUE4, a novel PIN1-interacting membrane protein, regulates acropetal auxin transport in response to sulfur deficiency. New Phytologist 237:78−87

doi: 10.1111/nph.18536
[74]

Noureddine J, Mu B, Hamidzada H, Mok WL, Bonea D, et al. 2024. Knockout of endoplasmic reticulum-localized molecular chaperone HSP90.7 impairs seedling development and cellular auxin homeostasis in Arabidopsis. The Plant Journal 119:218−36

doi: 10.1111/tpj.16754
[75]

Liu X, Wei J, Li S, Li J, Cao H, et al. 2025. MdHY5 positively regulates cold tolerance in apple by integrating the auxin and abscisic acid pathways. New Phytologist 246:2155−73

doi: 10.1111/nph.20333
[76]

Zhang P, Sharwood RE, Carroll A, Estavillo GM, von Caemmerer S, et al. 2025. Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis. The Plant Cell 37:koaf005

doi: 10.1093/plcell/koaf005
[77]

Liu Y, Xie Y, Xu D, Deng XW, Li J. 2025. Inactivation of GH3.5 by COP1-mediated K63-linked ubiquitination promotes seedling hypocotyl elongation. Nature Communications 16:3541

doi: 10.1038/s41467-025-58767-6
[78]

Wu F, Yahaya BS, Gong Y, He B, Gou J, et al. 2024. ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize. PLoS Genetics 20:e1011135

doi: 10.1371/journal.pgen.1011135
[79]

Renziehausen T, Chaudhury R, Hartman S, Mustroph A, Schmidt-Schippers RR. 2025. A mechanistic integration of hypoxia signaling with energy, redox, and hormonal cues. Plant Physiology 197:kiae596

doi: 10.1093/plphys/kiae596
[80]

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189−94

doi: 10.1038/nature07271
[81]

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195−200

doi: 10.1038/nature07272
[82]

Li Q, Martín-Fontecha ES, Khosla A, White ARF, Chang S, et al. 2022. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. Plant Communications 3:100303

doi: 10.1016/j.xplc.2022.100303
[83]

Wang X, Li Z, Shi Y, Liu Z, Zhang X, et al. 2023. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. EMBO Journal 42:e112999

doi: 10.15252/embj.2022112999
[84]

Seto Y, Kameoka H, Yamaguchi S, Kyozuka J. 2012. Recent advances in strigolactone research: chemical and biological aspects. Plant & Cell Physiology 53:1843−53

doi: 10.1093/pcp/pcs142
[85]

Yuan K, Zhang H, Yu C, Luo N, Yan J, et al. 2023. Low phosphorus promotes NSP1−NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. Molecular Plant 16:1811−31

doi: 10.1016/j.molp.2023.09.022
[86]

Marzec M, Daszkowska-Golec A, Collin A, Melzer M, Eggert K, et al. 2020. Barley strigolactone signalling mutant hvd14.d reveals the role of strigolactones in abscisic acid-dependent response to drought. Plant, Cell & Environment 43:2239−53

doi: 10.1111/pce.13815
[87]

Lv S, Zhang Y, Li C, Liu Z, Yang N, et al. 2018. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytologist 217:290−304

doi: 10.1111/nph.14813
[88]

Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, et al. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America 111:851−56

doi: 10.1073/pnas.1322135111
[89]

Zheng X, Zhang J, Zhao M, Su Z, Li H, et al. 2025. Strigolactones, ROS and ABA regulate systemic salt-tolerance priming signals between dodder-connected tobacco plants. Plant, Cell & Environment 48:4370−84

doi: 10.1111/pce.15438
[90]

Zhao M, Zheng X, Su Z, Shen G, Xu Y, et al. 2025. MicroRNA399s and strigolactones mediate systemic phosphate signaling between dodder-connected host plants and control association of host plants with rhizosphere microbes. New Phytologist 245:1263−76

doi: 10.1111/nph.20266
[91]

Chi C, Chen X, Zhu C, Cao J, Li H, et al. 2025. Strigolactones positively regulate HY5-dependent autophagy and the degradation of ubiquitinated proteins in response to cold stress in tomato. New Phytologist 245:1106−23

doi: 10.1111/nph.20058
[92]

Zhang Y, Li J, Guo K, Wang T, Gao L, et al. 2024. Strigolactones alleviate AlCl3 stress by vacuolar compartmentalization and cell wall blocking in apple. Plant Journal 119:197−217

doi: 10.1111/tpj.16753
[93]

Nagatoshi Y, Ikazaki K, Kobayashi Y, Mizuno N, Sugita R, et al. 2023. Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants. Nature Communications 14:5047

doi: 10.1038/s41467-023-40773-1
[94]

Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, et al. 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America 104:19631−6

doi: 10.1073/pnas.0709453104
[95]

Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, et al. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell 23:2169−83

doi: 10.1105/tpc.111.087395
[96]

Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Ha CV, Fujita Y, et al. 2013. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceedings of the National Academy of Sciences of the United States of America 110:4840−5

doi: 10.1073/pnas.1302265110
[97]

Nguyen KH, Ha CV, Nishiyama R, Watanabe Y, Leyva-González MA, et al. 2016. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proceedings of the National Academy of Sciences of the United States of America 113:3090−95

doi: 10.1073/pnas.1600399113
[98]

Abdelrahman M, Nishiyama R, Tran CD, Kusano M, Nakabayashi R, et al. 2021. Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 118:e2105021118

doi: 10.1073/pnas.2105021118
[99]

