[1]

UN Environment Programme (UNEP). 2023. Building materials and the climate: constructing a new future. Technical Report. UNEP, Nairobi, Kenya. doi: 10.59117/20.500.11822/43293

[2]

Shen J, Ren X, Wu H, Feng Z. 2024. The relationship between the construction of transportation infrastructure and the development of new urbanization. ISPRS International Journal of Geo-Information 13(6):194

doi: 10.3390/ijgi13060194
[3]

United Nations. 1987. Report of the World Commission on Environment and Development: our common future. Report. https://news.harvard.edu/gazette/wp-content/uploads/2016/04/our-common-future.pdf

[4]

Millet I, Pouy N. 2023. Achieving sustainability in the built environment, brick by brick. Environmental and Energy Study Institute, Washington, DC, USA. www.eesi.org/articles/view/achieving-sustainability-in-the-built-environment-brick-by-brick

[5]

Dandamudi KPR, Murdock T, Lammers PJ, Deng S, Fini EH. 2021. Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure. Resources, Conservation and Recycling 170:105564

doi: 10.1016/j.resconrec.2021.105564
[6]

Rajib A, Fini EH. 2020. Inherently functionalized carbon from lipid and protein-rich biomass to reduce ultraviolet-induced damages in bituminous materials. ACS Omega 5:25273−25280

doi: 10.1021/acsomega.0c03514
[7]

Zhang P, Liu S, Tan X, Liu Y, Zeng G, et al. 2019. Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal. Process Safety and Environmental Protection 128:329−341

doi: 10.1016/j.psep.2019.06.009
[8]

Hornung A, Stenzel F, Grunwald J. 2024. Biochar—just a black matter is not enough. Biomass Conversion and Biorefinery 14:5889−5900

doi: 10.1007/s13399-021-01284-5
[9]

Barrow CJ. 2012. Biochar: potential for countering land degradation and for improving agriculture. Applied Geography 34:21−28

doi: 10.1016/j.apgeog.2011.09.008
[10]

Mousavi M, Akbarzadeh V, Kazemi M, Deng S, Fini EH. 2025. Perspective on sustainable solutions for mitigating off-gassing of volatile organic compounds in asphalt composites. Journal of Composites Science 9(7):353

doi: 10.3390/jcs9070353
[11]

Mosleh MH, Rajabi H. 2024. NaOH-benzoic acid modified biochar for enhanced removal of aromatic VOCs. Separation and Purification Technology 330:125453

doi: 10.1016/j.seppur.2023.125453
[12]

Saadeh S, Al-Zubi Y, Katawal P, Zaatarah B, Fini E. 2023. Biochar effects on the performance of conventional and rubberized HMA. Road Materials and Pavement Design 24(1):156−172

doi: 10.1080/14680629.2021.2012238
[13]

Mahi MSH, Mun-Im-Dinar MA, Ridoy TA. 2025. Biochar as a sustainable cement replacement for enhancing concrete composite properties: a review. Smart and Green Materials 2:1−10

doi: 10.70028/sgm.v2i1.24
[14]

Jeffery S, Verheijen FGA, van der Velde M, Bastos AC. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment 144:175−187

doi: 10.1016/j.agee.2011.08.015
[15]

de Lima EM, Pereira Filho AM, da Costa DP, da França RF, da Silva ELL, et al. 2025. Potential of biochar inoculated with Trichoderma to improve soil chemical and biological properties in a regenerating area. Journal of Arid Environments 230:105430

doi: 10.1016/j.jaridenv.2025.105430
[16]

Kamali M, Appels L, Kwon EE, Aminabhavi TM, Dewil R. 2021. Biochar in water and wastewater treatment − a sustainability assessment. Chemical Engineering Journal 420:129946

doi: 10.1016/j.cej.2021.129946
[17]

Kohira Y, Akizuki S, Mihretie FA, Meselu DF, Legesse SA, et al. 2024. Enhancement of alkali- and oxidation-modified biochars derived from water hyacinth for ammonium adsorption capacity. Soil Science and Plant Nutrition 70:21−33

doi: 10.1080/00380768.2023.2272626
[18]

Wang G, Li Q, Yuwen C, Gong K, Sheng L, et al. 2021. Biochar triggers methanogenesis recovery of a severely acidified anaerobic digestion system via hydrogen-based syntrophic pathway inhibition. International Journal of Hydrogen Energy 46:9666−9677

doi: 10.1016/j.ijhydene.2020.03.115
[19]

