[1]

Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, et al. 2022. Multiple roles of dissolved organic matter in advanced oxidation processes. Environmental Science & Technology 56:11111−11131

doi: 10.1021/acs.est.2c01017
[2]

Thurman EM. 1985. Organic Geochemistry of Natural Waters. Dordrecht: Martinus Nijhoff/Dr W. Junk. doi: 10.1007/978-94-009-5095-5

[3]

Yao W, Dong Y, Qi Y, Han Y, Ge J, et al. 2024. Tracking the changes of DOM composition, transformation, and cycling mechanism triggered by the priming effect: insights from incubation experiments. Environmental Science & Technology 59:430−442

doi: 10.1021/acs.est.4c03784
[4]

Wen Z, Han J, Shang Y, Tao H, Fang C, et al. 2024. Spatial variations of DOM in a diverse range of lakes across various frozen ground zones in China: insights into molecular composition. Water Research 252:121204

doi: 10.1016/j.watres.2024.121204
[5]

Zhou X, Ma A, Chen X, Zhang Q, Guo X, et al. 2023. Climate warming-driven changes in the molecular composition of soil dissolved organic matter across depth: a case study on the Tibetan Plateau. Environmental Science & Technology 57:16884−16894

doi: 10.1021/acs.est.3c04899
[6]

Zhang H, Cheng D, Song J, Zhang Y. 2025. Spatiotemporal fate of dissolved organic matter (DOM) in aquatic systems: drivers, patterns and global implications. Journal of Hydrology 661:133637

doi: 10.1016/j.jhydrol.2025.133637
[7]

Steinberg CEW, Saul N, Pietsch K, Meinelt T, Rienau S, et al. 2007. Dissolved humic substances facilitate fish life in extreme aquatic environments and have the potential to extend the lifespan of Caenorhabditis elegans. Annals of Environmental Science 1:81−90

[8]

Du Y, Chen F, Zhang Y, He H, Wen S, et al. 2023. Human activity coupled with climate change strengthens the role of lakes as an active pipe of dissolved organic matter. Earth's Future 11:e2022EF003412

doi: 10.1029/2022ef003412
[9]

Xenopoulos MA, Barnes RT, Boodoo KS, Butman D, Catalán N, et al. 2021. How humans alter dissolved organic matter composition in freshwater: relevance for the Earth's biogeochemistry. Biogeochemistry 154:323−348

doi: 10.1007/s10533-021-00753-3
[10]

Nelson AR, Narrowe AB, Rhoades CC, Fegel TS, Daly RA, et al. 2022. Wildfire-dependent changes in soil microbiome diversity and function. Nature Microbiology 7:1419−1430

doi: 10.1038/s41564-022-01203-y
[11]

Khreptugova AN, Konstantinov AI, Mikhnevich TA, Matsubara F, Gustafsson Ö, et al. 2025. Onboard large-scale isolation and characterization of three reference DOM materials from Siberian Arctic shelf marine water. ACS Omega 10:6406−6418

doi: 10.1021/acsomega.4c06041
[12]

Wang Y, Spencer RGM, Podgorski DC, Kellerman AM, Rashid H, et al. 2018. Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghai–Tibet Plateau: importance of source and permafrost degradation. Biogeosciences 15:6637−6648

doi: 10.5194/bg-15-6637-2018
[13]

Mann PJ, Davydova A, Zimov N, Spencer RGM, Davydov S, et al. 2012. Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin. Journal of Geophysical Research: Biogeosciences 117:G01028

doi: 10.1029/2011JG001798
[14]

Jaffé R, Ding Y, Niggemann J, Vähätalo AV, Stubbins A, et al. 2013. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345−347

doi: 10.1126/science.1231476
[15]

Chen H, Yang Z, Chu RK, Tolic N, Liang L, et al. 2018. Molecular insights into Arctic soil organic matter degradation under warming. Environmental Science & Technology 52:4555−4564

doi: 10.1021/acs.est.7b05469
[16]

Hu A, Jang KS, Tanentzap AJ, Zhao W, Lennon JT, et al. 2024. Thermal responses of dissolved organic matter under global change. Nature Communications 15:576

doi: 10.1038/s41467-024-44813-2
[17]

Li T, Lu L, Kang Z, Li H, Li H. 2025. Warming enhances soil microbial respiration through divergent mechanisms in a tropical forest and a temperate forest. Geoderma 459:117380

doi: 10.1016/j.geoderma.2025.117380
[18]

Paul A, Stösser R, Zehl A, Zwirnmann E, Vogt RD, et al. 2006. Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation. Environmental Science & Technology 40:5897−5903

doi: 10.1021/es060742d
[19]

