[1]

Cheng Y, Wang Q, Yang L, Li Q, Yan X. 2024. MiR319a-mediated salt stress response in poplar. Horticulture Research 11:uhae157

doi: 10.1093/hr/uhae157
[2]

Zhao J, Zhang S, Yu Z, Gu T, Zhang J, et al. 2025. The transcription factor MdWRKY9 is involved in jasmonic acid-mediated salt stress tolerance in apple. Horticulture Research 12:uhaf068

doi: 10.1093/hr/uhaf068
[3]

Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, et al. 2013. Halotropism is a response of plant roots to avoid a saline environment. Current Biology 23:2044−50

doi: 10.1016/j.cub.2013.08.042
[4]

Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S. 2009. How relevant are flavonoids as antioxidants in plants? Trends in Plant Science 14:125−32

doi: 10.1016/j.tplants.2008.12.003
[5]

Erb M, Kliebenstein DJ. 2020. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiology 184:39−52

doi: 10.1104/pp.20.00433
[6]

Liu SJ, Zhang H, Jin XT, Niu MX, Feng CH, et al. 2025. PeFUS3 drives lateral root growth via auxin and ABA signalling under drought stress in Populus. Plant, Cell & Environment 48:664−81

doi: 10.1111/pce.15163
[7]

Manna M, Rengasamy B, Sinha AK. 2025. Nutrient and water availability influence rice physiology, root architecture and ionomic balance via auxin signalling. Plant, Cell & Environment 48:2691−705

doi: 10.1111/pce.15171
[8]

Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117−30

doi: 10.1016/j.tplants.2020.06.008
[9]

Manzi M, Lado J, Rodrigo MJ, Zacarías L, Arbona V, et al. 2015. Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant & Cell Physiology 56:2457−66

doi: 10.1093/pcp/pcv161
[10]

Xiong H, He H, Chang Y, Miao B, Liu Z, et al. 2025. Multiple roles of NAC transcription factors in plant development and stress responses. Journal of Integrative Plant Biology 67:510−38

doi: 10.1111/jipb.13854
[11]

Ju YL, Yue XF, Min Z, Wang XH, Fang YL, et al. 2020. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry 146:98−111

doi: 10.1016/j.plaphy.2019.11.002
[12]

Zheng L, Hu Y, Yang T, Wang Z, Wang D, et al. 2024. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis. Nature Communications 15:2061

doi: 10.1038/s41467-024-46482-7
[13]

Xu N, Liu S, Lu Z, Pang S, Wang L, et al. 2020. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants 9:1162

doi: 10.3390/plants9091162
[14]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870−74

doi: 10.1093/molbev/msw054
[15]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[16]

Liu S, Gu X, Jiang Y, Wang L, Xiao N, et al. 2023. UV-B promotes flavonoid biosynthesis in Ginkgo biloba by inducing the GbHY5-GbMYB1-GbFLS module. Horticulture Research 10:uhad118

doi: 10.1093/hr/uhad118
[17]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[18]

Wen SS, Ge XL, Wang R, Yang HF, Bai YE, et al. 2022. An efficient Agrobacterium-mediated transformation method for hybrid poplar 84K (Populus alba × P. glandulosa) using calli as explants. International Journal of Molecular Sciences 23:2216

doi: 10.3390/ijms23042216
[19]

Lu J, Tong P, Xu Y, Liu S, Jin B, et al. 2023. SA-responsive transcription factor GbMYB36 promotes flavonol accumulation in Ginkgo biloba. Forestry Research 3:19

doi: 10.48130/FR-2023-0019
[20]

Cui J, Li X, Gan Q, Lu Z, Du Y, et al. 2025. Flavonoids mitigate nanoplastic stress in Ginkgo biloba. Plant, Cell & Environment 48:1790−811

doi: 10.1111/pce.15247
[21]

Guan R, Zhao Y, Zhang H, Fan G, Liu X, et al. 2016. Draft genome of the living fossil Ginkgo biloba. GigaScience 5:49

doi: 10.1186/s13742-016-0154-1
[22]

Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27
[23]

Hou XM, Zhang HF, Liu SY, Wang XK, Zhang YM, et al. 2020. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers. Plant Science 291:110346

doi: 10.1016/j.plantsci.2019.110346
[24]

Miao J, Li X, Li X, Tan W, You A, et al. 2020. OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice. New Phytologist 227:1417−33

doi: 10.1111/nph.16670
[25]

Morales M, Munné-Bosch S. 2019. Malondialdehyde: facts and artifacts. Plant Physiology 180:1246−50

doi: 10.1104/pp.19.00405
[26]

Du M, Spalding EP, Gray WM. 2020. Rapid auxin-mediated cell expansion. Annual Review of Plant Biology 71:379−402

doi: 10.1146/annurev-arplant-073019-025907
[27]

Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LP. 2014. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist 202:35−49

doi: 10.1111/nph.12613
[28]

Liu XG, Lu X, Gao W, Li P, Yang H. 2022. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Natural Product Reports 39:474−511

doi: 10.1039/D1NP00026H
[29]

Hou D, Zhao Z, Hu Q, Li L, Vasupalli N, et al. 2020. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. Tree Physiology 40:1792−806

doi: 10.1093/treephys/tpaa099
[30]

Blumstein M, Sala A, Weston DJ, Holbrook NM, Hopkins R. 2022. Plant carbohydrate storage: intra- and inter-specific trade-offs reveal a major life history trait. New Phytologist 235:2211−22

doi: 10.1111/nph.18213
[31]

Lu X, Zhang X, Duan H, Lian C, Liu C, et al. 2018. Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. Physiologia Plantarum 162:73−97

doi: 10.1111/ppl.12613
[32]

Chen Z, Peng Z, Liu S, Leng H, Luo J, et al. 2022. Overexpression of PeNAC122 gene promotes wood formation and tolerance to osmotic stress in poplars. Physiologia Plantarum 174:e13751

doi: 10.1111/ppl.13751
[33]

Jia Y, Zhao H, Niu Y, Wang Y. 2024. Long noncoding RNA from Betula platyphylla, BplncSIR1, confers salt tolerance by regulating BpNAC2 to mediate reactive oxygen species scavenging and stomatal movement. Plant Biotechnology Journal 22:48−65

doi: 10.1111/pbi.14164
[34]

Han F, Wang P, Chen X, Zhao H, Zhu Q, et al. 2023. An ethylene-induced NAC transcription factor acts as a multiple abiotic stress responsor in conifer. Horticulture Research 10:uhad130

doi: 10.1093/hr/uhad130
[35]

Ren H, Gray WM. 2015. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant 8:1153−64

doi: 10.1016/j.molp.2015.05.003
[36]

Koren Y, Perilli A, Tchaicheeyan O, Lesman A, Meroz Y. 2024. Analysis of root-environment interactions reveals mechanical advantages of growth-driven penetration of roots. Plant, Cell & Environment 47:5076−88

doi: 10.1111/pce.15089
[37]

Castro B, Citterico M, Kimura S, Stevens DM, Wrzaczek M. et al. 2021. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants 7:403−12

doi: 10.1038/s41477-021-00887-0
[38]

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98

doi: 10.1016/j.tplants.2004.08.009
[39]

Zhao Q, Zhou L, Liu J, Cao Z, Du X, et al. 2018. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Reports 37:741−57

doi: 10.1007/s00299-018-2264-y
[40]

Noctor G, Mhamdi A, Foyer, CH. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology 164:1636−48

doi: 10.1104/pp.113.233478
[41]

Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science 12:29−36

doi: 10.1016/j.tplants.2006.11.006
[42]

Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. 2023. Flavonols modulate plant development, signaling, and stress responses. Current Opinion in Plant Biology 72:102350

doi: 10.1016/j.pbi.2023.102350
[43]

Wu J, Lv S, Zhao L, Gao T, Yu C, et al. 2023. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. Planta 257:108

doi: 10.1007/s00425-023-04136-w
[44]

Gao Q, Li X, Xiang C, Li R, Xie H, et al. 2023. EbbHLH80 enhances salt responses by up-regulating flavonoid accumulation and modulating ROS levels. International Journal of Molecular Sciences 24:11080

doi: 10.3390/ijms241311080
[45]

Song Q, He F, Kong L, Yang J, Wang X, et al. 2024. The IAA17.1/HSFA5a module enhances salt tolerance in Populus tomentosa by regulating flavonol biosynthesis and ROS levels in lateral roots. New Phytologist 241:592−606

doi: 10.1111/nph.19382
[46]

Li C, He YQ, Yu J, Kong JR, Ruan CC, et al. 2024. The rice LATE ELONGATED HYPOCOTYL enhances salt tolerance by regulating Na+/K+ homeostasis and ABA signalling. Plant, Cell & Environment 47:1625−39

doi: 10.1111/pce.14835
[47]

Gurmani AR, Bano A, Ullah N, Khan H, Jahangir MM, et al. 2013. Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Australian Journal of Crop Science 7:1219−26

[48]

Li Y, Zhou J, Li Z, Qiao J, Quan R, et al. 2022. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology 189:1110−27

doi: 10.1093/plphys/kiac125
[49]

Jiang Y, Tong S, Chen N, Liu B, Bai Q, et al. 2021. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus. The Plant Journal 105:1258−73

doi: 10.1111/tpj.15109
[50]

Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, et al. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal 61:672−85

doi: 10.1111/j.1365-313X.2009.04092.x