[1]

Crooke ST, Witztum JL, Bennett CF, Baker BF. 2018. RNA-targeted therapeutics. Cell Metabolism 27:714−39

doi: 10.1016/j.cmet.2018.03.004
[2]

Wang S, Weissman D, Dong Y. 2025. RNA chemistry and therapeutics. Nature Reviews Drug Discovery 24:828−851

doi: 10.1038/s41573-025-01237-x
[3]

Zhu Y, Zhu L, Wang X, Jin H. 2022. RNA-based therapeutics: an overview and prospectus. Cell Death & Disease 13:644

doi: 10.1038/s41419-022-05075-2
[4]

Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. 2023. Amplifying gene expression with RNA-targeted therapeutics. Nature Reviews Drug Discovery 22:539−561

doi: 10.1038/s41573-023-00704-7
[5]

Amine IM, Salsabil H, Fadil B, Adnane B, Khaoula E. 2025. The impact of ncRNAs on type 2 diabetes: a comprehensive review covering molecular mechanisms to clinical applications. Molecular Therapy Nucleic Acids 36:102629

doi: 10.1016/j.omtn.2025.102629
[6]

He X, Li G, Huang L, Shi H, Zhong S, et al. 2025. Nonviral targeted mRNA delivery: principles, progresses, and challenges. MedComm 6:e70035

doi: 10.1002/mco2.70035
[7]

Li T, Liu X, Qian H, Zhang S, Hou Y, et al. 2024. Blocker-SELEX: a structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions. Nature Communications 15:6751

doi: 10.1038/s41467-024-51197-w
[8]

Cooper TA, Wan L, Dreyfuss G. 2009. RNA and disease. Cell 136:777−793

doi: 10.1016/j.cell.2009.02.011
[9]

Dowdy SF. 2017. Overcoming cellular barriers for RNA therapeutics. Nature Biotechnology 35:222−229

doi: 10.1038/nbt.3802
[10]

Paunovska K, Loughrey D, Dahlman JE. 2022. Drug delivery systems for RNA therapeutics. Nature Reviews Genetics 23:265−280

doi: 10.1038/s41576-021-00439-4
[11]

Haussecker D. 2014. Current issues of RNAi therapeutics delivery and development. Journal of Controlled Release 195:49−54

doi: 10.1016/j.jconrel.2014.07.056
[12]

Dammes N, Peer D. 2020. Paving the road for RNA therapeutics. Trends in Pharmacological Sciences 41:755−775

doi: 10.1016/j.tips.2020.08.004
[13]

Shi Y, Zhen X, Zhang Y, Li Y, Koo S, et al. 2024. Chemically modified platforms for better RNA therapeutics. Chemical Reviews 124:929−1033

doi: 10.1021/acs.chemrev.3c00611
[14]

Jasinski D, Haque F, Binzel DW, Guo P. 2017. Advancement of the emerging field of RNA nanotechnology. ACS Nano 11:1142−1164

doi: 10.1021/acsnano.6b05737
[15]

Guo P. 2010. The emerging field of RNA nanotechnology. Nature Nanotechnology 5:833−842

doi: 10.1038/nnano.2010.231
[16]

Han X, Mitchell MJ, Nie G. 2020. Nanomaterials for therapeutic RNA delivery. Matter 3:1948−1975

doi: 10.1016/j.matt.2020.09.020
[17]

Qin S, Tang X, Chen Y, Chen K, Fan N, et al. 2022. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy 7:166

doi: 10.1038/s41392-022-01007-w
[18]

Wang J, Zhu H, Gan J, Liang G, Li L, et al. 2024. Engineered mRNA delivery systems for biomedical applications. Advanced Materials 36:2308029

doi: 10.1002/adma.202308029
[19]

Curreri A, Sankholkar D, Mitragotri S, Zhao Z. 2023. RNA therapeutics in the clinic. Bioengineering & Translational Medicine 8:e10374

doi: 10.1002/btm2.10374
[20]

Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, et al. 2021. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine through 6 months. The New England Journal of Medicine 385:1761−1773

doi: 10.1056/NEJMoa2110345
[21]

Aimo A, Castiglione V, Rapezzi C, Franzini M, Panichella G, et al. 2022. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nature Reviews Cardiology 19:655−667

doi: 10.1038/s41569-022-00683-z
[22]

Tani H. 2024. Recent advances and prospects in RNA drug development. International Journal of Molecular Sciences 25:12284

doi: 10.3390/ijms252212284
[23]

Tang Q, Khvorova A. 2024. RNAi-based drug design: considerations and future directions. Nature Reviews Drug Discovery 23:341−364

doi: 10.1038/s41573-024-00912-9
[24]

Zhang Q, Yang L, Liu YH, Wilkinson JE, Krainer AR. 2023. Antisense oligonucleotide therapy for H3.3K27M diffuse midline glioma. Science Translational Medicine 15:eadd8280

doi: 10.1126/scitranslmed.add8280
[25]

Kang JY, Mun D, Chun Y, Park DS, Kim H, et al. 2023. Engineered small extracellular vesicle-mediated NOX4 siRNA delivery for targeted therapy of cardiac hypertrophy. Journal of Extracellular Vesicles 12:12371

doi: 10.1002/jev2.12371
[26]

Kilikevicius A, Meister G, Corey DR. 2022. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Research 50:617−634

doi: 10.1093/nar/gkab1256
[27]

Liu X, Zhang Y, Zhou S, Dain L, Mei L, et al. 2022. Circular RNA: an emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. Journal of Controlled Release 348:84−94

doi: 10.1016/j.jconrel.2022.05.043
[28]

Bicknell AA, Reid DW, Licata MC, Jones AK, Cheng YM, et al. 2024. Attenuating ribosome load improves protein output from mRNA by limiting translation-dependent mRNA decay. Cell Reports 43:114098

doi: 10.1016/j.celrep.2024.114098
[29]

Casmil IC, Friesen JJ, Bathula NV, Strumpel A, Ho CH, et al. 2025. Divergent delivery and expression kinetics of lipid and polymeric nanoparticles across mRNA modalities. Advanced Science 12:e08907

doi: 10.1002/advs.202508907
[30]

Yang H, Patel DJ. 2024. Structures, mechanisms and applications of RNA-centric CRISPR–Cas13. Nature Chemical Biology 20:673−688

doi: 10.1038/s41589-024-01593-6
[31]

