| [1] |
Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, et al. 2022. Genetic diversity loss in the Anthropocene. |
| [2] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, et al. 2002. Ecological responses to recent climate change. |
| [3] |
Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis‐McLane S. 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. |
| [4] |
Waldvogel AM, Feldmeyer B, Rolshausen G, Exposito-Alonso M, Rellstab C, et al. 2020. Evolutionary genomics can improve prediction of species' responses to climate change. |
| [5] |
de Lafontaine G, Napier JD, Petit RJ, Hu FS. 2018. Invoking adaptation to decipher the genetic legacy of past climate change. |
| [6] |
Browne L, Wright JW, Fitz-Gibbon S, Gugger PF, Sork VL. 2019. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. |
| [7] |
Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community‐level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. |
| [8] |
Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, et al. 2016. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. |
| [9] |
Exposito-Alonso M. 2023. Understanding local plant extinctions before it is too late: bridging evolutionary genomics with global ecology. |
| [10] |
Taylor SA, Larson EL, Harrison RG. 2015. Hybrid zones: windows on climate change. |
| [11] |
Aguirre-Liguori JA, Morales-Cruz A, Gaut BS. 2022. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. |
| [12] |
Rieseberg LH, Wendel JF. 1993. Introgression and its consequences. In Hybrid zones and the evolutionary process, ed. Harrison RG. New York, USA: Oxford University Press. pp. 70–109 doi: 10.1093/oso/9780195069174.003.0004 |
| [13] |
Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, et al. 2016. Hybridization and extinction. |
| [14] |
Angert AL, Bontrager MG, Ågren J. 2020. What do we really know about adaptation at range edges? |
| [15] |
Tigano A, Friesen VL. 2016. Genomics of local adaptation with gene flow. |
| [16] |
Aitken SN, Whitlock MC. 2013. Assisted gene flow to facilitate local adaptation to climate change. |
| [17] |
Brauer CJ, Sandoval-Castillo J, Gates K, Hammer MP, Unmack PJ, et al. 2023. Natural hybridization reduces vulnerability to climate change. |
| [18] |
Hansen MM. 2023. Prepping for climate change by introgressive hybridization. |
| [19] |
Tang CQ, Dong YF, Herrando-Moraira S, Matsui T, Ohashi H, et al. 2017. Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China. |
| [20] |
Chen JM, Zhao SY, Liao YY, Gichira AW, Gituru RW, et al. 2015. Chloroplast DNA phylogeographic analysis reveals significant spatial genetic structure of the relictual tree Davidia involucrata (Davidiaceae). |
| [21] |
Ma Q, Du YJ, Chen N, Zhang LY, Li JH, et al. 2015. Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. |
| [22] |
Ren Y, Zhang L, Yang X, Lin H, Sang Y, et al. 2024. Cryptic divergences and repeated hybridizations within the endangered "living fossil" dove tree (Davidia involucrata) revealed by whole genome resequencing. |
| [23] |
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool set for population genomics. |
| [24] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. |
| [25] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. |
| [26] |
Chen Y, Ma T, Zhang L, Kang M, Zhang Z, et al. 2020. Genomic analyses of a "living fossil": the endangered dove-tree. |
| [27] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. |
| [28] |
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, et al. 2016. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. |
| [29] |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. |
| [30] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. |
| [31] |
Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. |
| [32] |
Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. |
| [33] |
Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. |
| [34] |
Liu X, Fu YX. 2020. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. |
| [35] |
Excoffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, et al. 2021. fastsimcoal2: demographic inference under complex evolutionary scenarios. |
| [36] |
Malinsky M, Matschiner M, Svardal H. 2021. Dsuite − Fast D‐statistics and related admixture evidence from VCF files. |
| [37] |
Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, et al. 2012. Ancient admixture in human history. |
| [38] |
Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, et al. 2012. Community ecology in the age of multivariate multiscale spatial analysis. |
| [39] |
Frichot E, François O. 2015. LEA: an R package for landscape and ecological association studies. |
| [40] |
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, et al. 2022. Package 'vegan'. Community ecology package, version 2. pp.1−301 https://cran.r-project.org/web/packages/vegan/vegan.pdf |
| [41] |
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; Iso-2; Iso-3. |
| [42] |
Alexa A, Rahnenführer J. 2023. topGO: Enrichment Analysis for Gene Ontology. Bioconductor Improvement. doi:10.18129/B9.bioc.topGO |
| [43] |
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. |
| [44] |
Ellis N, Smith SJ, Pitcher CR. 2012. Gradient forests: calculating importance gradients on physical predictors. |
| [45] |
Gougherty AV, Keller SR, Fitzpatrick MC. 2021. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. |
| [46] |
Yang X, Kang M, Yang Y, Xiong H, Wang M, et al. 2019. A chromosome-level genome assembly of the Chinese tupelo Nyssa sinensis. |
| [47] |
Eriksson ME, Millar AJ. 2003. The circadian clock. A plant's best friend in a spinning world. |
| [48] |
Zheng B, Xu Q, Shen Y. 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan Plateau: review and speculation. |
| [49] |
Qiu YX, Fu CX, Comes HP. 2011. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. |
| [50] |
Zhao YP, Fan G, Yin PP, Sun S, Li N, et al. 2019. Resequencing 545 Ginkgo genomes across the world reveals the evolutionary history of the living fossil. |
| [51] |
DE Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, et al. 2010. Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. |
| [52] |
Fagny M, Austerlitz F. 2021. Polygenic adaptation: integrating population genetics and gene regulatory networks. |
| [53] |
Cao YN, Zhu SS, Chen J, Comes HP, Wang IJ, et al. 2020. Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae). |
| [54] |
Wang TR, Meng HH, Wang N, Zheng SS, Jiang Y, et al. 2023. Adaptive divergence and genetic vulnerability of relict species under climate change: a case study of Pterocarya macroptera. |
| [55] |
Lu Y, Dong H, Fan S, Yuan L, Wang Y, et al. 2025. Local adaptation and climate change vulnerability of the relict tree species Taiwania cryptomerioides provide insights into its conservation and restoration. |
| [56] |
DeWoody JA, Harder AM, Mathur S, Willoughby JR. 2021. The long-standing significance of genetic diversity in conservation. |
| [57] |
Hoelzel AR. 2023. Where to now with the evolutionarily significant unit? |
| [58] |
Miller CV, Bossu CM, Sarraco JF, Toews DPL, Rushing CS, et al. 2024. Genomics-informed conservation units reveal spatial variation in climate vulnerability in a migratory bird. |
| [59] |
Kramer AT, Havens K. 2009. Plant conservation genetics in a changing world. |
| [60] |
Maunder M, Havens K, Guerrant E, Falk D. 2014. Ex situ methods: a vital but underused set of conservation resources. In Ex Situ Plant Conservation: Supporting species survival in the wild, eds. Guerrant E, Havens K, Maunder M. Washington, USA: Island Press. pp. 3–20 https://islandpress.org/books/ex-situ-plant-conservation |