Paul A, Dziallas C, Zwirnmann E, Gjessing ET, Grossart HP. 2012. UV irradiation of natural organic matter (NOM): impact on organic carbon and bacteria. Aquatic Sciences 74:443−454

doi: 10.1007/s00027-011-0239-y
[20]

Hu J, Kang L, Li Z, Feng X, Liang C, et al. 2023. Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes. Nature Communications 14:3681

doi: 10.1038/s41467-023-39432-2
[21]

Wang T, Kalalian C, Wang X, Li D, Perrier S, et al. 2024. Photoinduced evolutions of permafrost-derived carbon in subarctic thermokarst pond surface waters. Environmental Science & Technology 58:17429−17440

doi: 10.1021/acs.est.4c05320
[22]

Roth VN, Dittmar T, Gaupp R, Gleixner G. 2013. Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River. Geochimica Et Cosmochimica Acta 123:93−105

doi: 10.1016/j.gca.2013.09.002
[23]

Hu A, Han L, Lu X, Zhang G, Wang J. 2025. Global patterns and drivers of dissolved organic matter across Earth systems: insights from H/C and O/C ratios. Fundamental Research 5:2121−2132

doi: 10.1016/j.fmre.2023.11.018
[24]

LaCroix RE, Walpen N, Sander M, Tfaily MM, Blanchard JL, et al. 2021. Long-term warming decreases redox capacity of soil organic matter. Environmental Science & Technology Letters 8:92−97

doi: 10.1021/acs.estlett.0c00748
[25]

Textor SR, Wickland KP, Podgorski DC, Johnston SE, Spencer RGM. 2019. Dissolved organic carbon turnover in permafrost-influenced watersheds of interior Alaska: molecular insights and the priming effect. Frontiers in Earth Science 7:275

doi: 10.3389/feart.2019.00275
[26]

Wan P, Zhang F, Zhang K, Li Y, Qin R, et al. 2023. Soil warming decreases carbon availability and reduces metabolic functions of bacteria. CATENA 223:106913

doi: 10.1016/j.catena.2023.106913
[27]

Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42:391−404

doi: 10.1016/j.soilbio.2009.10.014
[28]

Freeman C, Ostle N, Kang H. 2001. An enzymic 'latch' on a global carbon store. Nature 409:149−149

doi: 10.1038/35051650
[29]

Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, et al. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195−198

doi: 10.1038/nature02707
[30]

Mann PJ, Sobczak WV, LaRue MM, Bulygina E, Davydova A, et al. 2014. Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Global Change Biology 20:1089−1100

doi: 10.1111/gcb.12416
[31]

Tan W, Xi B, Wang G, Jiang J, He X, et al. 2017. Increased electron-accepting and decreased electron-donating capacities of soil humic substances in response to increasing temperature. Environmental Science & Technology 51:3176−3186

doi: 10.1021/acs.est.6b04131
[32]

Ward CP, Cory RM. 2016. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils. Environmental Science & Technology 50:3545−3553

doi: 10.1021/acs.est.5b05354
[33]

Fimmen RL, Cory RM, Chin YP, Trouts TD, McKnight DM. 2007. Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matter. Geochimica et Cosmochimica Acta 71:3003−3015

doi: 10.1016/j.gca.2007.04.009
[34]

Wang JJ, Lafrenière MJ, Lamoureux SF, Simpson AJ, Gélinas Y, et al. 2018. Differences in riverine and pond water dissolved organic matter composition and sources in Canadian high Arctic watersheds affected by active layer detachments. Environmental Science & Technology 52:1062−1071

doi: 10.1021/acs.est.7b05506
[35]

Cervantes FJ, van der Velde S, Lettinga G, Field JA. 2000. Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation 11:313−321

doi: 10.1023/a:1011118826386
[36]

Xu Y, Wang X, Ou Q, Zhou Z, van der Hoek JP, et al. 2024. Appearance of recalcitrant dissolved black carbon and dissolved organic sulfur in river waters following wildfire events. Environmental Science & Technology 58:7165−7175

doi: 10.1021/acs.est.4c00492
[37]

Cao M, Ma H, Ye Y, Li SA, Cao X, et al. 2025. Wildfire-derived pyrogenic dissolved organic matter (pyDOM) enhances riverine DOM reactivities and nitrogen metabolisms. Environmental Science & Technology 59:11597−11606

doi: 10.1021/acs.est.5c01794
[38]

Rowley MC, Grand S, Verrecchia ÉP. 2018. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137:27−49

doi: 10.1007/s10533-017-0410-1
[39]

Olshansky Y, Root RA, Chorover J. 2018. Wet-dry cycles impact DOM retention in subsurface soils. Biogeosciences 15:821−832

doi: 10.5194/bg-15-821-2018
[40]

