[1]

Namkoong G, Kang HC, Brouard JS. 1988. Tree breeding opportunities and limitations. In Tree Breeding: Principles and Strategies, eds. New York: Springer. pp. 1–10 doi: 10.1007/978-1-4612-3892-8_1

[2]

Cao XH, Vu GTH, Gailing O. 2024. Chapter 17 - CRISPR/Cas genome editing and applications in forest tree breeding. In Global Regulatory Outlook for CRISPRized Plants, ed. Kamel A. London: Elsevier Academic Press. pp. 343–66 doi: 10.1016/B978-0-443-18444-4.00001-6

[3]

Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138:4117−29

doi: 10.1242/dev.063511
[4]

Wang JW, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738−49

doi: 10.1016/j.cell.2009.06.014
[5]

Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59

doi: 10.1016/j.cell.2009.06.031
[6]

Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. The Plant Cell 24:3320−32

doi: 10.1105/tpc.112.101014
[7]

Werner S, Bartrina I, Schmülling T. 2021. Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nature Communications 12:5816

doi: 10.1038/s41467-021-26088-z
[8]

Weigel D. 1995. The APETALA2 domain is related to a novel type of DNA binding domain. The Plant Cell 7:388−89

doi: 10.1105/tpc.7.4.388
[9]

Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40:750−76

doi: 10.1080/07388551.2020.1768509
[10]

Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199:639−49

doi: 10.1111/nph.12291
[11]

Kim S, Soltis PS, Wall K, Soltis DE. 2006. Phylogeny and domain evolution in the APETALA2-like gene family. Molecular Biology and Evolution 23:107−20

doi: 10.1093/molbev/msj014
[12]

Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell 15:2730−41

doi: 10.1105/tpc.016238
[13]

Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, et al. 2003. Dissection of floral induction pathways using global expression analysis. Development 130:6001−12

doi: 10.1242/dev.00842
[14]

Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, et al. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8:517−27

doi: 10.1016/j.devcel.2005.01.018
[15]

Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, et al. 2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. The Plant Cell 19:2736−48

doi: 10.1105/tpc.107.054528
[16]

Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, et al. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell 8:155−68

doi: 10.1105/tpc.8.2.155
[17]

Mizukami Y, Fischer RL. 2000. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the United States of America 97:942−47

doi: 10.1073/pnas.97.2.942
[18]

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, et al. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109−20

doi: 10.1016/j.cell.2004.09.018
[19]

Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ. 2009. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sexual Plant Reproduction 22:277−89

doi: 10.1007/s00497-009-0116-1
[20]

Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. 2022. miR172 regulates WUS during somatic embryogenesis in Arabidopsis via AP2. Cells 11:718

doi: 10.3390/cells11040718
[21]

Meng H, Chen Y, Li T, Shi H, Yu S, et al. 2023. APETALA2 is involved in ABA signaling during seed germination. Plant Molecular Biology 112:99−103

doi: 10.1007/s11103-023-01349-1
[22]

Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S. 2014. RAV genes: regulation of floral induction and beyond. Annals of Botany 114:1459−70

doi: 10.1093/aob/mcu069
[23]

Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140:411−32

doi: 10.1104/pp.105.073783
[24]

Chang B, Qiu X, Yang Y, Zhou W, Jin B, et al. 2024. Genome-wide analyses of the GbAP2 subfamily reveal the function of GbTOE1a in salt and drought stress tolerance in Ginkgo biloba. Plant Science 342:112027

doi: 10.1016/j.plantsci.2024.112027
[25]

Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. 2021. The evolution of euAPETALA2 genes in vascular plants: from plesiomorphic roles in sporangia to acquired functions in ovules and fruits. Molecular Biology and Evolution 38:2319−36

doi: 10.1093/molbev/msab027
[26]

Shigyo M, Ito M. 2004. Analysis of gymnosperm two-AP2-domain-containing genes. Development Genes and Evolution 214:105−14

doi: 10.1007/s00427-004-0385-5
[27]

Vahala T, Oxelman B, von Arnold S. 2001. Two APETALA2‐like genes of Picea abies are differentially expressed during development. Journal of Experimental Botany 52:1111−15

doi: 10.1093/jexbot/52.358.1111
[28]

Li A, Yu X, Cao BB, Peng LX, Gao Y, et al. 2017. LkAP2L2, an AP2/ERF transcription factor gene of Larix kaempferi, with pleiotropic roles in plant branch and seed development. Russian Journal of Genetics 53:1335−42

doi: 10.1134/S1022795417120079
[29]

Tian M, Zhao Y, Jiang Y, Jiang X, Gai Y. 2024. LkERF6 enhances drought and salt tolerance in transgenic tobacco by regulating ROS homeostasis. Plant Physiology and Biochemistry 216:109098

doi: 10.1016/j.plaphy.2024.109098
[30]

Shigyo M, Hasebe M, Ito M. 2006. Molecular evolution of the AP2 subfamily. Gene 366:256−65

doi: 10.1016/j.gene.2005.08.009
[31]

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579−84

doi: 10.1038/nature12211
[32]

Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, et al. 2019. Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb). BMC Bioinformatics 20:37

doi: 10.1186/s12859-018-2570-y
[33]

Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204−17. e14

doi: 10.1016/j.cell.2021.12.006
[34]

