[1]

Lu H, Hu L, Zheng W, Yao S, Qian L. 2020. Impact of household land endowment and environmental cognition on the willingness to implement straw incorporation in China. Journal of Cleaner Production 262:121479

doi: 10.1016/j.jclepro.2020.121479
[2]

Huang L, Zhu Y, Wang Q, Zhu A, Liu Z, et al. 2021. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. Science of The Total Environment 789:147935

doi: 10.1016/j.scitotenv.2021.147935
[3]

Li L, Wang Y, Zhang Q, Li J, Yang X, et al. 2008. Wheat straw burning and its associated impacts on Beijing air quality. Science in China Series D: Earth Sciences 51:403−414

doi: 10.1007/s11430-008-0021-8
[4]

Chang Z, Shen G, Jiang K, Huang W, Zhao J, et al. 2024. Environmental implications of residual pyrogenic carbonaceous materials from incomplete biomass combustion: a review. Carbon Research 3:15

doi: 10.1007/s44246-024-00103-6
[5]

Ren S, Wang K, Zhang J, Li J, Zhang H, et al. 2024. Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: a typical case of China. Critical Reviews in Environmental Science and Technology 54:533−556

doi: 10.1080/10643389.2023.2259275
[6]

Hu J, He D, Zhang X, Li X, Chen Y, et al. 2022. National-scale distribution of micro(meso)plastics in farmland soils across China: implications for environmental impacts. Journal of Hazardous Materials 424:127283

doi: 10.1016/j.jhazmat.2021.127283
[7]

Zhao X, Tang H, Jiang X. 2022. Deploying gold nanomaterials in combating multi-drug-resistant bacteria. ACS Nano 16:10066−10087

doi: 10.1021/acsnano.2c02269
[8]

Ebmeyer S, Kristiansson E, Joakim Larsson DG. 2025. Unraveling the origins of mobile antibiotic resistance genes using random forest classification of large-scale genomic data. Environment International 198:109374

doi: 10.1016/j.envint.2025.109374
[9]

Vikesland PJ, Pruden A, Alvarez PJJ, Aga D, Bürgmann H, et al. 2017. Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environmental Science & Technology 51:13061−13069

doi: 10.1021/acs.est.7b03623
[10]

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, et al. 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology 13:310−317

doi: 10.1038/nrmicro3439
[11]

Shao B, Liu Z, Tang L, Liu Y, Liang Q, et al. 2022. The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: a review. Journal of Hazardous Materials 435:129067

doi: 10.1016/j.jhazmat.2022.129067
[12]

Li J, Cao J, Zhu YG, Chen QL, Shen F, et al. 2018. Global survey of antibiotic resistance genes in air. Environmental Science & Technology 52:10975−10984

doi: 10.1021/acs.est.8b02204
[13]

Zhang X, Wang J, Yang Z, Zhang Z, Wang M, et al. 2025. Microplastics exacerbated conjugative transfer of antibiotic resistance genes during ultraviolet disinfection: highlighting difference between conventional and biodegradable ones. Environmental Science & Technology 59:834−845

doi: 10.1021/acs.est.4c10991
[14]

Xia R, Yin X, Balcazar JL, Huang D, Liao J, et al. 2025. Bacterium-phage symbiosis facilitates the enrichment of bacterial pathogens and antibiotic-resistant bacteria in the plastisphere. Environmental Science & Technology 59:2948−2960

doi: 10.1021/acs.est.4c08265
[15]

Yang QE, Lin Z, Gan D, Li M, Liu X, et al. 2025. Microplastics mediates the spread of antimicrobial resistance plasmids via modulating conjugal gene expression. Environment International 195:109261

doi: 10.1016/j.envint.2025.109261
[16]

Li N, Zheng N, Pan J, An Q, Li X, et al. 2024. Distribution and major driving elements of antibiotic resistance genes in the soil-vegetable system under microplastic stress. Science of the Total Environment 906:167619

doi: 10.1016/j.scitotenv.2023.167619
[17]

Chen QL, Fan XT, Zhu D, An XL, Su JQ, et al. 2018. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L. Soil Biology and Biochemistry 119:74−82

doi: 10.1016/j.soilbio.2018.01.015
[18]