Han Y, Qu C, Hu X, Wang P, Wan D, et al. 2022. Warming and humidification mediated changes of DOM composition in an Alfisol. Science of The Total Environment 805:150198

doi: 10.1016/j.scitotenv.2021.150198
[41]

Qi Y, Xie Q, Wang JJ, He D, Bao H, et al. 2022. Deciphering dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): from bulk to fractions and individuals. Carbon Research 1:3

doi: 10.1007/s44246-022-00002-8
[42]

Leyva D, Jaffe R, Fernandez-Lima F. 2020. Structural characterization of dissolved organic matter at the chemical formula level using TIMS-FT-ICR MS/MS. Analytical Chemistry 92:11960−11966

doi: 10.1021/acs.analchem.0c02347
[43]

Kang X, Geng N, Li Y, Li X, Yu J, et al. 2022. Treatment of cadmium and zinc-contaminated water systems using modified biochar: contaminant uptake, adsorption ability, and mechanism. Bioresource Technology 363:127817

doi: 10.1016/j.biortech.2022.127817
[44]

Mei Y, Zhuang S, Wang J. 2025. Adsorption of heavy metals by biochar in aqueous solution: a review. Science of The Total Environment 968:178898

doi: 10.1016/j.scitotenv.2025.178898
[45]

Crémazy A, Braz-Mota S, Brix KV, Duarte RM, Val AL, et al. 2022. Investigating the mechanisms of dissolved organic matter protection against copper toxicity in fish of Amazon's black waters. Science of The Total Environment 843:157032

doi: 10.1016/j.scitotenv.2022.157032
[46]

Yang Z, Fang W, Lu X, Sheng GP, Graham DE, et al. 2016. Warming increases methylmercury production in an Arctic soil. Environmental Pollution 214:504−509

doi: 10.1016/j.envpol.2016.04.069
[47]

Zhang L, Philben M, Taş N, Johs A, Yang Z, et al. 2022. Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. Environmental Pollution 299:118878

doi: 10.1016/j.envpol.2022.118878
[48]

Tai C, Li Y, Yin Y, Scinto LJ, Jiang G, et al. 2014. Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation. Environmental Science & Technology 48:7333−7340

doi: 10.1021/es500316d
[49]

Fouché J, Christiansen CT, Lafrenière MJ, Grogan P, Lamoureux SF. 2020. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nature Communications 11:4500

doi: 10.1038/s41467-020-18331-w
[50]

Payandi-Rolland D, Shirokova LS, Labonne F, Bénézeth P, Pokrovsky OS. 2021. Impact of freeze-thaw cycles on organic carbon and metals in waters of permafrost peatlands. Chemosphere 279:130510

doi: 10.1016/j.chemosphere.2021.130510
[51]

Zhao J, Chu G, Pan B, Zhou Y, Wu M, et al. 2018. Homo-conjugation of low molecular weight organic acids competes with their complexation with Cu(II). Environmental Science & Technology 52:5173−5181

doi: 10.1021/acs.est.7b05965
[52]

Sao S, Praise S, Watanabe T. 2023. Effect of flood duration on water extractable dissolved organic matter in flood plain soils: a laboratory investigation. Geoderma 432:116392

doi: 10.1016/j.geoderma.2023.116392
[53]

Wang Y, Kong L, He M, Ouyang W, Lin C, et al. 2020. Influences of particles and aquatic colloids on the oxidation of Sb(III) in natural water. ACS Earth and Space Chemistry 4:661−671

doi: 10.1021/acsearthspacechem.0c00035
[54]

Liu N, Li X, Chen P, Yuan W, Wang D, et al. 2025. Climate and vegetation controlling accumulation and translocation of heavy metals in water tower regions of Qinghai−Tibet Plateau. Journal of Hazardous Materials 484:136752

doi: 10.1016/j.jhazmat.2024.136752
[55]

Zitoun R, Marcinek S, Hatje V, Sander SG, Völker C, et al. 2024. Climate change driven effects on transport, fate and biogeochemistry of trace element contaminants in coastal marine ecosystems. Communications Earth & Environment 5:560

doi: 10.1038/s43247-024-01679-y
[56]

Liu Z, Song L, Yan W, Chen M, Zhong Z, et al. 2023. Mechanisms of antimony release from lacustrine sediments with increasing temperature. Environmental Pollution 323:121301

doi: 10.1016/j.envpol.2023.121301
[57]

Pan B, Ning P, Xing B. 2008. Part IV—Sorption of hydrophobic organic contaminants. Environmental Science and Pollution Research 15:554−564

doi: 10.1007/s11356-008-0051-y
[58]