Cervigni R, Rogers JA. 2013. Low-carbon development: opportunities for Nigeria. Report No. 78222. The World Bank Group, Washington, DC, USA. http://documents.worldbank.org/curated/en/290751468145147306

[20]

United Nations. 2017. Industrial waste assessment in the Republic of Mauritius: opportunities for industrial symbiosis. Inclusive and Sustainable Industrial Development Working Paper Series, WP 15. www.unido.org/publications/ot/9659427/pdf#:~:text=The%20aim%20of%20the%20Industrial%20Waste%20Assessment%20%28IWA%29,establishment%20of%20recycling%20activities%20and%20a%20circular%20economy.

[21]

Yang X, Yi H, Tang X, Zhao S, Yang Z, et al. 2018. Behaviors and kinetics of toluene adsorption−desorption on activated carbons with varying pore structure. Journal of Environmental Sciences 67:104−114

doi: 10.1016/j.jes.2017.06.032
[22]

Amalina F, Razak ASA, Krishnan S, Sulaiman H, Zularisam AW, et al. 2022. Biochar production techniques utilizing biomass waste-derived materials and environmental applications – a review. Journal of Hazardous Materials Advances 7:100134

doi: 10.1016/j.hazadv.2022.100134
[23]

Nayeripour M, Kheshti M. 2011. Sustainable Growth and Applications in Renewable Energy Sources. London: IntechOpen. doi: 10.5772/2433

[24]

Windeatt JH. 2015. Assessing the potential of biochar from crop residues to sequester CO2: scenarios to 2100. Doctoral thesis. The University of Leeds, Leeds, UK. https://etheses.whiterose.ac.uk/id/eprint/8439/1/Assessing%20the%20potential%20of%20biochar%20from%20crop%20residues%20to%20sequester%20CO2_Scenarios%20to%202100.pdf

[25]

Sohi S, Lopez-Capel E, Krull E, Bol R. 2009. Biochar, climate change and soil: a review to guide future research. CSIRO Land and Water Science Report 05/09. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Collingwood, Victoria, Australia. www.build-a-gasifier.com/PDF/BiocharClimateChangeSoil_WfHC_pdf%20Standard.pdf

[26]

Foong SY, Abdul Latiff NS, Liew RK, Yek PNY, Lam SS. 2020. Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem. Materials Science for Energy Technologies 3:728−733

doi: 10.1016/j.mset.2020.08.002
[27]

Gin WA, Jimoh A, Abdulkareem AS, Giwa A. 2014. Utilization of cassava peel waste as a raw material for activated carbon production: approach to environmental protection in Nigeria. International Journal of Engineering Research and Technology 3:35−42

[28]

Kumar M, Xiong X, Wan Z, Sun Y, Tsang DCW, et al. 2020. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology 312:123613

doi: 10.1016/j.biortech.2020.123613
[29]

Chen B, Zhou D, Zhu L. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology 42:5137−5143

doi: 10.1021/es8002684
[30]

Zheng W, Sharma BK, Rajagopalan N. 2010. Using biochar as a soil amendment for sustainable agriculture. Illinois Department of Agriculture Sustainable Agriculture Grant’s Research Report Series. Illinois Department of Agriculture, Springfield, IL, USA. www.ideals.illinois.edu/items/25668

[31]

Kim KH, Kim JY, Cho TS, Choi JW. 2012. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology 118:158−162

doi: 10.1016/j.biortech.2012.04.094
[32]

Zhang Y, He M, Wang L, Yan J, Ma B, et al. 2022. Biochar as construction materials for achieving carbon neutrality. Biochar 4:59

doi: 10.1007/s42773-022-00182-x
[33]

Downie A, Crosky A, Munroe P. 2012. Physical properties of biochar. In Biochar Environmental Management. London: Routledge. pp. 45–64 doi: 10.4324/9781849770552

[34]

Budai A, Zimmerman AR, Cowie AL, Webber JBW, Singh BP, et al. 2013. Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability. Technical Report. Philadelphia, USA, International Biochar Initiative.