Xu S, Xu Y, Solek NC, Chen J, Gong F, et al. 2024. Tumor-tailored ionizable lipid nanoparticles facilitate IL-12 circular RNA delivery for enhanced lung cancer immunotherapy. Advanced Materials 36:e2400307

doi: 10.1002/adma.202400307
[32]

de Voogt WS, Tanenbaum ME, Vader P. 2021. Illuminating RNA trafficking and functional delivery by extracellular vesicles. Advanced Drug Delivery Reviews 174:250−264

doi: 10.1016/j.addr.2021.04.017
[33]

Liu Y, Qi H, Zong J, Li M, Yang Y, et al. 2024. Oral piwi-interacting RNA delivery mediated by green tea-derived exosome-like nanovesicles for the treatment of aortic dissection. Advanced Healthcare Materials 13:e2401466

doi: 10.1002/adhm.202401466
[34]

Zhang Y, Shi Y, Khan MM, Xiao F, Chen W, et al. 2024. Ocular RNA nanomedicine: engineered delivery nanoplatforms in treating eye diseases. Trends in Biotechnology 42:1439−1452

doi: 10.1016/j.tibtech.2024.05.002
[35]

Kim J, Jozic A, Mukherjee A, Nelson D, Chiem K, et al. 2022. Rapid generation of circulating and mucosal decoy human ACE2 using mRNA nanotherapeutics for the potential treatment of SARS-CoV-2. Advanced Science 9:e2202556

doi: 10.1002/advs.202202556
[36]

Zheng L, Bandara SR, Tan Z, Leal C. 2023. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America 120:e2301067120

doi: 10.1073/pnas.2301067120
[37]

Spadea A, Jackman M, Cui L, Pereira S, Lawrence MJ, et al. 2022. Nucleic acid-loaded lipid nanoparticle interactions with model endosomal membranes. ACS Applied Materials & Interfaces 14:30371−30384

doi: 10.1021/acsami.2c06065
[38]

Kwak E, Kim T, Yang K, Kim YM, Han HS, et al. 2022. Surface-functionalized polymeric siRNA nanoparticles for tunable targeting and intracellular delivery to hematologic cancer cells. Biomacromolecules 23:2255−2263

doi: 10.1021/acs.biomac.1c01497
[39]

Han J, Sul JH, Lee J, Kim E, Kim HK, et al. 2024. Engineered exosomes with a photoinducible protein delivery system enable CRISPR-Cas–based epigenome editing in Alzheimer's disease. Science Translational Medicine 16:eadi4830

doi: 10.1126/scitranslmed.adi4830
[40]

Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, et al. 2023. Engineering siRNA therapeutics: challenges and strategies. Journal of Nanobiotechnology 21:381

doi: 10.1186/s12951-023-02147-z
[41]

Hoffmann T, Hörmann A, Corcokovic M, Zmajkovic J, Hinterndorfer M, et al. 2023. Precision RNAi using synthetic shRNAmir target sites. eLife 12:RP84792

doi: 10.7554/elife.84792
[42]

Iki T, Kawaguchi S, Kai T. 2023. miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. Science Advances 9:eadh0397

doi: 10.1126/sciadv.adh0397
[43]

Acharya D, Reis R, Volcic M, Liu G, Wang MK, et al. 2022. Actin cytoskeleton remodeling primes RIG-I-like receptor activation. Cell 185:3588−3602.e21

doi: 10.1016/j.cell.2022.08.011
[44]

Korwek Z, Czerkies M, Jaruszewicz-Błońska J, Prus W, Kosiuk I, et al. 2023. Nonself RNA rewires IFN-β signaling: a mathematical model of the innate immune response. Science Signaling 16:eabq1173

doi: 10.1126/scisignal.abq1173
[45]

Ma Y, Li S, Lin X, Chen Y. 2023. Bioinspired spatiotemporal management toward RNA therapies. ACS Nano 17:24539−24563

doi: 10.1021/acsnano.3c08219
[46]

Chow MYT, Qiu Y, Lam JKW. 2020. Inhaled RNA therapy: from promise to reality. Trends in Pharmacological Sciences 41:715−729

doi: 10.1016/j.tips.2020.08.002
[47]

Winkle M, El-Daly SM, Fabbri M, Calin GA. 2021. Noncoding RNA therapeutics—challenges and potential solutions. Nature Reviews Drug Discovery 20:629−651

doi: 10.1038/s41573-021-00219-z
[48]

Mancino C, Franke M, Greco A, Sontam T, McCulloch P, et al. 2025. RNA therapies for musculoskeletal conditions. Journal of Controlled Release 377:756−766

doi: 10.1016/j.jconrel.2024.11.057
[49]

Delaunay S, Helm M, Frye M. 2024. RNA modifications in physiology and disease: towards clinical applications. Nature Reviews Genetics 25:104−122

doi: 10.1038/s41576-023-00645-2
[50]

Rozners E. 2022. Chemical modifications of CRISPR RNAs to improve gene-editing activity and specificity. Journal of the American Chemical Society 144:12584−12594

doi: 10.1021/jacs.2c02633
[51]

Stewart JM. 2024. RNA nanotechnology on the horizon: self-assembly, chemical modifications, and functional applications. Current Opinion in Chemical Biology 81:102479

doi: 10.1016/j.cbpa.2024.102479
[52]

Tsuboi T, Hattori K, Ishimoto T, Imai K, Doke T, et al. 2025. In vivo efficacy and safety of systemically administered serinol nucleic acid-modified antisense oligonucleotides in mouse kidney. Molecular Therapy Nucleic Acids 36:102387

doi: 10.1016/j.omtn.2024.102387
[53]

Kim Y. 2023. Drug discovery perspectives of antisense oligonucleotides. Biomolecules & Therapeutics 31:241−252

doi: 10.4062/biomolther.2023.001
[54]

Keam SJ. 2022. Vutrisiran: first approval. Drugs 82:1419−1425

doi: 10.1007/s40265-022-01765-5
[55]

McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. 2021. Recent progress in non-native nucleic acid modifications. Chemical Society Reviews 50:5126−5164

doi: 10.1039/D0CS01430C
[56]

Crooke ST, Baker BF, Crooke RM, Liang XH. 2021. Antisense technology: an overview and prospectus. Nature Reviews Drug Discovery 20:427−453

doi: 10.1038/s41573-021-00162-z
[57]