Xi Y, Fan S, Liu Y, Cui D, Liao Z, et al. 2025. Sources of dissolved organic matter in initial rainwater and its photochemical activity. Water Cycle 6:428−439

doi: 10.1016/j.watcyc.2025.04.005
[59]

Zhao C, Ma Q, Luo J, Liu L, Zhang Z, et al. 2024. Innovative utilization of plant-derived dissolved organic matter to promote polycyclic aromatic hydrocarbons removal in constructed wetlands: unraveling the synergy among substrate adsorption, plant uptake, and microbial degradation. Process Safety and Environmental Protection 190:1590−1600

doi: 10.1016/j.psep.2024.08.012
[60]

Fu H, Wei C, Qu X, Li H, Zhu D. 2018. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: a mechanism of pseudomicelle partition and environmental implications. Environmental Pollution 232:402−410

doi: 10.1016/j.envpol.2017.09.053
[61]

Wu W, Sun H, Wang L, Li K, Wang L. 2010. Comparative study on the micelle properties of synthetic and dissolved organic matters. Journal of Hazardous Materials 174:635−640

doi: 10.1016/j.jhazmat.2009.09.098
[62]

Brown DG. 2007. Relationship between micellar and hemi-micellar processes and the bioavailability of surfactant-solubilized hydrophobic organic compounds. Environmental Science & Technology 41:1194−1199

doi: 10.1021/es061558v
[63]

Gao J, Pan S, Li P, Wang L, Hou R, et al. 2021. Vertical migration of microplastics in porous media: multiple controlling factors under wet-dry cycling. Journal of Hazardous Materials 419:126413

doi: 10.1016/j.jhazmat.2021.126413
[64]

Abdurahman A, Cui K, Wu J, Li S, Gao R, et al. 2020. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: kinetic, isotherm and site energy distribution analysis. Ecotoxicology and Environmental Safety 198:110658

doi: 10.1016/j.ecoenv.2020.110658
[65]

Li C, Wang C, Liu L. 2024. Effects of microplastics and organic fertilizer regulation on soil dissolved organic matter evolution. Toxics 12:695

doi: 10.3390/toxics12100695
[66]

Sun Y, Ji J, Tao J, Yang Y, Wu D, et al. 2023. Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. TrAC Trends in Analytical Chemistry 158:116882

doi: 10.1016/j.trac.2022.116882
[67]

Wang X, Muhmood A, Ren D, Tian P, Li Y, et al. 2023. Exploring the mechanisms of humic acid mediated degradation of polystyrene microplastics under ultraviolet light conditions. Chemosphere 327:138544

doi: 10.1016/j.chemosphere.2023.138544
[68]

Xiao Q, Liu H, Zou J, He H, Wei J, et al. 2025. Research on the effect of dissolved organic matter on the adsorption of oxytetracycline by high-density polyethylene. Environmental Chemistry 22:EN24101

doi: 10.1071/EN24101
[69]

Qiu X, Ma S, Zhang J, Fang L, Guo X, et al. 2022. Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: the crucial role of reactive oxygen species. Environmental Science & Technology 56:10149−10160

doi: 10.1021/acs.est.2c03309
[70]

Chen J, Wan N, Wang D, Zhang W. 2023. Molecular properties and biotoxicity of dissolved organic matter leached from microplastic (MP-DOM) during typical hydrothermal treatment of sewage sludge. Science of The Total Environment 892:164548

doi: 10.1016/j.scitotenv.2023.164548
[71]

Li R, Xi B, Tan W, Yuan Y. 2022. Spatiotemporal heterogeneous effects of microplastics input on soil dissolved organic matter (DOM) under field conditions. Science of The Total Environment 847:157605

doi: 10.1016/j.scitotenv.2022.157605
[72]

Liang Y, He J, Zhang S, Xia Q. 2021. Effects of exogenous organic matter on the migration of organic contaminants with different polarities in soil. International Journal of Environmental Research 15:203−214

doi: 10.1007/s41742-020-00303-z
[73]

Wang J, Chen J, Qiao X, Wang Y, Cai X, et al. 2018. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters. Water Research 144:365−372

doi: 10.1016/j.watres.2018.07.043
[74]

Oliveri Conti G, Rapisarda P, Ferrante M. 2024. Relationship between climate change and environmental microplastics: a one health vision for the platysphere health. One Health Advances 2:17

doi: 10.1186/s44280-024-00049-9
[75]

Ivleva NP. 2021. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chemical Reviews 121:11886−11936

doi: 10.1021/acs.chemrev.1c00178
[76]