[35]

Zhang X, Gao B, Zheng Y, Hu X, Creamer AE, et al. 2017. Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms. Bioresource Technology 245:606−614

doi: 10.1016/j.biortech.2017.09.025
[36]

Shapiro WJ. 2000. Protocol to abate acidification, eutrophication and ground-level ozone. Colorado Journal of International Environmental Law and Policy 11:208

[37]

Zhou X, Moghaddam TB, Chen M, Wu S, Adhikari S. 2020. Biochar removes volatile organic compounds generated from asphalt. Science of The Total Environment 745:141096

doi: 10.1016/j.scitotenv.2020.141096
[38]

Mousavi M, Park KB, Kim JS, Fini EH. 2024. Metal-rich biochar as an asphalt modifier to improve sustainability and reduce VOC emissions. Sustainable Materials and Technologies 40:e00903

doi: 10.1016/j.susmat.2024.e00903
[39]

Yang Y, Sun C, Huang Q, Yan J. 2022. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: application in VOCs removal. Chemosphere 291:132702

doi: 10.1016/j.chemosphere.2021.132702
[40]

Khan A, Szulejko JE, Samaddar P, Kim KH, Liu B, et al. 2019. The potential of biochar as sorptive media for removal of hazardous benzene in air. Chemical Engineering Journal 361:1576−1585

doi: 10.1016/j.cej.2018.10.193
[41]

Panwar NL, Pawar A. 2022. Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Conversion and Biorefinery 12:925−947

doi: 10.1007/s13399-020-00870-3
[42]

Muzyka R, Misztal E, Hrabak J, Banks SW, Sajdak M. 2023. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 263:126128

doi: 10.1016/j.energy.2022.126128
[43]

Fan Q, Sun J, Chu L, Cui L, Quan G, et al. 2018. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere 207:33−40

doi: 10.1016/j.chemosphere.2018.05.044
[44]

Liu N, Zhang J, Cai YL, Zhang JG, Ouyang DJ, et al. 2025. Modification of biochar catalyst using copper for enhanced catalytic oxidation of VOCs. Toxics 13:503

doi: 10.3390/toxics13060503
[45]

Zhang K, Sun P, Khan A, Zhang Y. 2021. Photochemistry of biochar during ageing process: reactive oxygen species generation and benzoic acid degradation. Science of The Total Environment 765:144630

doi: 10.1016/j.scitotenv.2020.144630
[46]

Zhou Y, Shen C, Wang T, Xue Y. 2024. Inhibition effect of three types of biochar on volatile organic compounds from asphalt: revealing chemical adsorption as the primary mechanism. Construction and Building Materials 411:134322

doi: 10.1016/j.conbuildmat.2023.134322
[47]

He D, Wu J, Yu C, Huang B, Tu X, et al. 2023. Synthesis of corncob biochar with high surface area by KOH activation for VOC adsorption: effect of KOH addition method. Journal of Chemical Technology & Biotechnology 98:2051−2064

doi: 10.1002/jctb.7418
[48]

Wołowiec M, Muir B, Zięba K, Bajda T, Kowalik M, et al. 2017. Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites. Energy & Fuels 31:8803−8812

doi: 10.1021/acs.energyfuels.7b01124
[49]

Mosleh MH, Rajabi H, Sedighi M. 2023. Containment of emerging VOC pollutants by biochar. Proceedings of 9th International Congress on Environmental Geotechnics (9ICEG), 25–28 June 2023, Chania, Greece. pp. 162–168 doi: 10.53243/ICEG2023-271

[50]

Mousavi M, Aldagari S, Crocker MS, Ackerman-Biegasiewicz LKG, Fini EH. 2023. Iron-rich biochar to adsorb volatile organic compounds emitted from asphalt-surfaced areas. ACS Sustainable Chemistry & Engineering 11:2885−2896

doi: 10.1021/acssuschemeng.2c06292
[51]

David E. 2022. Production of activated biochar derived from residual biomass for adsorption of volatile organic compounds. Materials 16:389

doi: 10.3390/ma16010389
[52]

Lin J, Xu Z, Zhang Q, Cao Y, Mašek O, et al. 2024. Enhanced adsorption of aromatic VOCs on hydrophobic porous biochar produced via microwave rapid pyrolysis. Bioresource Technology 393:130085

doi: 10.1016/j.biortech.2023.130085
[53]

Pan X, Zhang N, Yang L, He C, Ma X, et al. 2023. Preparation of a novel straw–sludge activated biochar and its adsorption mechanisms for removal of VOCs. ACS Omega 8:39329−39344

doi: 10.1021/acsomega.3c04866
[54]

