[1]

Henley MJ, Koehler AN. 2021. Advances in targeting 'undruggable' transcription factors with small molecules. Nature Reviews Drug Discovery 20:669−688

doi: 10.1038/s41573-021-00199-0
[2]

Pathmanathan S, Grozavu I, Lyakisheva A, Stagljar I. 2022. Drugging the undruggable proteins in cancer: a systems biology approach. Current Opinion in Chemical Biology 66:102079

doi: 10.1016/j.cbpa.2021.07.004
[3]

Dang CV, Reddy EP, Shokat KM, Soucek L. 2017. Drugging the 'undruggable' cancer targets. Nature Reviews Cancer 17:502−508

doi: 10.1038/nrc.2017.36
[4]

Costales MG, Matsumoto Y, Velagapudi SP, Disney MD. 2018. Small molecule targeted recruitment of a nuclease to RNA. Journal of the American Chemical Society 140:6741−6744

doi: 10.1021/jacs.8b01233
[5]

Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. 2021. RNA-PROTACs: degraders of RNA-binding proteins. Angewandte Chemie 60:3163−3169

doi: 10.1002/anie.202012330
[6]

Dey SK, Jaffrey SR. 2019. RIBOTACs: small molecules target RNA for degradation. Cell Chemical Biology 26:1047−1049

doi: 10.1016/j.chembiol.2019.07.015
[7]

Zhang P, Liu X, Abegg D, Tanaka T, Tong Y, et al. 2021. Reprogramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. Journal of the American Chemical Society 143:13044−13055

doi: 10.1021/jacs.1c02248
[8]

Costales MG, Aikawa H, Li Y, Childs-Disney JL, Abegg D, et al. 2020. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proceedings of the National Academy of Sciences of the United States of America 117:2406−2411

doi: 10.1073/pnas.1914286117
[9]

Opalinska JB, Gewirtz AM. 2002. Nucleic-acid therapeutics: basic principles and recent applications. Nature Reviews Drug Discovery 1:503−514

doi: 10.1038/nrd837
[10]

Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, et al. 2018. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine 379:11−21

doi: 10.1056/NEJMoa1716153
[11]

Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, et al. 2018. Nusinersen versus sham control in later-onset spinal muscular atrophy. The New England Journal of Medicine 378:625−635

doi: 10.1056/NEJMoa1710504
[12]

Frampton JE. 2023. Inclisiran: a review in hypercholesterolemia. American Journal of Cardiovascular Drugs 23:219−230

doi: 10.1007/s40256-023-00568-7
[13]

Mak LY, Gane E, Schwabe C, Yoon KT, Heo J, et al. 2023. A phase I/II study of ARO-HSD, an RNA interference therapeutic, for the treatment of non-alcoholic steatohepatitis. Journal of Hepatology 78:684−692

doi: 10.1016/j.jhep.2022.11.025
[14]

Gane E, Lim YS, Kim JB, Jadhav V, Shen L, et al. 2023. Evaluation of RNAi therapeutics VIR-2218 and ALN-HBV for chronic hepatitis B: results from randomized clinical trials. Journal of Hepatology 79:924−932

doi: 10.1016/j.jhep.2023.05.023
[15]

Magoola M, Niazi SK. 2025. Current progress and future perspectives of RNA-based cancer vaccines: a 2025 update. Cancers 17(11):1882

doi: 10.3390/cancers17111882
[16]

Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, et al. 2024. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. The Lancet 403:632−644

doi: 10.1016/S0140-6736(23)02268-7
[17]

Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, et al. 2023. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618:144−150

doi: 10.1038/s41586-023-06063-y
[18]

Paunovska K, Loughrey D, Dahlman JE. 2022. Drug delivery systems for RNA therapeutics. Nature Reviews Genetics 23:265−280

doi: 10.1038/s41576-021-00439-4
[19]

Naeem S, Zhang J, Zhang Y, Wang Y. 2025. Nucleic acid therapeutics: past, present, and future. Molecular Therapy Nucleic Acids 36:102440

doi: 10.1016/j.omtn.2024.102440