Sun C, Xie YH, Li Z, Liu YJ, Sun XM, et al. 2022. The Larix kaempferi genome reveals new insights into wood properties. Journal of Integrative Plant Biology 64:1364−73

doi: 10.1111/jipb.13265
[35]

Shirasawa K, Mishima K, Hirakawa H, Hirao T, Tsubomura M, et al. 2024. Haplotype-resolved de novo genome assemblies of four coniferous tree species. Journal of Forest Research 29:151−57

doi: 10.1080/13416979.2023.2267304
[36]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[37]

Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, et al. 2024. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing. Molecular Biology and Evolution 41:msae263

doi: 10.1093/molbev/msae263
[38]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73

doi: 10.1093/bioinformatics/btp348
[39]

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189−91

doi: 10.1093/bioinformatics/btp033
[40]

Li WF, Kang Y, Zhang Y, Zang QL, Qi LW. 2021. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch. Tree Physiology 41:1918−37

doi: 10.1093/treephys/tpab052
[41]

Li WF, Yang WH, Zhang SG, Han SY, Qi LW. 2017. Transcriptome analysis provides insights into wood formation during larch tree aging. Tree Genetics & Genomes 13:19

doi: 10.1007/s11295-017-1106-3
[42]

Li XY, Ye ZL, Cheng DX, Zang QL, Qi LW, et al. 2022. LaDAL1 coordinates age and environmental signals in the life cycle of Larix kaempferi. International Journal of Molecular Sciences 24:426

doi: 10.3390/ijms24010426
[43]

Dang S, Zhang L, Han S, Qi L. 2022. Agrobacterium-mediated genetic transformation of Larix kaempferi (lamb.) carr. embryogenic cell suspension cultures and expression analysis of exogenous genes. Forests 13:1436

doi: 10.3390/f13091436
[44]

Song Y, Zhen C, Zhang H, Li S. 2016. Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of Larix olgensis. Scientia Silvae Sinicae 52:45−54

doi: 10.11707/j.1001-7488.20161006
[45]

Zhang Y, Zang QL, Qi LW, Han SY, Li WF. 2020. Effects of cutting, pruning, and grafting on the expression of age-related genes in Larix kaempferi. Forests 11:218

doi: 10.3390/f11020218
[46]

Xiang WB, Li WF, Zhang SG, Qi LW. 2019. Transcriptome-wide analysis to dissect the transcription factors orchestrating the phase change from vegetative to reproductive development in Larix kaempferi. Tree Genetics & Genomes 15:68

doi: 10.1007/s11295-019-1376-z
[47]

He Y, Zhang T, Sun H, Zhan H, Zhao Y. 2020. A reporter for noninvasively monitoring gene expression and plant transformation. Horticulture Research 7:152

doi: 10.1038/s41438-020-00390-1
[48]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[49]

Ye ZL, Zang QL, Cheng DX, Li XY, Qi LW, et al. 2022. Over-expression of larch DAL1 accelerates life-cycle progression in Arabidopsis. Forests 13:953

doi: 10.3390/f13060953
[50]

Lauter N, Kampani A, Carlson S, Goebel M, Moose SP. 2005. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America 102:9412−17

doi: 10.1073/pnas.0503927102
[51]

Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, et al. 2013. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340:1097−100

doi: 10.1126/science.1234340
[52]

Yang S, Zhang G, Zhang X, Lin C, Huang T, et al. 2023. The ontogenetic ageing pattern and the molecular mechanism for prunning rejuvenation in Pinus elliottii × P. caribaea. Scientia Sinica Vitae 53:1146−65

doi: 10.1360/SSV-2022-0259
[53]

Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, et al. 2011. MiRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012

doi: 10.1371/journal.pgen.1002012
[54]

Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordström KJV, Wang R, et al. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1904−97

doi: 10.1126/science.1234116
[55]

Silva PO, Batista DS, Cavalcanti JHF, Koehler AD, Vieira LM, et al. 2019. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. Annals of Botany 123:1191−203

doi: 10.1093/aob/mcz025
[56]

Guillaumot D, Lelu-Walter MA, Germot A, Meytraud F, Gastinel L, et al. 2008. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix×marschlinsii). Journal of Plant Physiology 165:1003−10

doi: 10.1016/j.jplph.2007.08.009
[57]

Rupps A, Raschke J, Rümmler M, Linke B, Zoglauer K. 2016. Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. Planta 243:473−88

doi: 10.1007/s00425-015-2409-y
[58]

Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell 14:1737−49

doi: 10.1105/tpc.001941
[59]

Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. Proceedings of the National Academy of Sciences of the United States of America 119:e2201761119

doi: 10.1073/pnas.2201761119
[60]

Kulinska-Lukaszek K, Tobojka M, Adamiok A, Kurczynska EU. 2012. Expression of the BBM gene during somatic embryogenesis of Arabidopsis thaliana. Biologia Plantarum 56:389−94

doi: 10.1007/s10535-012-0105-3
[61]

Nilsson L, Carlsbecker A, Sundås-Larsson A, Vahala T. 2007. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta 225:589−602

doi: 10.1007/s00425-006-0374-1
[62]

Li A, Zhou Y, Jin C, Song W, Chen C, et al. 2013. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis. Plant Cell Physiology 54:1822−36

doi: 10.1093/pcp/pct124
[63]

Choudhury S. 2024. Computational analysis of the AP2/ERF family in crops genome. BMC Genomics 25:102

doi: 10.1186/s12864-024-09970-0