Kaikiti K, Stylianou M, Agapiou A. 2021. Development of food-origin biochars for the adsorption of selected volatile organic compounds (VOCs) for environmental matrices. Bioresource Technology 342:125881

doi: 10.1016/j.biortech.2021.125881
[55]

Sadegh F, Sadegh N, Wongniramaikul W, Apiratikul R, Choodum A. 2024. Adsorption of volatile organic compounds on biochar: a review. Process Safety and Environmental Protection 182:559−578

doi: 10.1016/j.psep.2023.11.071
[56]

Varkolu M, Gundekari S, Omvesh, Palla VCS, Kumar P, et al. 2025. Recent advances in biochar production, characterization, and environmental applications. Catalysts 15(3):243

doi: 10.3390/catal15030243
[57]

Hwang O, Lee SR, Cho S, Ro KS, Spiehs M, et al. 2018. Efficacy of different biochars in removing odorous volatile organic compounds (VOCs) emitted from swine manure. ACS Sustainable Chemistry & Engineering 6:14239−14247

doi: 10.1021/acssuschemeng.8b02881
[58]

Ro KS, Lima IM, Reddy GB, Jackson MA, Gao B. 2015. Removing gaseous NH3 using biochar as an adsorbent. Agriculture 5:991−1002

doi: 10.3390/agriculture5040991
[59]

Meiirkhanuly Z. 2019. Evaluation of biochar for mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds, and greenhouse gases emissions from swine manure. Master's thesis. Iowa State University, Ames, IA, USA. www.proquest.com/openview/3803b4642c735a04571e885ab60ef7ba/1?pq-origsite=gscholar&cbl=18750&diss=y

[60]

Li JJ, Zhang H, Tang XD, Lu H. 2016. Adsorptive desulfurization of dibenzothiophene over lignin-derived biochar by one-step modification with potassium hydrogen phthalate. RSC Advances 6:100352−100360

doi: 10.1039/C6RA20220A
[61]

Yang E, Yao C, Liu Y, Zhang C, Jia L, et al. 2018. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel. Fuel 211:121−129

doi: 10.1016/j.fuel.2017.07.099
[62]

Chen L, Wang M, Sun Q, Zhao Z, Han J, et al. 2024. A three-step process to produce biochar with good magnetism, high specific surface area, and high levels of nitrogen doping for the efficient removal of sulfamethoxazole. Separation and Purification Technology 333:125940

doi: 10.1016/j.seppur.2023.125940
[63]

Aouled Mhemed H, Kordoghli S, Marin Gallego M, Hadhoum L, François Largeau J, et al. 2022. A novel low-cost material for thiophene and toluene removal: study of the tire pyrolysis volatiles. Chemical Engineering Journal 450:138059

doi: 10.1016/j.cej.2022.138059
[64]

Speight JG. 2017. Industrial organic chemistry. In Encyclopedia of Oil, Gas and Energy, ed. Speight JG. Oxford, UK: Butterworth-Heinemann. pp. 87–151 https://hero.epa.gov/reference/6125440

[65]

Wang B, Hu J, Chen W, Chang C, Pang S, et al. 2024. Exploring the characteristics of coke formation on biochar-based catalysts during the biomass pyrolysis. Fuel 357:129859

doi: 10.1016/j.fuel.2023.129859
[66]

Wang Q, Li T, Shen Y, Yan L, Xie W, et al. 2025. Formation and evolution of coke of pyrolytic volatiles of low-rank coal on the carbon-based catalysts. Fuel 381:133309

doi: 10.1016/j.fuel.2024.133309
[67]

You S, Ok YS, Chen SS, Tsang DCW, Kwon EE, et al. 2017. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology 246:242−253

doi: 10.1016/j.biortech.2017.06.177
[68]

Zhang R, Dai Q, You Z, Wang H, Peng C. 2018. Rheological performance of bio-char modified asphalt with different particle sizes. Applied Sciences 8(9):1665

doi: 10.3390/app8091665
[69]

Ma F, Dai J, Fu Z, Li C, Wen Y, et al. 2022. Biochar for asphalt modification: A case of high-temperature properties improvement. Science of The Total Environment 804:150194

doi: 10.1016/j.scitotenv.2021.150194
[70]

Dong W, Ma F, Li C, Fu Z, Huang Y, et al. 2020. Evaluation of anti-aging performance of biochar modified asphalt binder. Coatings 10(11):1037

doi: 10.3390/coatings10111037
[71]