Tian S, Sun X, Xiao H, Zhou Y, Huang X, et al. 2023. Evaluation of rice straw and its transformation products on norfloxacin degradation and antibiotic resistome attenuation during soil incorporation. Chemosphere 313:137451

doi: 10.1016/j.chemosphere.2022.137451
[19]

Fu Y, Jia M, Wang F, Wang Z, Mei Z, et al. 2021. Strategy for mitigating antibiotic resistance by biochar and hyperaccumulators in cadmium and oxytetracycline co-contaminated soil. Environmental Science & Technology 55:16369−16378

doi: 10.1021/acs.est.1c03434
[20]

Wu C, Ma Y, Wang D, Shan Y, Song X, et al. 2022. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. Journal of Hazardous Materials 423:127258

doi: 10.1016/j.jhazmat.2021.127258
[21]

Chen H, Wang Y, Sun X, Peng Y, Xiao L. 2020. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243:125271

doi: 10.1016/j.chemosphere.2019.125271
[22]

Hu C, Lei F, Zhang X, Shi J, Li J, et al. 2023. Black carbon derived from pyrolysis of maize straw and polystyrene microplastics affects soil biodiversity. Science of The Total Environment 881:163398

doi: 10.1016/j.scitotenv.2023.163398
[23]

Wang Y, Wang X, Li Y, Li J, Liu Y, et al. 2021. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline. Chemical Engineering Journal 404:126412

doi: 10.1016/j.cej.2020.126412
[24]

Yuan X, Ma S, Geng H, Cao M, Chen H, et al. 2024. Joint effect of black carbon deriving from wheat straw burning and plastic mulch film debris on the soil biochemical properties, bacterial and fungal communities. Science of The Total Environment 947:174522

doi: 10.1016/j.scitotenv.2024.174522
[25]

Lozano YM, Lehnert T, Linck LT, Lehmann A, Rillig MC. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science 12:616645

doi: 10.3389/fpls.2021.616645
[26]

Waldman WR, Rillig MC. 2020. Microplastic research should embrace the complexity of secondary particles. Environmental Science & Technology 54:7751−7753

doi: 10.1021/acs.est.0c02194
[27]

Li C, Cui Q, Li Y, Zhang K, Lu X, et al. 2022. Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation. Journal of Hazardous Materials 429:128353

doi: 10.1016/j.jhazmat.2022.128353
[28]

Francesca Cotrufo M, Lavallee JM, Zhang Y, Hansen PM, Paustian KH, et al. 2021. In-N-Out: a hierarchical framework to understand and predict soil carbon storage and nitrogen recycling. Global Change Biology 27:4465−4468

doi: 10.1111/gcb.15782
[29]

Zhang Z, Peng W, Duan C, Zhu X, Wu H, et al. 2022. Microplastics pollution from different plastic mulching years accentuate soil microbial nutrient limitations. Gondwana Research 108:91−101

doi: 10.1016/j.gr.2021.07.028
[30]

Zhou J, Xu H, Xiang Y, Wu J. 2024. Effects of microplastics pollution on plant and soil phosphorus: a meta-analysis. Journal of Hazardous Materials 461:132705

doi: 10.1016/j.jhazmat.2023.132705
[31]

Sinsabaugh RL, Hill BH, Follstad Shah JJ. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795−798

doi: 10.1038/nature08632
[32]

Tapia-Torres Y, Elser JJ, Souza V, García-Oliva F. 2015. Ecoenzymatic stoichiometry at the extremes: how microbes cope in an ultra-oligotrophic desert soil. Soil Biology and Biochemistry 87:34−42

doi: 10.1016/j.soilbio.2015.04.007
[33]

Zhou QH, Wu ZB, Cheng SP, He F, Fu GP. 2005. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology and Biochemistry 37:1454−1459

doi: 10.1016/j.soilbio.2005.01.003
[34]

Huang Y, Zhao Y, Wang J, Zhang M, Jia W, et al. 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution 254:112983

doi: 10.1016/j.envpol.2019.112983
[35]

Song R, Sun Y, Li X, Ding C, Huang Y, et al. 2022. Biodegradable microplastics induced the dissemination of antibiotic resistance genes and virulence factors in soil: a metagenomic perspective. Science of The Total Environment 828:154596

doi: 10.1016/j.scitotenv.2022.154596
[36]