Eckstein F. 1985. Nucleoside phosphorothioates. Annual Review of Biochemistry 54:367−402

doi: 10.1146/annurev.bi.54.070185.002055
[58]

Yang Q, Peng Y, Deng Z, Zhang D, Long CY, et al. 2023. Regulating the properties of XQ-2d for targeted delivery of therapeutic agents to pancreatic cancers. National Science Review 10:nwad113

doi: 10.1093/nsr/nwad113
[59]

Iwamoto N, Butler DCD, Svrzikapa N, Mohapatra S, Zlatev I, et al. 2017. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nature Biotechnology 35:845−851

doi: 10.1038/nbt.3948
[60]

Nikan M, Li Q, Tanowitz M, Li H, Damle S, et al. 2025. Single alkyl phosphonate modification of the siRNA backbone in the seed region enhances specificity and therapeutic profile. Nucleic Acids Research 53:gkaf692

doi: 10.1093/nar/gkaf692
[61]

Miroshnichenko SK, Patutina OA, Burakova EA, Chelobanov BP, Fokina AA, et al. 2019. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proceedings of the National Academy of Sciences of the United States of America 116:1229−1234

doi: 10.1073/pnas.1813376116
[62]

Liu W, Iwamoto N, Marappan S, Luu K, Tripathi S, et al. 2023. Impact of stereopure chimeric backbone chemistries on the potency and durability of gene silencing by RNA interference. Nucleic Acids Research 51:4126−4147

doi: 10.1093/nar/gkad268
[63]

Yao W, Han X, Ge M, Chen C, Xiao X, et al. 2020. N6-methyladenosine (m6A) methylation in ischemia-reperfusion injury. Cell Death & Disease 11:478

doi: 10.1038/s41419-020-2686-7
[64]

Liu J, Dou X, Chen C, Chen C, Liu C, et al. 2020. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367:580−586

doi: 10.1126/science.aay6018
[65]

Zhu S, Wang JZ, Chen D, He YT, Meng N, et al. 2020. An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nature Communications 11:1685

doi: 10.1038/s41467-020-15403-9
[66]

Wang JN, Wang F, Ke J, Li Z, Xu CH, et al. 2022. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Science Translational Medicine 14:eabk2709

doi: 10.1126/scitranslmed.abk2709
[67]

Xiong X, Hou L, Park YP, Molinie B, Gregory RI, et al. 2021. Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nature Genetics 53:1156−1165

doi: 10.1038/s41588-021-00890-3
[68]

Tomikawa C. 2025. Pseudouridine modifications in transfer RNA and tRNA pseudouridine synthases. Journal of Molecular Biology 437:169183

doi: 10.1016/j.jmb.2025.169183
[69]

Luo N, Huang Q, Zhang M, Yi C. 2025. Functions and therapeutic applications of pseudouridylation. Nature Reviews Molecular Cell Biology 26:691−705

doi: 10.1038/s41580-025-00852-1
[70]

Kiss DJ, Oláh J, Tóth G, Varga M, Stirling A, et al. 2022. The structure-derived mechanism of box H/ACA pseudouridine synthase offers a plausible paradigm for programmable RNA editing. ACS Catalysis 12:2756−2769

doi: 10.1021/acscatal.1c04870
[71]

Verbeke R, Hogan MJ, Loré K, Pardi N. 2022. Innate immune mechanisms of mRNA vaccines. Immunity 55:1993−2005

doi: 10.1016/j.immuni.2022.10.014
[72]

Prokhorova D, Matveeva A, Zakabunin A, Ryabchenko A, Stepanov G. 2023. Influence of N1-methylpseudouridine in guide RNAs on CRISPR/Cas9 activity. International Journal of Molecular Sciences 24:17116

doi: 10.3390/ijms242317116
[73]

Chen TH, Potapov V, Dai N, Ong JL, Roy B. 2022. N1-methyl-pseudouridine is incorporated with higher fidelity than pseudouridine in synthetic RNAs. Scientific Reports 12:13017

doi: 10.1038/s41598-022-17249-1
[74]

Harcourt EM, Kietrys AM, Kool ET. 2017. Chemical and structural effects of base modifications in messenger RNA. Nature 541:339−346

doi: 10.1038/nature21351
[75]

Fang E, Liu X, Li M, Zhang Z, Song L, et al. 2022. Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy 7:94

doi: 10.1038/s41392-022-00950-y
[76]

Ohno H, Akamine S, Mochizuki M, Hayashi K, Akichika S, et al. 2023. Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5' cap-modified mRNAs. Nucleic Acids Research 51:e34

doi: 10.1093/nar/gkad019
[77]

Walczak S, Nowicka A, Kubacka D, Fac K, Wanat P, et al. 2017. A novel route for preparing 5' cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry. Chemical Science 8:260−267

doi: 10.1039/C6SC02437H
[78]

Xiao Y, Tang Z, Huang X, Chen W, Zhou J, et al. 2022. Emerging mRNA technologies: delivery strategies and biomedical applications. Chemical Society Reviews 51:3828−3845

doi: 10.1039/D1CS00617G
[79]

Chen H, Liu D, Guo J, Aditham A, Zhou Y, et al. 2025. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nature Biotechnology 43:194−203

doi: 10.1038/s41587-024-02174-7
[80]

Grandi C, Emmaneel M, Nelissen FHT, Roosenboom LWM, Petrova Y, et al. 2024. Decoupled degradation and translation enables noise modulation by poly(A) tails. Cell Systems 15:526−543.e7

doi: 10.1016/j.cels.2024.05.004
[81]

Lundstrom K. 2025. Self-amplifying RNA virus vectors for drug delivery. Expert Opinion on Drug Delivery 22:181−195

doi: 10.1080/17425247.2024.2445675
[82]

Wong B, Birtch R, Rezaei R, Jamieson T, Crupi MJF, et al. 2023. Optimal delivery of RNA interference by viral vectors for cancer therapy. Molecular Therapy 31:3127−3145

doi: 10.1016/j.ymthe.2023.09.012
[83]

Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, et al. 2025. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 313:122801

doi: 10.1016/j.biomaterials.2024.122801
[84]

Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. 2020. Recent advancements in liposome technology. Advanced Drug Delivery Reviews 156:4−22

doi: 10.1016/j.addr.2020.06.022
[85]