Zhu L, Gaggelli N, Boldrini A, Stubbins A, Loiselle SA. 2023. Exploring methods for understanding and quantifying plastic-derived dissolved organic matter. Oceanography 36:42−48

doi: 10.5670/oceanog.2023.s1.14
[77]

Berto D, Rampazzo F, Gion C, Noventa S, Ronchi F, et al. 2017. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere 176:47−56

doi: 10.1016/j.chemosphere.2017.02.090
[78]

Suzuki Y, Akamatsu F, Nakashita R, Korenaga T. 2010. A novel method to discriminate between plant- and petroleum-derived plastics by stable carbon isotope analysis. Chemistry Letters 39:998−999

doi: 10.1246/cl.2010.998
[79]

Yan C, Wang X, Nie M, Mo X, Ding M, et al. 2024. Characteristics of microplastic-derived dissolved organic matter and its binding with pharmaceuticals unveiled by fluorescence spectroscopy and two-dimensional correlation spectroscopy. Science of The Total Environment 908:168190

doi: 10.1016/j.scitotenv.2023.168190
[80]

Tsochatzis ED, Theodoridis G, Corredig M. 2023. Analysis of oligomers to assess exposure to microplastics from foods. A perspective. Frontiers in Nutrition 10:1186951

doi: 10.3389/fnut.2023.1186951
[81]

Yuan M, Xiang H, Tong Y, Zhou K, Peng C, et al. 2023. Spectroscopic tracking of the characteristics of microplastic-derived dissolved organic matter. Separations 10:101

doi: 10.3390/separations10020101
[82]

Birch QT, Potter PM, Pinto PX, Dionysiou DD, Al-Abed SR. 2021. Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization. Talanta 224:121743

doi: 10.1016/j.talanta.2020.121743
[83]

Zhao M, Qu D, Shen W, Li M. 2019. Effects of dissolved organic matter from different sources on Microcystis aeruginosa growth and physiological characteristics. Ecotoxicology and Environmental Safety 176:125−131

doi: 10.1016/j.ecoenv.2019.03.085
[84]

Höss S, Bergtold M, Haitzer M, Traunspurger W, Steinberg CEW. 2001. Refractory dissolved organic matter can influence the reproduction of Caenorhabditis elegans (Nematoda). Freshwater Biology 46:1−10

doi: 10.1046/j.1365-2427.2001.00639.x
[85]

Forward Jr RB, Tankersley RA, Blondel D, Rittschof D. 1997. Metamorphosis of the blue crab Callinectes sapidus: effects of humic acids and ammonium. Marine Ecology Progress Series 157:277−286

doi: 10.3354/meps157277
[86]

Menzel R, Menzel S, Tiedt S, Kubsch G, Stösser R, et al. 2011. Enrichment of humic material with hydroxybenzene moieties intensifies its physiological effects on the nematode Caenorhabditis elegans. Environmental Science & Technology 45:8707−8715

doi: 10.1021/es2023237
[87]

Suhett AL, Steinberg CEW, Santangelo JM, Bozelli RL, Farjalla VF. 2011. Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. Environmental Science and Pollution Research 18:1004−1014

doi: 10.1007/s11356-011-0455-y
[88]

Steinberg CEW, Ouerghemmi N, Herrmann S, Bouchnak R, Timofeyev MA, et al. 2010. Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652:223−236

doi: 10.1007/s10750-010-0334-4
[89]

Menzel S, Bouchnak R, Menzel R, Steinberg CEW. 2011. Dissolved humic substances initiate DNA-methylation in cladocerans. Aquatic Toxicology 105:640−642

doi: 10.1016/j.aquatox.2011.08.025
[90]

Öz B, Snyder PK, Jiao X, Driscoll CT, Zeng T. 2025. Photochemical production of singlet oxygen in Adirondack long-term monitoring lakes of varying browning status. Environmental Science & Technology 59:13992−14005

doi: 10.1021/acs.est.5c04001
[91]

Lieke T, Stejskal V, Behrens S, Steinberg CEW, Meinelt T. 2024. Fulvic acid modulates mucosal immunity in fish skin: sustainable aquaculture solution or environmental risk factor. Journal of Hazardous Materials 467:133737

doi: 10.1016/j.jhazmat.2024.133737
[92]

Planas M, Pérez-Lorenzo M, Hjelm M, Gram L, Fiksdal IU, et al. 2006. Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture 255:323−333

doi: 10.1016/j.aquaculture.2005.11.039
[93]

Reverter M, Tapissier-Bontemps N, Lecchini D, Banaigs B, Sasal P. 2018. Biological and ecological roles of external fish mucus: a review. Fishes 3:41

doi: 10.3390/fishes3040041
[94]

