[1]

Yang Y, Grossart HP. 2024. Antibiotic resistance genes: a global change factor. Global Change Biology 30:e17448

doi: 10.1111/gcb.17448
[2]

Kalashnikov M, Mueller M, McBeth C, Lee JC, Campbell J, et al. 2017. Rapid phenotypic stress-based microfluidic antibiotic susceptibility testing of Gram-negative clinical isolates. Scientific Reports 7:8031

doi: 10.1038/s41598-017-07584-z
[3]

Fenical W, Jensen PR. 2006. Developing a new resource for drug discovery: marine actinomycete bacteria. Nature Chemical Biology 2:666−673

doi: 10.1038/nchembio841
[4]

Li K, Zhu Y, Shi X, Yan M, Li J, et al. 2024. Effects of Zn and oxytetracycline on mobile genetic elements, antibiotic resistance genes, and microbial community evolution in soil. Environmental Pollution 341:122609

doi: 10.1016/j.envpol.2023.122609
[5]

Wang X, Lan B, Fei H, Wang S, Zhu G. 2021. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Journal of Hazardous Materials 411:124848

doi: 10.1016/j.jhazmat.2020.124848
[6]

Song L, Jiang G, Wang C, Ma J, Chen H. 2022. Effects of antibiotics consumption on the behavior of airborne antibiotic resistance genes in chicken farms. Journal of Hazardous Materials 437:129288

doi: 10.1016/j.jhazmat.2022.129288
[7]

Song L, Wang C, Jiang G, Ma J, Li Y, et al. 2021. Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Environment International 154:106559

doi: 10.1016/j.envint.2021.106559
[8]

Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP. 2020. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9:918

doi: 10.3390/antibiotics9120918
[9]

Sarmah AK, Meyer MT, Boxall ABA. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725−759

doi: 10.1016/j.chemosphere.2006.03.026
[10]

Gaballah MS, Guo J, Sun H, Aboagye D, Sobhi M, et al. 2021. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. Bioresource Technology 333:125069

doi: 10.1016/j.biortech.2021.125069
[11]

Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, et al. 2019. Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology 17:441−448

doi: 10.1038/s41579-019-0196-3
[12]

Zhou L, Li S, Li F. 2022. Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. Environmental Research 215:114188

doi: 10.1016/j.envres.2022.114188
[13]

Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, et al. 2019. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178:1313−1328.e13

doi: 10.1016/j.cell.2019.08.010
[14]

Yang Y, Xing S, Chen Y, Wu R, Wu Y, et al. 2021. Profiles of bacteria/phage-comediated ARGs in pig farm wastewater treatment plants in China: association with mobile genetic elements, bacterial communities and environmental factors. Journal of Hazardous Materials 404:124149

doi: 10.1016/j.jhazmat.2020.124149
[15]

Yue Z, Zhang J, Zhou Z, Ding C, Wan L, et al. 2021. Pollution characteristics of livestock faeces and the key driver of the spread of antibiotic resistance genes. Journal of Hazardous Materials 409:124967

doi: 10.1016/j.jhazmat.2020.124957
[16]

He Y, Yuan Q, Mathieu J, Stadler L, Senehi N, et al. 2020. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water 3:4

doi: 10.1038/s41545-020-0051-0
[17]

Huygens J, Rasschaert G, Heyndrickx M, Dewulf J, Van Coillie E, et al. 2022. Impact of fertilization with pig or calf slurry on antibiotic residues and resistance genes in the soil. Science of The Total Environment 822:153518

doi: 10.1016/j.scitotenv.2022.153518
[18]

Ahmed I, Zhang Y, Sun P, Xie Y, Zhang B. 2023. Sensitive response mechanism of ARGs and MGEs to initial designed temperature during swine manure and food waste co-composting. Environmental Research 216:114513

doi: 10.1016/j.envres.2022.114513
[19]

Wang B, Song L, Li W, Hou La, Li J, et al. 2023. Distribution and migration of antibiotic resistance genes, as well as their correlation with microbial communities in swine farm and its surrounding environments. Environmental Pollution 316:120618

doi: 10.1016/j.envpol.2022.120618
[20]

Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. 2006. Co-selection of antibiotic and metal resistance. Trends in Microbiology 14:176−182

doi: 10.1016/j.tim.2006.02.006
[21]

Gao FZ, He LY, He LX, Zou HY, Zhang M, et al. 2020. Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables. Science of The Total Environment 741:140482

doi: 10.1016/j.scitotenv.2020.140482
[22]

Xu B, Zhang Y, He Y. 2023. The current situation of water pollutants and pollution source in Poyang Lake: a review. Theoretical and Natural Science 6:405−409

doi: 10.54254/2753-8818/6/20230307
[23]

Ding H, Qiao M, Zhong J, Zhu Y, Guo C, et al. 2020. Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. Water Research 174:115603

doi: 10.1016/j.watres.2020.115603
[24]

Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, et al. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America 110:3435−3440

doi: 10.1073/pnas.1222743110
[25]

Liu W, Qian J, Ding H, Li J, Liu J, et al. 2024. Synergistic interactions of light and dark biofilms in rotating algal biofilm system for enhanced aquaculture wastewater treatment. Bioresource Technology 400:130654

doi: 10.1016/j.biortech.2024.130654
[26]

Zhang Z, Zhang Q, Wang T, Xu N, Lu T, et al. 2022. Assessment of global health risk of antibiotic resistance genes. Nature Communications 13:1553

doi: 10.1038/s41467-022-29283-8
[27]

Eliyan C, McConville J, Zurbrügg C, Koottatep T, Sothea K, et al. 2024. Heavy metal contamination of faecal sludge for agricultural production in Phnom Penh, Cambodia. Journal of Environmental Management 349:119436

doi: 10.1016/j.jenvman.2023.119436
[28]

Hou D, Jia X, Wang L, McGrath SP, Zhu YG, et al. 2025. Global soil pollution by toxic metals threatens agriculture and human health. Science 388:316−321

doi: 10.1126/science.adr5214
[29]

National Environmental Protection Agency (National Environmental Protection Agency). 1990. 中国土壤元素背景值[Soil Element background values in China]. 中国环境科学出版社 [China Environment Publishing Group], China. pp. 329−493 (In Chinese)

[30]

Liu C, Feng C, Duan Y, Wang P, Peng C, et al. 2023. Ecological risk under the dual threat of heavy metals and antibiotic resistant Escherichia coli in swine-farming wastewater in Shandong Province, China. Environmental Pollution 319:120998

doi: 10.1016/j.envpol.2022.120998
[31]

Gourlez E, Beline F, Dourmad JY, Monteiro AR, Guiziou F, et al. 2024. The fate of Cu and Zn along the feed-animal-excreta-effluent continuum in swine systems according to feed and effluent treatment strategies. Journal of Environmental Management 354:120299

doi: 10.1016/j.jenvman.2024.120299
[32]

Błażejewska A, Zalewska M, Grudniak A, Popowska M. 2022. A comprehensive study of the microbiome, resistome, and physical and chemical characteristics of chicken waste from intensive farms. Biomolecules 12:1132

doi: 10.3390/biom12081132
[33]

Poach ME, Hunt PG, Reddy GB, Stone KC, Johnson MH, et al. 2007. Effect of intermittent drainage on swine wastewater treatment by marsh–pond–marsh constructed wetlands. Ecological Engineering 30:43−50

doi: 10.1016/j.ecoleng.2007.01.003
[34]

Partridge SR, Tsafnat G, Coiera E, Iredell JR. 2009. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiology Reviews 33:757−784

doi: 10.1111/j.1574-6976.2009.00175.x
[35]

Dawangpa A, Lertwatcharasarakul P, Ramasoota P, Boonsoongnern A, Ratanavanichrojn N, et al. 2021. Genotypic and phenotypic situation of antimicrobial drug resistance of Escherichia coli in water and manure between biogas and non-biogas swine farms in central Thailand. Journal of Environmental Management 279:111659

doi: 10.1016/j.jenvman.2020.111659
[36]