Lin X, Xu G, Li Y, Yu Y. 2024. Chemical fertilizers promote dissemination of ARGs in maize rhizosphere: an overlooked risk revealed after 37-year traditional agriculture practice. Science of The Total Environment 941:173737

doi: 10.1016/j.scitotenv.2024.173737
[37]

Liu D, Fang S, Tian Y, Dun X. 2014. Seasonal and clonal variations of microbial biomass and processes in the rhizosphere of poplar plantations. Applied Soil Ecology 78:65−72

doi: 10.1016/j.apsoil.2014.02.005
[38]

Liu L, Huang X, Zhang J, Cai Z, Jiang K, et al. 2020. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities. Soil Biology and Biochemistry 148:107909

doi: 10.1016/j.soilbio.2020.107909
[39]

Chen QL, Cui HL, Su JQ, Penuelas J, Zhu YG. 2019. Antibiotic resistomes in plant microbiomes. Trends in Plant Science 24:530−541

doi: 10.1016/j.tplants.2019.02.010
[40]

Mei Z, Xiang L, Wang F, Xu M, Fu Y, et al. 2021. Bioaccumulation of Manure-borne antibiotic resistance genes in carrot and its exposure assessment. Environment International 157:106830

doi: 10.1016/j.envint.2021.106830
[41]

Duan M, Li H, Gu J, Tuo X, Sun W, et al. 2017. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environmental Pollution 224:787−795

doi: 10.1016/j.envpol.2017.01.021
[42]

Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91−95

doi: 10.1038/nature11336
[43]

Xiang Q, Zhu D, Giles M, Neilson R, Yang XR, et al. 2020. Agricultural activities affect the pattern of the resistome within the phyllosphere microbiome in peri-urban environments. Journal of Hazardous Materials 382:121068

doi: 10.1016/j.jhazmat.2019.121068
[44]

Cao M, Wang F, Zhou B, Chen H, Yuan R, et al. 2023. Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. Journal of Hazardous Materials 443:130201

doi: 10.1016/j.jhazmat.2022.130201
[45]

Huerta B, Marti E, Gros M, López P, Pompêo M, et al. 2013. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Science of The Total Environment 456−457:161−170

doi: 10.1016/j.scitotenv.2013.03.071
[46]

Perry LL, Zylstra GJ. 2007. Cloning of a gene cluster involved in the catabolism of p-Nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-Nitrophenol monooxygenase. Journal of Bacteriology 189:7563−7572

doi: 10.1128/jb.01849-06
[47]

Luo Y, Wang F, Huang Y, Zhou M, Gao J, et al. 2019. Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Frontiers in Microbiology 10:1221

doi: 10.3389/fmicb.2019.01221
[48]

Liu L, Chen X, Hu S, Zhan Q, Peng W. 2021. Genetic diversity and distribution of rhizobia associated with soybean in red soil in Hunan Province. Archives of Microbiology 203:1971−1980

doi: 10.1007/s00203-020-02120-6
[49]

Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. 2015. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Systematic and Applied Microbiology 38:84−90

doi: 10.1016/j.syapm.2014.12.003
[50]

Degefu T, Wolde-Meskel E, Rasche F. 2018. Genetic diversity and symbiotic effectiveness of Bradyrhizobium strains nodulating selected annual grain legumes growing in Ethiopia. International Journal of Systematic and Evolutionary Microbiology 68:449−460

doi: 10.1099/ijsem.0.002486
[51]

Mason-Jones K, Breidenbach A, Dyckmans J, Banfield CC, Dippold MA. 2023. Intracellular carbon storage by microorganisms is an overlooked pathway of biomass growth. Nature Communications 14:2240

doi: 10.1038/s41467-023-37713-4
[52]

Mason-Jones K, Robinson SL, Veen GF, Manzoni S, van der Putten WH. 2022. Microbial storage and its implications for soil ecology. The ISME Journal 16:617−629

doi: 10.1038/s41396-021-01110-w
[53]

Zhao Z, Wang J, Han Y, Chen J, Liu G, et al. 2017. Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. Environmental Pollution 220:909−918

doi: 10.1016/j.envpol.2016.10.075