Walters RC. 2014. Enhancing asphalt rheological behavior and aging susceptibility using bio-char and nano-clay. American Journal of Engineering and Applied Sciences 7:66−76

doi: 10.3844/ajeassp.2014.66.76
[72]

Mousavi M, Aldagari S, Fini EH. 2023. Adsorbing volatile organic compounds within bitumen improves colloidal stability and air quality. ACS Sustainable Chemistry & Engineering 11(26):9581−9594

doi: 10.1021/acssuschemeng.3c00539
[73]

Rondón-Quintana HA, Reyes-Lizcano FA, Chaves-Pabón SB, Bastidas-Martínez JG, Zafra-Mejía CA. 2022. Use of biochar in asphalts: review. Sustainability 14(8):4745

doi: 10.3390/su14084745
[74]

Usha Rani V, Rathish Kumar P, Ramesh Nayaka R. 2025. Harnessing biochar for green construction: a review of its applications in cement and concrete. Journal of Building Engineering 105:112462

doi: 10.1016/j.jobe.2025.112462
[75]

Zou S, Chen X, Sham ML, Lu JX, Poon CS. 2025. Carbon sequestration in aggregate and concrete by encapsulated biochar and carbonation: experiment and simulation. Cement and Concrete Composites 159:105990

doi: 10.1016/j.cemconcomp.2025.105990
[76]

Chen Y, Zhan B, Guo B, Yang Y, Gao P, et al. 2025. Utilization of biochar to enhance the sustainability of accelerated carbonation-cured cement-based materials: effect of biochar dual-particle-size gradation on mechanical properties and carbon sequestration. Construction and Building Materials 491:142734

doi: 10.1016/j.conbuildmat.2025.142734
[77]

Yang Z, Xu J, Chen T, Gao X, Qin L. 2025. Internal and external synergistic CO2 capture of cement-based materials using modified biochar. Construction and Building Materials 470:140696

doi: 10.1016/j.conbuildmat.2025.140696
[78]

Kua HW, Goel A, Teo JHJ. 2025. Carbon mineralization, microstructure development and mechanical properties of limestone calcined clay cement enhanced with rice husk ash and biochar (bio-LC3). Journal of Cleaner Production 520:146091

doi: 10.1016/j.jclepro.2025.146091
[79]

Kua HW, Tan SMH. 2023. Novel typology of accelerated carbonation curing: using dry and pre-soaked biochar to tune carbon capture and mechanical properties of cementitious mortar. Biochar 5:36

doi: 10.1007/s42773-023-00234-w
[80]

Gopal M, Gupta A, Shahul Hameed K, Sathyaseelan N, Khadeejath Rajeela TH, et al. 2020. Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar 2:211−226

doi: 10.1007/s42773-020-00043-5
[81]

Li X, Wang C, Zhang J, Liu J, Liu B, et al. 2020. Preparation and application of magnetic biochar in water treatment: a critical review. Science of The Total Environment 711:134847

doi: 10.1016/j.scitotenv.2019.134847
[82]

John B, Krishnan D, Sumayya S, George A, Mahadevan H, et al. 2023. Lignocellulosic magnetic biochar with multiple functionality; a green chelating system for water purification. Journal of Environmental Chemical Engineering 11:110947

doi: 10.1016/j.jece.2023.110947
[83]

Pahlavan F, Kaur H, Ackerman-Biegasiewicz LKG, Lamanna A, Fini EH. 2024. Application of algal biochar to prevent leachate of heavy metals from mine tailings. Resources, Conservation and Recycling 210:107810

doi: 10.1016/j.resconrec.2024.107810
[84]

Yu F, Pan J, Zhang X, Bai X, Ma J. 2022. Adsorption of contaminants from aqueous solutions by modified biochar: a review. Environmental Chemistry 19:53−81

doi: 10.1071/en22014
[85]

Castiglioni M, Rivoira L, Ingrando I, Meucci L, Binetti R, et al. 2022. Biochars intended for water filtration: a comparative study with activated carbons of their physicochemical properties and removal efficiency towards neutral and anionic organic pollutants. Chemosphere 288:132538

doi: 10.1016/j.chemosphere.2021.132538
[86]

Xiang W, Zhang X, Chen J, Zou W, He F, et al. 2020. Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539

doi: 10.1016/j.chemosphere.2020.126539
[87]