Zagui GS, de Almeida OGG, Moreira NC, Silva NGA, Meschede MSC, et al. 2024. Hospital wastewater as source of human pathogenic bacteria: a phenotypic and genomic analysis of international high-risk clone VIM-2-producing Pseudomonas aeruginosa ST235/O11. Environmental Research 279:119166

doi: 10.1016/j.envres.2024.119166
[37]

Lu Y, Wang J, Wang X, Meng X, Yan S, et al. 2022. Sludge conditioning treatments impact the fate of antibiotic resistance genes in agricultural soils amended with sludge composts. ACS ES&T Engineering 2:1920−1932

doi: 10.1021/acsestengg.2c00113
[38]

Zhou SYD, Wei MY, Giles M, Neilson R, Zheng F, et al. 2020. Prevalence of antibiotic resistome in ready-to-eat salad. Frontiers in Public Health 8:92

doi: 10.3389/fpubh.2020.00092
[39]

Wang H, Wang X, Zhang L, Zhang X, Cao Y, et al. 2024. Meta-analysis addressing the potential of antibiotic resistance gene elimination through aerobic composting. Waste Management 182:197−206

doi: 10.1016/j.wasman.2024.04.034
[40]

Zhao K, Yin X, Wang N, Chen N, Jiang Y, et al. 2024. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: a review of future strategy for livestock manure resource utilization. Journal of Environmental Management 370:122766

doi: 10.1016/j.jenvman.2024.122766
[41]

Wang G, Li G, Chang J, Kong Y, Jiang T, et al. 2021. Enrichment of antibiotic resistance genes after sheep manure aerobic heap composting. Bioresource Technology 323:124620

doi: 10.1016/j.biortech.2020.124620
[42]

Keenum I, Williams RK, Ray P, Garner ED, Knowlton KF, et al. 2021. Combined effects of composting and antibiotic administration on cattle manure–borne antibiotic resistance genes. Microbiome 9:81

doi: 10.1186/s40168-021-01006-z
[43]

Liao H, Lu X, Rensing C, Friman VP, Geisen S, et al. 2018. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environmental Science & Technology 52:266−276

doi: 10.1021/acs.est.7b04483
[44]

Luisa de Castro e Silva H, Ghysels S, Robles-Aguilar AA, Akyol Ç, Ronsse F, et al. 2024. Hydrothermal carbonisation of manure-derived digestates: chemical properties and heavy metals distribution in end-products. Chemical Engineering Journal 496:154110

doi: 10.1016/j.cej.2024.154110
[45]

Ipiales RP, Lelli G, Diaz E, Diaz-Portuondo E, Mohedano AF, et al. 2024. Study of two approaches for the process water management from hydrothermal carbonization of swine manure: anaerobic treatment and nutrient recovery. Environmental Research 246:118098

doi: 10.1016/j.envres.2024.118098
[46]

He Y, Zhao X, Zhu S, Yuan L, Li X, et al. 2023. Conversion of swine manure into biochar for soil amendment: efficacy and underlying mechanism of dissipating antibiotic resistance genes. Science of The Total Environment 871:162046

doi: 10.1016/j.scitotenv.2023.162046
[47]

Li K, Rahman SU, Rehman A, Li H, Hui N, et al. 2025. Shaping rhizocompartments and phyllosphere microbiomes and antibiotic resistance genes: the influence of different fertilizer regimes and biochar application. Journal of Hazardous Materials 487:137148

doi: 10.1016/j.jhazmat.2025.137148
[48]

Wang X, Zhang L, Gu J, Feng Y, He K, et al. 2023. Effects of soil solarization combined with manure-amended on soil ARGs and microbial communities during summer fallow. Environmental Pollution 333:121950

doi: 10.1016/j.envpol.2023.121950
[49]

Duan M, Gu J, Wang X, Li Y, Zhang R, et al. 2019. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and Environmental Safety 180:114−122

doi: 10.1016/j.ecoenv.2019.05.005
[50]

Li R, Li S, Yan Y, Xie Y, Zhao J, et al. 2025. Mitigating the health risk of antibiotic resistance genes through reductive soil disinfestation in protected agroecosystems. Journal of Hazardous Materials 483:136647

doi: 10.1016/j.jhazmat.2024.136647
[51]