Yan Z, Wang J, Wang F, Xie C, Lv B, et al. 2021. MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Reports 22:e52457

doi: 10.15252/embr.202152457
[100]

Kieber JJ, Schaller GE. 2014. Cytokinins. The Arabidopsis Book 12:e0168

doi: 10.1199/tab.0168
[101]

Hussain A, Black CR, Taylor IB, Roberts JA. 1999. Soil compaction. A role for ethylene in regulating leaf expansion and shoot growth in tomato? Plant Physiology 121:1227−37

doi: 10.1104/pp.121.4.1227
[102]

Pandey BK, Huang G, Bhosale R, Hartman S, Sturrock CJ, et al. 2021. Plant roots sense soil compaction through restricted ethylene diffusion. Science 371:276−80

doi: 10.1126/science.abf3013
[103]

Li XK, Huang YH, Zhao R, Cao WQ, Lu L, et al. 2024. Membrane protein MHZ3 regulates the on-off switch of ethylene signaling in rice. Nature Communications 15:5987

doi: 10.1038/s41467-024-50290-4
[104]

Ma B, Zhou Y, Chen H, He SJ, Huang YH, et al. 2018. Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain. Proceedings of the National Academy of Sciences of the United States of America 115:2520−25

doi: 10.1073/pnas.1718377115
[105]

Dubois M, Van den Broeck L, Claeys H, Van Vlierberghe K, Matsui M, et al. 2015. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiology 169:166−79

doi: 10.1104/pp.15.00335
[106]

Hao D, Jin L, Wen X, Yu F, Xie Q, et al. 2021. The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 118:e2024592118

doi: 10.1073/pnas.2024592118
[107]

Shao Z, Bai Y, Huq E, Qiao H. 2024. LHP1 and INO80 cooperate with ethylene signaling for warm ambient temperature response by activating specific bivalent genes. Cell Reports 43:114758

doi: 10.1016/j.celrep.2024.114758
[108]

Huang J, Zhao X, Bürger M, Wang Y, Chory J. 2021. Two interacting ethylene response factors regulate heat stress response. The Plant Cell 33:338−57

doi: 10.1093/plcell/koaa026
[109]

Shao Z, Bian L, Ahmadi SK, Daniel TJ, Belmonte MA, et al. 2024. Nuclear pyruvate dehydrogenase complex regulates histone acetylation and transcriptional regulation in the ethylene response. Science Advances 10:eado2825

doi: 10.1126/sciadv.ado2825
[110]

Cho HY, Chou MY, Ho HY, Chen WC, Shih MC. 2022. Ethylene modulates translation dynamics in Arabidopsis under submergence via GCN2 and EIN2. Science Advances 8:eabm7863

doi: 10.1126/sciadv.abm7863
[111]

Huang YH, Han JQ, Ma B, Cao WQ, Li XK, et al. 2023. A translational regulator MHZ9 modulates ethylene signaling in rice. Nature Communications 14:4674

doi: 10.1038/s41467-023-40429-0
[112]

Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P. 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353−64

doi: 10.1007/s00425-006-0361-6
[113]

Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, et al. 2016. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences of the United States of America 113:5982−87

doi: 10.1073/pnas.1601505113
[114]

Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, et al. 2016. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports 6:28298

doi: 10.1038/srep28298
[115]

Feng Y, Yin Y, Fei S. 2015. Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Science 234:163−73

doi: 10.1016/j.plantsci.2015.02.015
[116]

Ye H, Liu S, Tang B, Chen J, Xie Z, et al. 2017. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications 8:14573

doi: 10.1038/ncomms14573
[117]

Chen J, Nolan TM, Ye H, Zhang M, Tong H, et al. 2017. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. The Plant Cell 29:1425−39

doi: 10.1105/tpc.17.00364
[118]

Fàbregas N, Lozano-Elena F, Blasco-Escámez D, Tohge T, Martínez-Andújar C, et al. 2018. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature Communications 9:4680

doi: 10.1038/s41467-018-06861-3
[119]

Fontanet-Manzaneque JB, Laibach N, Herrero-García I, Coleto-Alcudia V, Blasco-Escámez D, et al. 2024. Untargeted mutagenesis of brassinosteroid receptor SbBRI1 confers drought tolerance by altering phenylpropanoid metabolism in Sorghum bicolor. Plant Biotechnology Journal 22:3406−23

doi: 10.1111/pbi.14461
[120]

Albertos P, Dündar G, Schenk P, Carrera S, Cavelius P, et al. 2022. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. EMBO Journal 41:e108664

doi: 10.15252/embj.2021108664
[121]

Luo J, Jiang J, Sun S, Wang X. 2022. Brassinosteroids promote thermotolerance through releasing BIN2-mediated phosphorylation and suppression of HsfA1 transcription factors in Arabidopsis. Plant Communications 3:100419

doi: 10.1016/j.xplc.2022.100419
[122]

Gupta A, Rico-Medina A, Lozano-Elena F, Marqués-Bueno M, Fontanet JB, et al. 2023. Brassinosteroid receptor BRL3 triggers systemic plant adaptation to elevated temperature from the phloem cells. bioRxiv 2023.03.07.531487 (Preprint)

doi: 10.1101/2023.03.07.531487
[123]

Cai Z, Tang Q, Song P, Tian E, Yang J, et al. 2024. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. The Plant Cell 36:2908−26

doi: 10.1093/plcell/koae149
[124]

Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, et al. 2018. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology 177:476−89

doi: 10.1104/pp.18.00293