Samuel Olugbenga O, Goodness Adeleye P, Blessing Oladipupo S, Timothy Adeleye A, Igenepo John K. 2024. Biomass-derived biochar in wastewater treatment − a circular economy approach. Waste Management Bulletin 1(4):1−14

doi: 10.1016/j.wmb.2023.07.007
[88]

Hayder G, Naim RM. 2025. Biochar-based nanocomposites from waste biomass: a sustainable approach for wastewater treatment and renewable bioenergy. Frontiers of Agricultural Science and Engineering 12:117−147

doi: 10.15302/J-FASE-2024592
[89]

Laishram D, Kim SB, Lee SY, Park SJ. 2025. Advancements in biochar as a sustainable adsorbent for water pollution mitigation. Advanced Science 12:2410383

doi: 10.1002/advs.202410383
[90]

Mukherjee A, Goswami N, Dhak D. 2023. Photocatalytic remediation of industrial dye waste streams using biochar and metal-biochar hybrids: a critical review. Chemical Africa 6:609−628

doi: 10.1007/s42250-022-00467-5
[91]

Behera AK, Shadangi KP, Sarangi PK. 2024. Efficient removal of Rhodamine B dye using biochar as an adsorbent: study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability. Chemosphere 354:141702

doi: 10.1016/j.chemosphere.2024.141702
[92]

Wang Y, Munir T, Wu X, Huang Y, Li B. 2025. Phosphorus recovery and reuse: innovating with biochar in the circular economy. Science of The Total Environment 973:179143

doi: 10.1016/j.scitotenv.2025.179143
[93]

Trivedi Y, Sharma M, Mishra RK, Sharma A, Joshi J, et al. 2025. Biochar potential for pollutant removal during wastewater treatment: a comprehensive review of separation mechanisms, technological integration, and process analysis. Desalination 600:118509

doi: 10.1016/j.desal.2024.118509
[94]

Jiang X, Ouyang Z, Zhang Z, Yang C, Li X, et al. 2018. Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 547:64−72

doi: 10.1016/j.colsurfa.2018.03.041
[95]

Nasrollahpour S, Pulicharla R, Brar SK. 2025. Functionalized biochar for the removal of poly- and perfluoroalkyl substances in aqueous media. iScience 28:112113

doi: 10.1016/j.isci.2025.112113
[96]

Shanmugam SR, Adhikari S, Nam H, Kar Sajib S. 2018. Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures. Biomass and Bioenergy 108:479−486

doi: 10.1016/j.biombioe.2017.10.034
[97]

Tiwari SB, Dubey M, Ahmed B, Gahlot P, Khan AA, et al. 2021. Carbon-based conductive materials facilitated anaerobic co-digestion of agro waste under thermophilic conditions. Waste Management 124:17−25

doi: 10.1016/j.wasman.2021.01.032
[98]

Sun Z, Feng L, Li Y, Han Y, Zhou H, et al. 2022. The role of electrochemical properties of biochar to promote methane production in anaerobic digestion. Journal of Cleaner Production 362:132296

doi: 10.1016/j.jclepro.2022.132296
[99]

Wang C, Yang Y, Wu N, Gao M, Tan Y. 2019. Combined toxicity of pyrethroid insecticides and heavy metals: a review. Environmental Chemistry Letters 17:1693−1706

doi: 10.1007/s10311-019-00905-w
[100]

Ni BJ, Huang QS, Wang C, Ni TY, Sun J, et al. 2019. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219:351−357

doi: 10.1016/j.chemosphere.2018.12.053
[101]

Truong QM, Nguyen TB, Chen WH, Chen CW, Patel AK, et al. 2023. Removal of heavy metals from aqueous solutions by high performance capacitive deionization process using biochar derived from Sargassum hemiphyllum. Bioresource Technology 370:128524

doi: 10.1016/j.biortech.2022.128524
[102]

Dwivedi S, Dey S. 2023. Review on biochar as an adsorbent material for removal of dyes from waterbodies. International Journal of Environmental Science and Technology 20:9335−9350

doi: 10.1007/s13762-022-04364-9
[103]

Chen S, Qin C, Wang T, Chen F, Li X, et al. 2019. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. Journal of Molecular Liquids 285:62−74

doi: 10.1016/j.molliq.2019.04.035
[104]