Shubhra QTH. 2024. Multi-compartment liposomes forge new paths in drug delivery. Advanced Drug Delivery Reviews 16:1578−1579

doi: 10.1038/s41557-024-01638-2
[86]

Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, et al. 2020. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 25:2866

doi: 10.3390/molecules25122866
[87]

Arber Raviv S, Alyan M, Egorov E, Zano A, Harush MY, et al. 2022. Lung targeted liposomes for treating ARDS. Journal of Controlled Release 346:421−433

doi: 10.1016/j.jconrel.2022.03.028
[88]

Li Y, Ji T, Torre M, Shao R, Zheng Y, et al. 2023. Aromatized liposomes for sustained drug delivery. Nature Communications 14:6659

doi: 10.1038/s41467-023-41946-8
[89]

Horejs C. 2021. From lipids to lipid nanoparticles to mRNA vaccines. Nature Reviews Materials 6:1075−1076

doi: 10.1038/s41578-021-00379-9
[90]

Couvreur P, Lepetre-Mouelhi S, Garbayo E, Blanco-Prieto MJ. 2023. Self-assembled lipid–prodrug nanoparticles. Nature Reviews Bioengineering 1:749−768

doi: 10.1038/s44222-023-00082-0
[91]

Cheng MHY, Zhang Y, Fox K, Leung J, Strong C, et al. 2025. Liposomal lipid nanoparticles for extrahepatic delivery of mRNA. Nature Communications 16:4135

doi: 10.1038/s41467-025-58523-w
[92]

Roces CB, Lou G, Jain N, Abraham S, Thomas A, et al. 2020. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics 12:1095

doi: 10.3390/pharmaceutics12111095
[93]

Kim J, Jozić A, Bloom E, Jones B, Marra M, et al. 2024. Microfluidic platform enables shearless aerosolization of lipid nanoparticles for mRNA inhalation. ACS Nano 18:11335−11348

doi: 10.1021/acsnano.4c00768
[94]

Shui M, Chen Z, Chen Y, Yuan Q, Li H, et al. 2023. Engineering polyphenol-based carriers for nucleic acid delivery. Theranostics 13:3204−3223

doi: 10.7150/thno.81604
[95]

Jarzebska NT, Mellett M, Frei J, Kündig TM, Pascolo S. 2021. Protamine-based strategies for RNA transfection. Pharmaceutics 13:877

doi: 10.3390/pharmaceutics13060877
[96]

Chen Z, Hao W, Gao C, Zhou Y, Zhang C, et al. 2022. A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharmaceutica Sinica B 12:3367−3382

doi: 10.1016/j.apsb.2022.03.025
[97]

Shen W, Wang R, Fan Q, Li Y, Cheng Y. 2020. Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Therapy 27:383−391

doi: 10.1038/s41434-020-0151-y
[98]

Chen J, Pan S, Zhou J, Lin Z, Qu Y, et al. 2022. Assembly of bioactive nanoparticles via metal-phenolic complexation. Advanced Materials 34:e2108624

doi: 10.1002/adma.202108624
[99]

Zhang Y, Hu Y, Tian H, Chen X. 2022. Opportunities and challenges for mRNA delivery nanoplatforms. The Journal of Physical Chemistry Letters 13:1314−1322

doi: 10.1021/acs.jpclett.1c03898
[100]

Wang D, Zhang P, Zhong QZ, Liu H, Yu Q, et al. 2025. Hydrogen bonding-driven adaptive coacervates as protocells. ACS Applied Materials & Interfaces 17:6095−6102

doi: 10.1021/acsami.4c20214
[101]

Gu Y, Chen J, Wang Z, Liu C, Wang T, et al. 2024. mRNA delivery enabled by metal–organic nanoparticles. Nature Communications 15:9664

doi: 10.1038/s41467-024-53969-w
[102]

Huang Y, Xiong X, Huang B, Luo X, Ke Q, et al. 2024. pH-responsive pathway-controlled layer-by-layer self-shedding nanoparticles for endothelial barrier repair and efficient tumor-targeted therapy. ACS Applied Nano Materials 7:14972−14983

doi: 10.1021/acsanm.4c01292
[103]

Takahashi Y, Takakura Y. 2023. Extracellular vesicle-based therapeutics: Extracellular vesicles as therapeutic targets and agents. Pharmacology & Therapeutics 242:108352

doi: 10.1016/j.pharmthera.2023.108352
[104]

Ma Y, Brocchini S, Williams GR. 2023. Extracellular vesicle-embedded materials. Journal of Controlled Release 361:280−296

doi: 10.1016/j.jconrel.2023.07.059
[105]

Cocozza F, Grisard E, Martin-Jaular L, Mathieu M, Théry C. 2020. SnapShot: extracellular vesicles. Cell 182:262−262.e1

doi: 10.1016/j.cell.2020.04.054
[106]

Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, et al. 2023. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. Journal of Controlled Release 353:1127−1149

doi: 10.1016/j.jconrel.2022.12.027
[107]

Witwer KW, Wolfram J. 2021. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nature Reviews Materials 6:103−106

doi: 10.1038/s41578-020-00277-6
[108]

Qiu M, Zou J, Yang Z, Yang D, Wang R, et al. 2024. Strategies for targeting peptide-modified exosomes and their applications in the lungs. International Journal of Nanomedicine 19:8175−8188

doi: 10.2147/IJN.S472038
[109]

Li Z, Zhou X, Gao X, Bai D, Dong Y, et al. 2020. Fusion protein engineered exosomes for targeted degradation of specific RNAs in lysosomes: a proof-of-concept study. Journal of Extracellular Vesicles 9:1816710

doi: 10.1080/20013078.2020.1816710
[110]

Ducrot C, Loiseau S, Wong C, Madec E, Volatron J, et al. 2023. Hybrid extracellular vesicles for drug delivery. Cancer Letters 558:216107

doi: 10.1016/j.canlet.2023.216107
[111]

Kandasamy G, Maity D. 2024. Inorganic nanocarriers for siRNA delivery for cancer treatments. Biomedical Materials 19:022001

doi: 10.1088/1748-605X/ad1baf
[112]

Graczyk A, Pawlowska R, Chworos A. 2021. Gold nanoparticles as carriers for functional RNA nanostructures. Bioconjugate Chemistry 32:1667−1674

doi: 10.1021/acs.bioconjchem.1c00211
[113]

Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, et al. 2009. Regulating immune response using polyvalent nucleic Acid−Gold nanoparticle conjugates. Molecular Pharmaceutics 6:1934−1940

doi: 10.1021/mp900172m
[114]

Nair A, Chandrashekhar HR, Day CM, Garg S, Nayak Y, et al. 2024. Polymeric functionalization of mesoporous silica nanoparticles: biomedical insights. International Journal of Pharmaceutics 660:124314

doi: 10.1016/j.ijpharm.2024.124314
[115]

Kang MA, Fang J, Paragodaarachchi A, Kodama K, Yakobashvili D, et al. 2022. Magnetically induced brownian motion of iron oxide nanocages in alternating magnetic fields and their application for efficient siRNA Delivery. Nano Letters 22:8852−8859

doi: 10.1021/acs.nanolett.2c02691
[116]

Sakib S, Zou S. 2024. Attenuation of chronic inflammation in intestinal organoids with graphene oxide-mediated tumor necrosis factor-α_small interfering RNA delivery. Langmuir 40:3402−3413

doi: 10.1021/acs.langmuir.3c02741
[117]

Zhang J, Lang M, Zhou Y, Zhang Y. 2024. Predicting RNA structures and functions by artificial intelligence. Trends in Genetics 40:94−107

doi: 10.1016/j.tig.2023.10.001
[118]

Yazdani K, Jordan D, Yang M, Fullenkamp CR, Calabrese DR, et al. 2023. Machine learning informs RNA-binding chemical space. Angewandte Chemie 62:e202211358

doi: 10.1002/anie.202211358
[119]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583−589

doi: 10.1038/s41586-021-03819-2
[120]

Wang Y, Parmar S, Schneekloth JS, Tiwary P. 2022. Interrogating RNA–small molecule interactions with structure probing and artificial intelligence-augmented molecular simulations. ACS Central Science 8:741−748

doi: 10.1021/acscentsci.2c00149
[121]

Wu T, He S, Liu J, Sun S, Liu K, et al. 2023. A brief overview of ChatGPT: the history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica 10:1122−1136

doi: 10.1109/JAS.2023.123618
[122]

Shen X, Hou Y, Wang X, Zhang C, Liu J, et al. 2025. A deep learning model for characterizing protein-RNA interactions from sequences at single-base resolution. Patterns 6:101150

doi: 10.1016/j.patter.2024.101150
[123]

Bae SH, Choi H, Lee J, Kang MH, Ahn SH, et al. 2025. Rational design of lipid nanoparticles for enhanced mRNA vaccine delivery via machine learning. Small 21:e2405618

doi: 10.1002/smll.202405618
[124]

Panda S, Eaton EJ, Muralikrishnan P, Stelljes EM, Seelig D, et al. 2025. Machine learning reveals amine type in polymer micelles determines mRNA binding, in vitro, and in vivo performance for lung-selective delivery. JACS Au 5:1845−1861

doi: 10.1021/jacsau.5c00084
[125]

Eugster R, Orsi M, Buttitta G, Serafini N, Tiboni M, et al. 2024. Leveraging machine learning to streamline the development of liposomal drug delivery systems. Journal of Controlled Release 376:1025−1038

doi: 10.1016/j.jconrel.2024.10.065
[126]

Li B, Raji IO, Gordon AGR, Sun L, Raimondo TM, et al. 2024. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nature Materials 23:1002−1008

doi: 10.1038/s41563-024-01867-3
[127]

Sun T, Xia W, Shu J, Sang C, Feng M, et al. 2025. Advances and challenges in machine learning for RNA-small molecule interaction modeling: review. Journal of Chemical Theory and Computation 21:8615−8633

doi: 10.1021/acs.jctc.5c00973
[128]

Sparmann A, Vogel J. 2023. RNA-based medicine: from molecular mechanisms to therapy. The EMBO Journal 42:e114760

doi: 10.15252/embj.2023114760
[129]

Kimura M, Kothari S, Gohir W, Camargo JF, Husain S. 2023. microRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets. Clinical Microbiology Reviews 36:e0001523

doi: 10.1128/cmr.00015-23
[130]

Rupaimoole R, Slack FJ. 2017. microRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery 16:203−222

doi: 10.1038/nrd.2016.246
[131]

Soroudi S, Jaafari MR, Arabi L. 2024. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: advances in genome editing and CAR T cell therapy. Journal of Controlled Release 372:113−140

doi: 10.1016/j.jconrel.2024.06.023
[132]

Plummer R, Sodergren MH, Hodgson R, Ryan BM, Raulf N, et al. 2025. TIMEPOINT, a phase 1 study combining MTL-CEBPA with pembrolizumab, supports the immunomodulatory effect of MTL-CEBPA in solid tumors. Cell Reports Medicine 6:102041

doi: 10.1016/j.xcrm.2025.102041
[133]

Sarker D, Plummer R, Meyer T, Sodergren MH, Basu B, et al. 2020. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clinical Cancer Research 26:3936−3946

doi: 10.1158/1078-0432.CCR-20-0414
[134]

Gainor JF, Patel MR, Weber JS, Gutierrez M, Bauman JE, et al. 2024. T-cell responses to individualized neoantigen therapy mRNA-4157 (V940) alone or in combination with pembrolizumab in the phase 1 KEYNOTE-603 study. Cancer Discovery 14:2209−2223

doi: 10.1158/2159-8290.CD-24-0158
[135]

Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, et al. 2024. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. The Lancet 403:632−644

doi: 10.1016/S0140-6736(23)02268-7
[136]

Lu M, Sullivan RJ, Chow J, Mehnert JM, Carlino MS, et al. 2025. Abstract 855: dynamics of T cell and T cell receptor following mRNA-4157 (V940) plus pembrolizumab or pembrolizumab alone in resected melanoma from the mRNA-4157-P201 (KEYNOTE-942) trial. Cancer Research 85:855

doi: 10.1158/1538-7445.AM2025-855
[137]

Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, et al. 2020. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585:107−112

doi: 10.1038/s41586-020-2537-9
[138]

Kübler H, Scheel B, Gnad-Vogt U, Miller K, Schultze-Seemann W, et al. 2015. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. Journal for Immunotherapy of Cancer 3:26

doi: 10.1186/s40425-015-0068-y
[139]