Helbling EW, Villafañe V, Ferrario M, Holm-Hansen O. 1992. Effects of ultraviolet radiation on marine phytoplankton. In Primary Productivity and Biogeochemical Cycles in the Sea. eds. Falkowski PG, Woodhead AD, Vivirito K. Boston, MA: Springer. pp. 514 doi: 10.1007/978-1-4899-0762-2_42

[95]

Vinebrooke RD, Leavitt PR. 1999. Phytobenthos and phytoplankton as potential indicators of climate change in mountain lakes and ponds: a HPLC-based pigment approach. Journal of the North American Benthological Society 18:15−33

doi: 10.2307/1468006
[96]

Pörs Y, Steinberg CEW. 2012. Humic substances delay aging of the photosynthetic apparatus of Chara hispida. Journal of Phycology 48:1522−1529

doi: 10.1111/jpy.12012
[97]

Lieke T, Steinberg CEW, Bittmann S, Behrens S, Hoseinifar SH, et al. 2021. Fulvic acid accelerates hatching and stimulates antioxidative protection and the innate immune response in zebrafish larvae. Science of The Total Environment 796:148780

doi: 10.1016/j.scitotenv.2021.148780
[98]

Wang Z, Hu J, Mei Z, Zhang Y, Liu Q, et al. 2024. Mannan-oligosaccharide induces trained immunity activation and alleviates pathological liver injury in turbot (Scophthalmus maximus). Aquaculture 578:740097

doi: 10.1016/j.aquaculture.2023.740097
[99]

Xiang R, Liu T, Chu Z, Wang X, Zheng B, et al. 2023. Effects of dissolved organic matter derived from two herbs on the growth, physiology, and physico-chemical characteristics of four bloom-forming algae species. Journal of Environmental Management 336:117559

doi: 10.1016/j.jenvman.2023.117559
[100]

Zhang D, Pan B, Wu M, Wang C, Li H, et al. 2014. Comparison of adsorption behavior of organic contaminants and heavy metals on thermally treated sediments with high organic carbon content. 248th American Chemical Society National Meeting, San Francisco, CA, USA, 10−14 August 2014. USA: ACS.

[101]

Lee J, Park JH, Shin YS, Lee BC, Chang NI, et al. 2009. Effect of dissolved organic matter on the growth of algae, Pseudokirchneriella subcapitata, in Korean lakes: the importance of complexation reactions. Ecotoxicology and Environmental Safety 72:335−343

doi: 10.1016/j.ecoenv.2008.01.013
[102]

Frankovich TA, Rudnick DT, Fourqurean JW. 2017. Light attenuation in estuarine mangrove lakes. Estuarine Coastal and Shelf Science 184:191−201

doi: 10.1016/j.ecss.2016.11.015
[103]

Nelson NB, Siegel DA. 2013. The global distribution and dynamics of chromophoric dissolved organic matter. Annual Review of Marine Science 5:447−476

doi: 10.1146/annurev-marine-120710-100751
[104]

Oestreich WK, Ganju NK, Pohlman JW, Suttles SE. 2016. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation. Biogeosciences 13:583−595

doi: 10.5194/bg-13-583-2016
[105]

Reitsema RE, Meire P, Schoelynck J. 2018. The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes. Frontiers in Plant Science 9:629

doi: 10.3389/fpls.2018.00629
[106]

Møller CL, Kjøller R, Sand-Jensen K. 2013. Organic enrichment of sediments reduces arbuscular mycorrhizal fungi in oligotrophic lake plants. Freshwater Biology 58:769−779

doi: 10.1111/fwb.12083
[107]

Galvez F, Donini A, Playle RC, Smith DS, O'Donnell MJ, et al. 2008. A matter of potential concern: natural organic matter alters the electrical properties of fish gills. Environmental Science & Technology 42:9385−9390

doi: 10.1021/es8005332
[108]

Artifon V, Zanardi-Lamardo E, Fillmann G. 2019. Aquatic organic matter: Classification and interaction with organic microcontaminants. Science of The Total Environment 649:1620−1635

doi: 10.1016/j.scitotenv.2018.08.385
[109]

Shen M, Hu Y, Zhao K, Qu Z, Lyu C, et al. 2024. Effects of dissolved organic matter, pH and nutrient on ciprofloxacin bioaccumulation and toxicity in duckweed. Aquatic Toxicology 266:106775

doi: 10.1016/j.aquatox.2023.106775
[110]

Endo S, Escher BI, Goss KU. 2011. Capacities of membrane lipids to accumulate neutral organic chemicals. Environmental Science & Technology 45:5912−5921

doi: 10.1021/es200855w
[111]

