| [1] |
Namkoong G, Kang HC, Brouard JS. 1988. Tree breeding opportunities and limitations. In Tree Breeding: Principles and Strategies, eds. New York: Springer. pp. 1–10 doi: 10.1007/978-1-4612-3892-8_1 |
| [2] |
Cao XH, Vu GTH, Gailing O. 2024. Chapter 17 - CRISPR/Cas genome editing and applications in forest tree breeding. In Global Regulatory Outlook for CRISPRized Plants, ed. Kamel A. London: Elsevier Academic Press. pp. 343–66 doi: 10.1016/B978-0-443-18444-4.00001-6 |
| [3] |
Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. |
| [4] |
Wang JW, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. |
| [5] |
Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. |
| [6] |
Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. |
| [7] |
Werner S, Bartrina I, Schmülling T. 2021. Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. |
| [8] |
Weigel D. 1995. The APETALA2 domain is related to a novel type of DNA binding domain. |
| [9] |
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. |
| [10] |
Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. |
| [11] |
Kim S, Soltis PS, Wall K, Soltis DE. 2006. Phylogeny and domain evolution in the APETALA2-like gene family. |
| [12] |
Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. |
| [13] |
Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, et al. 2003. Dissection of floral induction pathways using global expression analysis. |
| [14] |
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, et al. 2005. Specific effects of microRNAs on the plant transcriptome. |
| [15] |
Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, et al. 2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. |
| [16] |
Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, et al. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. |
| [17] |
Mizukami Y, Fischer RL. 2000. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. |
| [18] |
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, et al. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. |
| [19] |
Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ. 2009. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. |
| [20] |
Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. 2022. miR172 regulates WUS during somatic embryogenesis in Arabidopsis via AP2. |
| [21] |
Meng H, Chen Y, Li T, Shi H, Yu S, et al. 2023. APETALA2 is involved in ABA signaling during seed germination. |
| [22] |
Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S. 2014. RAV genes: regulation of floral induction and beyond. |
| [23] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. |
| [24] |
Chang B, Qiu X, Yang Y, Zhou W, Jin B, et al. 2024. Genome-wide analyses of the GbAP2 subfamily reveal the function of GbTOE1a in salt and drought stress tolerance in Ginkgo biloba. |
| [25] |
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. 2021. The evolution of euAPETALA2 genes in vascular plants: from plesiomorphic roles in sporangia to acquired functions in ovules and fruits. |
| [26] |
Shigyo M, Ito M. 2004. Analysis of gymnosperm two-AP2-domain-containing genes. |
| [27] |
Vahala T, Oxelman B, von Arnold S. 2001. Two APETALA2‐like genes of Picea abies are differentially expressed during development. |
| [28] |
Li A, Yu X, Cao BB, Peng LX, Gao Y, et al. 2017. LkAP2L2, an AP2/ERF transcription factor gene of Larix kaempferi, with pleiotropic roles in plant branch and seed development. |
| [29] |
Tian M, Zhao Y, Jiang Y, Jiang X, Gai Y. 2024. LkERF6 enhances drought and salt tolerance in transgenic tobacco by regulating ROS homeostasis. |
| [30] |
Shigyo M, Hasebe M, Ito M. 2006. Molecular evolution of the AP2 subfamily. |
| [31] |
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. |
| [32] |
Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, et al. 2019. Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb). |
| [33] |
Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. |
| [34] |
Sun C, Xie YH, Li Z, Liu YJ, Sun XM, et al. 2022. The Larix kaempferi genome reveals new insights into wood properties. |
| [35] |
Shirasawa K, Mishima K, Hirakawa H, Hirao T, Tsubomura M, et al. 2024. Haplotype-resolved de novo genome assemblies of four coniferous tree species. |
| [36] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. |
| [37] |
Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, et al. 2024. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing. |
| [38] |
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. |
| [39] |
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. |
| [40] |
Li WF, Kang Y, Zhang Y, Zang QL, Qi LW. 2021. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch. |
| [41] |
Li WF, Yang WH, Zhang SG, Han SY, Qi LW. 2017. Transcriptome analysis provides insights into wood formation during larch tree aging. |
| [42] |
Li XY, Ye ZL, Cheng DX, Zang QL, Qi LW, et al. 2022. LaDAL1 coordinates age and environmental signals in the life cycle of Larix kaempferi. |
| [43] |
Dang S, Zhang L, Han S, Qi L. 2022. Agrobacterium-mediated genetic transformation of Larix kaempferi (lamb.) carr. embryogenic cell suspension cultures and expression analysis of exogenous genes. |
| [44] |
Song Y, Zhen C, Zhang H, Li S. 2016. Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of Larix olgensis. |
| [45] |
Zhang Y, Zang QL, Qi LW, Han SY, Li WF. 2020. Effects of cutting, pruning, and grafting on the expression of age-related genes in Larix kaempferi. |
| [46] |
Xiang WB, Li WF, Zhang SG, Qi LW. 2019. Transcriptome-wide analysis to dissect the transcription factors orchestrating the phase change from vegetative to reproductive development in Larix kaempferi. |
| [47] |
He Y, Zhang T, Sun H, Zhan H, Zhao Y. 2020. A reporter for noninvasively monitoring gene expression and plant transformation. |
| [48] |
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. |
| [49] |
Ye ZL, Zang QL, Cheng DX, Li XY, Qi LW, et al. 2022. Over-expression of larch DAL1 accelerates life-cycle progression in Arabidopsis. |
| [50] |
Lauter N, Kampani A, Carlson S, Goebel M, Moose SP. 2005. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. |
| [51] |
Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, et al. 2013. Molecular basis of age-dependent vernalization in Cardamine flexuosa. |
| [52] |
Yang S, Zhang G, Zhang X, Lin C, Huang T, et al. 2023. The ontogenetic ageing pattern and the molecular mechanism for prunning rejuvenation in Pinus elliottii × P. caribaea. |
| [53] |
Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, et al. 2011. MiRNA control of vegetative phase change in trees. |
| [54] |
Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordström KJV, Wang R, et al. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. |
| [55] |
Silva PO, Batista DS, Cavalcanti JHF, Koehler AD, Vieira LM, et al. 2019. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. |
| [56] |
Guillaumot D, Lelu-Walter MA, Germot A, Meytraud F, Gastinel L, et al. 2008. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix×marschlinsii). |
| [57] |
Rupps A, Raschke J, Rümmler M, Linke B, Zoglauer K. 2016. Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. |
| [58] |
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. |
| [59] |
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. |
| [60] |
Kulinska-Lukaszek K, Tobojka M, Adamiok A, Kurczynska EU. 2012. Expression of the BBM gene during somatic embryogenesis of Arabidopsis thaliana. |
| [61] |
Nilsson L, Carlsbecker A, Sundås-Larsson A, Vahala T. 2007. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. |
| [62] |
Li A, Zhou Y, Jin C, Song W, Chen C, et al. 2013. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis. |
| [63] |
Choudhury S. 2024. Computational analysis of the AP2/ERF family in crops genome. |