Lin YX, Wang Y, Blake S, Yu M, Mei L, et al. 2020. RNA nanotechnology-mediated cancer immunotherapy. Theranostics 10:281−299

doi: 10.7150/thno.35568
[140]

Raimondo TM, Reed K, Shi D, Langer R, Anderson DG. 2023. Delivering the next generation of cancer immunotherapies with RNA. Cell 186:1535−1540

doi: 10.1016/j.cell.2023.02.031
[141]

Zhang D, Tian J, Wang Y, Lu J. 2022. Evitar: designing anti-viral RNA therapies against future RNA viruses. Bioinformatics 38:2437−2443

doi: 10.1093/bioinformatics/btac144
[142]

The Lancet Infectious Diseases. 2020. COVID-19, a pandemic or not? The Lancet Infectious Diseases 20:383

doi: 10.1016/S1473-3099(20)30180-8
[143]

Wang Y, Zhang Z, Luo J, Han X, Wei Y, et al. 2021. mRNA vaccine: a potential therapeutic strategy. Molecular Cancer 20:33

doi: 10.1186/s12943-021-01311-z
[144]

Gupta A, Andresen JL, Manan RS, Langer R. 2021. Nucleic acid delivery for therapeutic applications. Advanced Drug Delivery Reviews 178:113834

doi: 10.1016/j.addr.2021.113834
[145]

Goswami J, Cardona JF, Hsu DC, Simorellis AK, Wilson L, et al. 2025. Safety and immunogenicity of mRNA-1345 RSV vaccine coadministered with an influenza or COVID-19 vaccine in adults aged 50 years or older: an observer-blinded, placebo-controlled, randomised, phase 3 trial. The Lancet Infectious Diseases 25:411−423

doi: 10.1016/S1473-3099(24)00589-9
[146]

Yuen MF, Locarnini S, Lim TH, Strasser SI, Sievert W, et al. 2022. Combination treatments including the small-interfering RNA JNJ-3989 induce rapid and sometimes prolonged viral responses in patients with CHB. Journal of Hepatology 77:1287−1298

doi: 10.1016/j.jhep.2022.07.010
[147]

Mak LY, Wooddell CI, Lenz O, Schluep T, Hamilton J, et al. 2025. Long-term hepatitis B surface antigen response after finite treatment of ARC-520 or JNJ-3989. Gut 74:440−450

doi: 10.1136/gutjnl-2024-333026
[148]

Buyo Lagares S, Picallo Vieito A, Grueiro Cao M, Pardal Iglesias M, Lagoa Pena A, et al. 2025. Neuropsychiatric symptoms in huntington's disease: a case report on manic and psychotic features Huntington's disease (HD). European Psychiatry 68:S239

doi: 10.1192/j.eurpsy.2025.534
[149]

McColgan P, Thobhani A, Boak L, Schobel SA, Nicotra A, et al. 2023. Tominersen in adults with manifest Huntington's disease. The New England Journal of Medicine 389:2203−2205

doi: 10.1056/NEJMc2300400
[150]

Mercuri E, Sumner CJ, Muntoni F, Darras BT, Finkel RS. 2022. Spinal muscular atrophy. Nature Reviews Disease Primers 8:52

doi: 10.1038/s41572-022-00380-8
[151]

Gowda V, Wraige E, Ong M, Atherton M, Majumdar A, et al. 2022. Real-world experience of gene therapy with onasemnogene-abeparvovec (Zolgensma®) for patients with SMA-type1 in UK. Journal of Neurology, Neurosurgery & Psychiatry 93:e2

doi: 10.1136/jnnp-2022-abn2.1
[152]

Strauss KA, Swoboda KJ, Farrar MA, McMillan HJ, Parsons J, et al. 2019. 15.33 AVXS-101 in presymptomatic spinal muscular atrophy (SMA). Journal of Neurology, Neurosurgery & Psychiatry 90:e7

doi: 10.1136/jnnp-2019-abn-2.20
[153]

Wang W, Zhao Z, Zhang Z, Wu Z, Zhang Y, et al. 2025. Delivery of small interfering RNA by hydrogen sulfide-releasing nanomotor for the treatment of Parkinson's disease. Journal of Controlled Release 377:648−660

doi: 10.1016/j.jconrel.2024.11.069
[154]

Wanionok NE, Morel GR, Fernández JM. 2024. Osteoporosis and Alzheimer's disease (or Alzheimer's disease and Osteoporosis). Ageing Research Reviews 99:102408

doi: 10.1016/j.arr.2024.102408
[155]

Bashir B, Pasha R, Kamath A, Wang J, Malik RA, et al. 2025. Neurodegeneration in familial chylomicronemia syndrome. Journal of Clinical Lipidology 19:1119−1128

doi: 10.1016/j.jacl.2025.05.023
[156]

Paik J, Duggan S. 2019. Volanesorsen: first global approval. Drugs 79:1349−1354

doi: 10.1007/s40265-019-01168-z
[157]

Scott LJ, Keam SJ. 2021. Lumasiran: first approval. Drugs 81:277−282

doi: 10.1007/s40265-020-01463-0
[158]

Syed YY. 2023. Nedosiran: first approval. Drugs 83:1729−1733

doi: 10.1007/s40265-023-01976-4
[159]

Hair P, Cameron F, McKeage K. 2013. Mipomersen sodium: first global approval. Drugs 73:487−493

doi: 10.1007/s40265-013-0042-2
[160]

Migliorati JM, Jin J, Zhong XB. 2022. siRNA drug Leqvio (inclisiran) to lower cholesterol. Trends in Pharmacological Sciences 43:455−456

doi: 10.1016/j.tips.2022.02.003
[161]

Clark VC, Strange C, Strnad P, Sanchez AJ, Kwo P, et al. 2024. Fazirsiran for adults with alpha-1 antitrypsin deficiency liver disease: a phase 2 placebo controlled trial (SEQUOIA). Gastroenterology 167:1008−1018.e5

doi: 10.1053/j.gastro.2024.06.028
[162]

Strnad P, Mandorfer M, Choudhury G, Griffiths W, Trautwein C, et al. 2022. Fazirsiran for liver disease associated with alpha1-antitrypsin deficiency. The New England Journal of Medicine 387:514−524

doi: 10.1056/NEJMoa2205416
[163]