Huang W, Song B, Liang J, Niu Q, Zeng G, et al. 2021. Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials 405:124187

doi: 10.1016/j.jhazmat.2020.124187
[112]

Schultze S, Langva HK, Wei J, Chatzigeorgiou M, Rundberget JT, et al. 2024. Do DOM quality and origin affect the uptake and accumulation of a lipid-soluble contaminant in a filter feeding ascidian species (Ciona) that can target small particle size classes? Aquatic Toxicology 273:107026

doi: 10.1016/j.aquatox.2024.107026
[113]

Sánchez-Marín P, Aierbe E, Lorenzo JI, Mubiana VK, Beiras R, et al. 2016. Dynamic modeling of copper bioaccumulation by Mytilus edulis in the presence of humic acid aggregates. Aquatic Toxicology 178:165−170

doi: 10.1016/j.aquatox.2016.07.021
[114]

Geng Q, Zou L, Liu H, Guo M, Li F, et al. 2024. Influence of humic acid on the bioaccumulation, elimination, and toxicity of PFOS and TBBPA co-exposure in Mytilus unguiculatus Valenciennes. Science of The Total Environment 923:171358

doi: 10.1016/j.scitotenv.2024.171358
[115]

Li Y, Wang H, Xia X, Zhai Y, Lin H, et al. 2018. Dissolved organic matter affects both bioconcentration kinetics and steady-state concentrations of polycyclic aromatic hydrocarbons in zebrafish (Danio rerio). Science of The Total Environment 639:648−656

doi: 10.1016/j.scitotenv.2018.05.067
[116]

Haitzer M, Höss S, Traunspurger W, Steinberg C. 1998. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms − a review. Chemosphere 37:1335−1362

doi: 10.1016/S0045-6535(98)00117-9
[117]

Sánchez-Marín P, Beiras R. 2012. Quantification of the increase in Pb bioavailability to marine organisms caused by different types of DOM from terrestrial and river origin. Aquatic Toxicology 110−111:45−53

doi: 10.1016/j.aquatox.2011.12.015
[118]

Gauthier J. 1995. Toxicity and bioaccumulation of cadmium in juvenile Atlantic Salmon in the presence of dissolved organic matter (DOM) synthetic or natural. Dissertations. Institut National de la Recherche Scientifique, University of Quebec, Canada

[119]

Sánchez-Marín P, Lorenzo JI, Blust R, Beiras R. 2007. Humic acids increase dissolved lead bioavailability for marine invertebrates. Environmental Science & Technology 41:5679−5684

doi: 10.1021/es070088h
[120]

Zhang Q, Wang H, Xia X, Bi S, Lin H, et al. 2020. Elevated temperature enhances the bioavailability of pyrene to Daphnia magna in the presence of dissolved organic matter: implications for the effect of climate warming. Environmental Pollution 266:115349

doi: 10.1016/j.envpol.2020.115349
[121]

Hofmann S, Timofeyev MA, Putschew A, Saul N, Menzel R, et al. 2012. Leaf litter leachates have the potential to increase lifespan, body size, and offspring numbers in a clone of Moina macrocopa. Chemosphere 86:883−890

doi: 10.1016/j.chemosphere.2011.10.041
[122]

Steinberg CEW. 2003. Regulatory impacts of humic substances in lakes. In The Lakes Handbook, eds. O'Sullivan PE, Reynolds CS. Vol. 1. Malden, MA, USA: Blackwell Science Ltd. pp. 153−196 doi: 10.1002/9780470999271.ch7

[123]

Mazoyer F, Laurion I, Rautio M. 2022. The dominant role of sunlight in degrading winter dissolved organic matter from a thermokarst lake in a subarctic peatland. Biogeosciences 19:3959−3977

doi: 10.5194/bg-19-3959-2022
[124]

Simonović N, Dominović I, Marguš M, Matek A, Ljubešić Z, et al. 2023. Dynamics of organic matter in the changing environment of a stratified marine lake over two decades. Science of The Total Environment 865:161076

doi: 10.1016/j.scitotenv.2022.161076
[125]

Porcal P, Dillon PJ, Molot LA. 2015. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon. PLoS One 10:e0128884

doi: 10.1371/journal.pone.0128884
[126]

Barreto MSC, Wani RP, Goranov AI, Sowers TD, Fischel M, et al. 2024. Carbon fate, iron dissolution, and molecular characterization of dissolved organic matter in thawed yedoma permafrost under varying redox conditions. Environmental Science & Technology 58:4155−4166

doi: 10.1021/acs.est.3c08219
[127]

Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, et al. 2013. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119:359−374

doi: 10.1007/s10584-013-0730-7
[128]