Dai Y, Wang W, Lu L, Yan L, Yu D. 2020. Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production 257:120573

doi: 10.1016/j.jclepro.2020.120573
[105]

Wu R, Zhai X, Dai K, Lian J, Cheng L, et al. 2022. Synthesis of acidified magnetic sludge-biochar and its role in ammonium nitrogen removal: perception on effect and mechanism. Science of The Total Environment 832:154780

doi: 10.1016/j.scitotenv.2022.154780
[106]

Li M, Zhang Z, Li Z, Wu H. 2020. Removal of nitrogen and phosphorus pollutants from water by FeCl3 impregnated biochar. Ecological Engineering 149:105792

doi: 10.1016/j.ecoleng.2020.105792
[107]

Pan W, Xie H, Zhou Y, Wu Q, Zhou J, et al. 2023. Simultaneous adsorption removal of organic and inorganic phosphorus from discharged circulating cooling water on biochar derived from agricultural waste. Journal of Cleaner Production 383:135496

doi: 10.1016/j.jclepro.2022.135496
[108]

Sun P, Li Y, Meng T, Zhang R, Song M, et al. 2018. Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine. Water Research 147:91−100

doi: 10.1016/j.watres.2018.09.051
[109]

Ponnusamy VK, Nagappan S, Bhosale RR, Lay CH, Nguyen Duc D, et al. 2020. Review on sustainable production of biochar through hydrothermal liquefaction: physico-chemical properties and applications. Bioresource Technology 310:123414

doi: 10.1016/j.biortech.2020.123414
[110]

Hu J, Stenchly K, Gwenzi W, Wachendorf M, Kaetzl K. 2023. Critical evaluation of biochar effects on methane production and process stability in anaerobic digestion. Frontiers in Energy Research 11:1205818

doi: 10.3389/fenrg.2023.1205818
[111]

Huang D, Yang L, Xu W, Chen Q, Ko JH, et al. 2020. Enhancement of the methane removal efficiency via aeration for biochar-amended landfill soil cover. Environmental Pollution 263:114413

doi: 10.1016/j.envpol.2020.114413
[112]

Sun WJ, Sun GG, Zhang SY. 2024. Methane removal efficiency in biochar-methanotroph-clay landfill cover. Chinese Journal of Geotechnical Engineering 46:2529−2537

doi: 10.11779/CJGE20230864
[113]

Mer K, Arachchilage P, Tao W, Egiebor NO. 2024. Activation of sawdust biochar with water and wastewater treatment residuals for sorption of perfluorooctanesulfonic acid in water. Chemosphere 358:142160

doi: 10.1016/j.chemosphere.2024.142160
[114]

Maneerung T, Liew J, Dai Y, Kawi S, Chong C, et al. 2016. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresource Technology 200:350−359

doi: 10.1016/j.biortech.2015.10.047
[115]

Cheng L, Gong X, Wang B, Liu Z, Liang H, et al. 2024. Novel biochar/Fe-modified biocarriers assisted tidal-flow constructed wetlands for enhanced nitrogen removal from eutrophic water under low temperatures. ACS ES&T Water 4:1834−1843

doi: 10.1021/acsestwater.3c00805
[116]

Zhu Y, Fan W, Feng W, Wang Y, Liu S, et al. 2021. Removal of EDTA-Cu(II) from water using synergistic Fenton reaction-assisted adsorption by nanomanganese oxide-modified biochar: performance and mechanistic analysis. ACS ES&T Water 1:1302−1312

doi: 10.1021/acsestwater.1c00031
[117]

Kumi AG, Ibrahim MG, Fujii M, Nasr M. 2022. Petrochemical wastewater treatment by eggshell modified biochar as adsorbent: a techno-economic and sustainable approach. Adsorption Science & Technology 2022:2323836

doi: 10.1155/2022/2323836
[118]

Moharm AE, El Naeem GA, Soliman HMA, Abd-Elhamid AI, El-Bardan AA, et al. 2022. Fabrication and characterization of effective biochar biosorbent derived from agricultural waste to remove cationic dyes from wastewater. Polymers 14(13):2587

doi: 10.3390/polym14132587
[119]

Maruyama DO, Akizuki SI, Sekine M, Fujita A, Habtu NG, et al. 2023. Enhancement of water hyacinth juice treatment in an anaerobic sequential batch reactor with coffee husk–derived biochar. BioEnergy Research 16:2168−2177

doi: 10.1007/s12155-023-10593-8