Ray K. 2022. Fazirsiran shows promise for liver disease in AAT. Nature Reviews Gastroenterology & Hepatology 19:556

doi: 10.1038/s41575-022-00668-w
[164]

Koeberl D, Schulze A, Sondheimer N, Lipshutz GS, Geberhiwot T, et al. 2024. Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature 628:872−877

doi: 10.1038/s41586-024-07266-7
[165]

Blom DJ, Marais AD, Moodley R, van der Merwe N, van Tonder A, et al. 2022. RNA-based therapy in the management of lipid disorders: a review. Lipids in Health and Disease 21:41

doi: 10.1186/s12944-022-01649-3
[166]

Hastings ML, Krainer AR. 2023. RNA therapeutics. RNA 29:393−895

doi: 10.1261/rna.079626.123
[167]

Gauvreau GM, Pageau R, Séguin R, Carballo D, Gauthier J, et al. 2011. Dose-response effects of TPI ASM8 in asthmatics after allergen: dose response of TPI ASM8 in allergic asthmatics. Allergy 66:1242−1248

doi: 10.1111/j.1398-9995.2011.02638.x
[168]

Gauvreau GM, Boulet LP, Cockcroft DW, Baatjes A, Cote J, et al. 2008. Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. American Journal of Respiratory and Critical Care Medicine 177:952−958

doi: 10.1164/rccm.200708-1251OC
[169]

Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, et al. 2018. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine 379:11−21

doi: 10.1056/NEJMoa1716153
[170]

Maurer MS, Kale P, Fontana M, Berk JL, Grogan M, et al. 2023. Patisiran treatment in patients with transthyretin cardiac amyloidosis. The New England Journal of Medicine 389:1553−1565

doi: 10.1056/NEJMoa2300757
[171]

Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, et al. 2018. Inotersen treatment for patients with hereditary transthyretin amyloidosis. The New England Journal of Medicine 379:22−31

doi: 10.1056/NEJMoa1716793
[172]

Yang J. 2019. Patisiran for the treatment of hereditary transthyretin-mediated amyloidosis. Expert Review of Clinical Pharmacology 12:95−99

doi: 10.1080/17512433.2019.1567326
[173]

Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, et al. 2018. Nusinersen versus sham control in later-onset spinal muscular atrophy. The New England Journal of Medicine 378:625−635

doi: 10.1056/NEJMoa1710504
[174]

Acsadi G, Crawford TO, Müller-Felber W, Shieh PB, Richardson R, et al. 2021. Safety and efficacy of nusinersen in spinal muscular atrophy: the EMBRACE study. Muscle & Nerve 63:668−677

doi: 10.1002/mus.27187
[175]

Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, et al. 2013. Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of Neurology 74:637−647

doi: 10.1002/ana.23982
[176]

Syed YY. 2016. Eteplirsen: first global approval. Drugs 76:1699−1704

doi: 10.1007/s40265-016-0657-1
[177]

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, et al. 2021. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine 384:403−416

doi: 10.1056/NEJMoa2035389
[178]

Chalkias S, Dennis P, Petersen D, Radhakrishnan K, Vaughan L, et al. 2025. Efficacy, immunogenicity, and safety of a next-generation mRNA-1283 COVID-19 vaccine compared with the mRNA-1273 vaccine (NextCOVE): results from a phase 3, randomised, observer-blind, active-controlled trial. The Lancet Infectious Diseases 25:1230−1242

doi: 10.1016/S1473-3099(25)00236-1
[179]

Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, et al. 2020. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. The New England Journal of Medicine 383:2603−2615

doi: 10.1056/NEJMoa2034577
[180]

Hồ NT, Hughes SG, Ta VT, Phan LT, Đỗ Q, et al. 2024. Safety, immunogenicity and efficacy of the self-amplifying mRNA ARCT-154 COVID-19 vaccine: pooled phase 1, 2, 3a and 3b randomized, controlled trials. Nature Communications 15:4081

doi: 10.1038/s41467-024-47905-1
[181]

Xu K, Lei W, Kang B, Yang H, Wang Y, et al. 2023. A novel mRNA vaccine, SYS6006, against SARS-CoV-2. Frontiers in Immunology 13:1051576

doi: 10.3389/fimmu.2022.1051576
[182]

Luo M, Liu Y, Xu X, Liu K, Shen C, et al. 2023. Efficacy and safety of inclisiran in stroke or cerebrovascular disease prevention: a systematic review and meta-analysis of randomized controlled trials. Frontiers in Pharmacology 14:1158274

doi: 10.3389/fphar.2023.1158274
[183]

Siddiqui MAA, Keating GM. 2005. Pegaptanib: in exudative age-related macular degeneration. Drugs 65:1571−1577

doi: 10.2165/00003495-200565110-00010
[184]

Günther R, Wurster CD, Brakemeier S, Osmanovic A, Schreiber-Katz O, et al. 2024. Long-term efficacy and safety of nusinersen in adults with 5q spinal muscular atrophy: a prospective European multinational observational study. The Lancet Regional Health Europe 39:100862

doi: 10.1016/j.lanepe.2024.100862
[185]

Deng J, Zhang J, Shi K, Liu Z. 2022. Drug development progress in Duchenne muscular dystrophy. Frontiers in Pharmacology 13:950651

doi: 10.3389/fphar.2022.950651
[186]

Law S, Arnold J, Rauf MU, Heptinstall L, Gilbertson J, et al. 2023. Focal segmental glomerulosclerosis complicating therapy with inotersen, an antisense oligonucleotide inhibitor: a case report. American Journal of Kidney Diseases 81:606−610

doi: 10.1053/j.ajkd.2022.08.018
[187]

Saini A, Chawla PA. 2024. Breaking barriers with tofersen: enhancing therapeutic opportunities in amyotrophic lateral sclerosis. European Journal of Neurology 31:e16140

doi: 10.1111/ene.16140
[188]

Frangoul H, Locatelli F, Sharma A, Bhatia M, Mapara M, et al. 2024. Exagamglogene autotemcel for severe sickle cell disease. The New England Journal of Medicine 390:1649−1662

doi: 10.1056/NEJMoa2309676
[189]

Karimi MA, Esmaeilpour Moallem F, Gholami Chahkand MS, Azarm E, Emami Kazemabad MJ, et al. 2024. Assessing the effectiveness and safety of Patisiran and Vutrisiran in ATTRv amyloidosis with polyneuropathy: a systematic review. Frontiers in Neurology 15:1465747

doi: 10.3389/fneur.2024.1465747
[190]