Song X, Zhao M, Chen A, Xie X, Yang H, et al. 2022. Effects of input of terrestrial materials on photodegradation and biodegradation of DOM in rivers: the case of Heilongjiang River. Journal of Hydrology 609:127792

doi: 10.1016/j.jhydrol.2022.127792
[129]

Silva E, Counillon F, Brajard J, Davy R, Outten S, et al. 2025. Warming and freshening coastal waters impact harmful algal bloom frequency in high latitudes. Communications Earth & Environment 6:445

doi: 10.1038/s43247-025-02421-y
[130]

Zhang J, Cao L, Liu Z, Wan L, Cao X, et al. 2024. Relationship between eutrophication and greenhouse gases emission in shallow freshwater lakes. Science of The Total Environment 925:171610

doi: 10.1016/j.scitotenv.2024.171610
[131]

Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T, et al. 2013. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry 56:60−68

doi: 10.1016/j.soilbio.2012.01.020
[132]

Liu H, Wu Y, Ai Z, Zhang J, Zhang C, et al. 2019. Effects of the interaction between temperature and revegetation on the microbial degradation of soil dissolved organic matter (DOM) – a DOM incubation experiment. Geoderma 337:812−824

doi: 10.1016/j.geoderma.2018.10.041
[133]

Amaral V, Ortega T, Romera-Castillo C, Forja J. 2021. Linkages between greenhouse gases (CO2, CH4, and N2O) and dissolved organic matter composition in a shallow estuary. Science of The Total Environment 788:147863

doi: 10.1016/j.scitotenv.2021.147863
[134]

Yuan D, Li S, Xu YJ, Ma S, Zhang K, et al. 2024. Response of dissolved carbon dioxide and methane concentration to warming in shallow lakes. Water Research 251:121116

doi: 10.1016/j.watres.2024.121116
[135]

Wilson RM, Fitzhugh L, Whiting GJ, Frolking S, Harrison MD, et al. 2017. Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost. Journal of Geophysical Research: Biogeosciences 122:387−404

doi: 10.1002/2016jg003600
[136]

Wang H, Holden J, Zhang Z, Li M, Li X. 2014. Concentration dynamics and biodegradability of dissolved organic matter in wetland soils subjected to experimental warming. Science of The Total Environment 470:907−916

doi: 10.1016/j.scitotenv.2013.10.049
[137]

Chen X, Liu J, Chen J, Wang J, Xiao X, et al. 2022. Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord. Water Research 220:118690

doi: 10.1016/j.watres.2022.118690
[138]

Fenner N, Freeman C. 2013. Carbon preservation in humic lakes; a hierarchical regulatory pathway. Global Change Biology 19:775−784

doi: 10.1111/gcb.12066
[139]

Lindgren A, Kuhry P, Holloway M, Lu Z, Tanski G, et al. 2025. Massive losses and gains of northern land carbon stocks since the Last Glacial Maximum. Science Advances 11:eadt6231

doi: 10.1126/sciadv.adt6231
[140]

Saros JE, Hazuková V, Northington RM, Huston GP, Lamb A, et al. 2025. Abrupt transformation of West Greenland lakes following compound climate extremes associated with atmospheric rivers. Proceedings of the National Academy of Sciences of the United States of America 122:e2413855122

doi: 10.1073/pnas.2413855122
[141]

Wang HB, Liu XP, Shu YC, Li G, Sun CL, et al. 2025. Molecular composition of exogenous dissolved organic matter regulates dissimilatory iron reduction and carbon emissions in paddy soil. Environmental Science & Technology 59:12679−12691

doi: 10.1021/acs.est.5c03323
[142]

Lewis ASL, Schreiber ME, Niederlehner BR, Das A, Hammond NW, et al. 2023. Effects of hypoxia on coupled carbon and iron cycling differ between weekly and multiannual timescales in two freshwater reservoirs. Journal of Geophysical Research: Biogeosciences 128:e2022JG007071

doi: 10.1029/2022JG007071
[143]

Lim AG, Loiko SV, Pokrovsky OS. 2022. Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia. Geoderma 409:115601

doi: 10.1016/j.geoderma.2021.115601
[144]

Polimene L, Torres R, Powley HR, Bedington M, Juhls B, et al. 2022. Biological lability of terrestrial DOM increases CO2 outgassing across Arctic shelves. Biogeochemistry 160:289−300

doi: 10.1007/s10533-022-00961-5
[145]

Jiao N, Luo T, Chen Q, Zhao Z, Xiao X, et al. 2024. The microbial carbon pump and climate change. Nature Reviews Microbiology 22:408−419

doi: 10.1038/s41579-024-01018-0