Xu F, Guan J, Zhou Y, Song Z, Shen Y, et al. 2023. Effects of freeze-thaw dynamics and microplastics on the distribution of antibiotic resistance genes in soil aggregates. Chemosphere 329:138678

doi: 10.1016/j.chemosphere.2023.138678
[52]

Wu Y, Li S, Yu K, Hu J, Chen Q, et al. 2023. Wastewater treatment plant effluents exert different impacts on antibiotic resistome in water and sediment of the receiving river: metagenomic analysis and risk assessment. Journal of Hazardous Materials 460:132528

doi: 10.1016/j.jhazmat.2023.132528
[53]

Li YJ, Yuan Y, Tan WB, Xi BD, Wang H, et al. 2024. Antibiotic resistance genes and heavy metals in landfill: a review. Journal of Hazardous Materials 464:132395

doi: 10.1016/j.jhazmat.2023.132395
[54]

Liu C, Li B, Wu B, Lin H, Jiang L, et al. 2022. How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Journal of Hazardous Materials 437:129279

doi: 10.1016/j.jhazmat.2022.129279
[55]

Yu MF, Chen L, Liu G, Liu W, Yang Y, et al. 2025. Metagenomic deciphers the mobility and bacterial hosts of antibiotic resistance genes under antibiotics and heavy metals co-selection pressures in constructed wetlands. Environmental Research 269:120921

doi: 10.1016/j.envres.2025.120921
[56]

Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, et al. 2006. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology 8:1510−1514

doi: 10.1111/j.1462-2920.2006.01091.x
[57]

Li L, Liu X, Li J, Chen Z, Song T, et al. 2024. Mitigating Tetracycline antibiotic contamination in chicken manure using ex situ fermentation system. Journal of Environmental Management 356:120614

doi: 10.1016/j.jenvman.2024.120614
[58]

dos Santos Lopes E, Ferreira Santaren KC, Araujo de Souza LC, Parente CET, Picão RC, et al. 2024. Cross-environmental cycling of antimicrobial resistance in agricultural areas fertilized with poultry litter: a one health approach. Environmental Pollution 363:125177

doi: 10.1016/j.envpol.2024.125177
[59]

Liebert CA, Hall RM, Summers AO. 1999. Transposon Tn21, flagship of the floating genome. Microbiology and Molecular Biology Reviews 63:507−522

doi: 10.1128/mmbr.63.3.507-522.1999
[60]

Chapman JS. 2003. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. International Biodeterioration & Biodegradation 51:271−276

doi: 10.1016/s0964-8305(03)00044-1
[61]

Ni Z, Gong Z, Song L, Jia C, Zhang X. 2024. Adaptation strategies and functional transitions of microbial community in pyrene-contaminated soils promoted by lead with Pseudomonas veronii and its extracellular polymeric substances. Chemosphere 351:141139

doi: 10.1016/j.chemosphere.2024.141139
[62]

Guo X, Qi Z, Li J, Tong H, Ren N, et al. 2024. Overlooked volcanic effect during transmission of antibiotic resistance genes induced by copper and zinc. Chemosphere 362:142713

doi: 10.1016/j.chemosphere.2024.142713
[63]

Wei H, Wu X, Chen A, Liu K, Lv Z, et al. 2025. Reserve and proliferation characteristics of antibiotic resistance genes and heavy metal resistance genes in the sewage pipe biofilm under the stress of Cu and Zn. Journal of Environmental Chemical Engineering 489:137559

doi: 10.1016/j.jece.2025.116162
[64]

Li W, Zhang WG, Zhang MS, Lei ZF, Li PF, et al. 2022. Environmentally relevant concentrations of mercury facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Science of The Total Environment 852:158272

doi: 10.1016/j.scitotenv.2022.158272
[65]

Hu HW, Wang JT, Li J, Shi XZ, Ma YB, et al. 2016. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environmental Science & Technology 51:790−800

doi: 10.1021/acs.est.6b03383