Melch M, Lee J, Jomphe C, Robbie GJ. 2023. Population pharmacokinetic analysis of the RNAi therapeutic givosiran in patients with acute hepatic porphyria. Clinical Pharmacokinetics 62:89−99

doi: 10.1007/s40262-022-01197-0
[191]

Hussain A, Fareed A. 2025. Personalized medicine in pancreatic cancer: harnessing the potential of mRNA vaccines. Journal of Genetic Engineering and Biotechnology 23:100469

doi: 10.1016/j.jgeb.2025.100469
[192]

Zorde Khvalevsky E, Gabai R, Rachmut IH, Horwitz E, Brunschwig Z, et al. 2013. Mutant KRAS is a druggable target for pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America 110:20723−20728

doi: 10.1073/pnas.1314307110
[193]

Ramalingam K, Woody R, Glencer A, Schwartz CJ, Mori H, et al. 2025. Intratumoral injection of mRNA-2752 and pembrolizumab for high-risk ductal carcinoma in situ: a phase 1 nonrandomized clinical trial. JAMA Oncology 11:288−292

doi: 10.1001/jamaoncol.2024.5927
[194]

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, et al. 2020. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer 122:1630−1637

doi: 10.1038/s41416-020-0802-1
[195]

Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, et al. 2016. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8:1079−1085

doi: 10.2217/epi-2016-0035
[196]

Lee IT, Nachbagauer R, Ensz D, Schwartz H, Carmona L, et al. 2023. Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis. Nature Communications 14:3631

doi: 10.1038/s41467-023-39376-7
[197]

Carascal MB, Pavon RDN, Rivera WL. 2022. Recent progress in recombinant influenza vaccine development toward heterosubtypic immune response. Frontiers in Immunology 13:878943

doi: 10.3389/fimmu.2022.878943
[198]

Akingbola A, Adegbesan A, Adewole O, Adegoke K, Benson AE, et al. 2025. The mRNA-1647 vaccine: a promising step toward the prevention of cytomegalovirus infection (CMV). Human Vaccines & Immunotherapeutics 21:2450045

doi: 10.1080/21645515.2025.2450045
[199]

Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. 2022. The clinical progress of mRNA vaccines and immunotherapies. Nature Biotechnology 40:840−854

doi: 10.1038/s41587-022-01294-2
[200]

Zhong L, Zhao Q, Zeng MS, Zhang X. 2024. Prophylactic vaccines against Epstein-Barr virus. The Lancet 404:845

doi: 10.1016/S0140-6736(24)01608-8
[201]

Rodrigue V, Gravagna K, Yao J, Nafade V, Basta NE. 2024. Current progress towards prevention of Nipah and Hendra disease in humans: a scoping review of vaccine and monoclonal antibody candidates being evaluated in clinical trials. Tropical Medicine & International Health 29:354−364

doi: 10.1111/tmi.13979
[202]

Essink B, Chu L, Seger W, Barranco E, Le Cam N, et al. 2023. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. The Lancet Infectious Diseases 23:621−633

doi: 10.1016/S1473-3099(22)00764-2
[203]

Gill DS, Ram S, Rice PA. 2025. Biologic drug development for treatment and prevention of sexually transmitted infections. Clinical Microbiology Reviews 38:e00107-24

doi: 10.1128/cmr.00107-24
[204]

Wooddell CI, Lenz O, Schluep T, Yuen MF, Biermer M. 2025. Discovery and Development of ARO-HBV/JNJ-3989. In Trends in Antiviral Drug Development, eds Sophia MJ, Wang Z. US: Wiley. pp. 211−246 doi: 10.1002/9783527845088.ch06

[205]

Rinaldi C, Wood MJA. 2018. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nature Reviews Neurology 14:9−21

doi: 10.1038/nrneurol.2017.148
[206]

Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, et al. 2021. The limitless future of RNA therapeutics. Frontiers in Bioengineering and Biotechnology 9:628137

doi: 10.3389/fbioe.2021.628137
[207]

Yuen MF, Heo J, Nahass RG, Wong GL, Burda T, et al. 2023. LBP-38 Preliminary safety and antiviral activity of AB-729 combination treatment with pegylated interferon alfa-2a in virally suppressed, HBeAg-negative subjects with chronic HBV infection. Journal of Hepatology 78:S125

doi: 10.1016/S0168-8278(23)00618-9
[208]

Wang H, Su Y, Chen D, Li Q, Shi S, et al. 2023. Advances in the mechanisms and applications of inhibitory oligodeoxynucleotides against immune-mediated inflammatory diseases. Frontiers in Pharmacology 14:1119431

doi: 10.3389/fphar.2023.1119431
[209]

Bae ON. 2012. Targeting von Willebrand factor as a novel anti-platelet therapy; application of ARC1779, an Anti-vWF aptamer, against thrombotic risk. Archives of Pharmacal Research 35:1693−1699

doi: 10.1007/s12272-012-1000-3
[210]

Jaffe GJ, Westby K, Csaky KG, Monés J, Pearlman JA, et al. 2021. C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration. Ophthalmology 128:576−586

doi: 10.1016/j.ophtha.2020.08.027
[211]

Van de Roovaart HJ, Nguyen N, Veenstra TD. 2023. Huntington's disease drug development: a phase 3 pipeline analysis. Pharmaceuticals 16:1513

doi: 10.3390/ph16111513
[212]

Fontana M, Solomon SD, Kachadourian J, Walsh L, Rocha R, et al. 2024. CRISPR-Cas9 gene editing with nexiguran ziclumeran for ATTR cardiomyopathy. The New England Journal of Medicine 391:2231−2241

doi: 10.1056/NEJMoa2412309
[213]

Cohn DM, Gurugama P, Magerl M, Katelaris CH, Launay D, et al. 2025. CRISPR-based therapy for hereditary angioedema. The New England Journal of Medicine 392:458−467

doi: 10.1056/NEJMoa2405734
[214]

Pierce EA, Aleman TS, Jayasundera KT, Ashimatey BS, Kim K, et al. 2024. Gene editing for CEP290-associated retinal degeneration. The New England Journal of Medicine 390:1972−1984

doi: 10.1056/NEJMoa2309915