[1]

Stevens CJ. 2019. Nitrogen in the environment. Science 363:578−580

doi: 10.1126/science.aav8215
[2]

Battye W, Aneja VP, Schlesinger WH. 2017. Is nitrogen the next carbon? Earth's Future 5:894−904

doi: 10.1002/2017EF000592
[3]

Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889−892

doi: 10.1126/science.1136674
[4]

Chen C, Yin G, Li Q, Gu Y, Sun D, et al. 2023. Effects of microplastics on denitrification and associated N2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers. Water Research 245:120590

doi: 10.1016/j.watres.2023.120590
[5]

Wu L, An Z, Zhou J, Chen F, Liu B, et al. 2022. Effects of aquatic acidification on microbially mediated nitrogen removal in estuarine and coastal environments. Environmental Science & Technology 56:5939−5949

doi: 10.1021/acs.est.2c00692
[6]

Hou L, Yin G, Liu M, Zhou J, Zheng Y, et al. 2015. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environmental Science & Technology 49:326−333

doi: 10.1021/es504433r
[7]

Howarth RW, Marino R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography 51:364−376

doi: 10.4319/lo.2006.51.1_part_2.0364
[8]

Murray RH, Erler DV, Eyre BD. 2015. Nitrous oxide fluxes in estuarine environments: response to global change. Global Change Biology 21:3219−3245

doi: 10.1111/gcb.12923
[9]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16:263−276

doi: 10.1038/nrmicro.2018.9
[10]

Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123−125

doi: 10.1126/science.1176985
[11]

Barathe P, Kaur K, Reddy S, Shriram V, Kumar V. 2024. Antibiotic pollution and associated antimicrobial resistance in the environment. Journal of Hazardous Materials Letters 5:100105

doi: 10.1016/j.hazl.2024.100105
[12]

Li S, Zhu Y, Zhong G, Huang Y, Jones KC. 2024. Comprehensive assessment of environmental emissions, fate, and risks of veterinary antibiotics in China: an environmental fate modeling approach. Environmental Science & Technology 58:5534−5547

doi: 10.1021/acs.est.4c00993
[13]

Wang J, Huang R, Liang Y, Long X, Wu S, et al. 2024. Prediction of antibiotic sorption in soil with machine learning and analysis of global antibiotic resistance risk. Journal of Hazardous Materials 466:133563

doi: 10.1016/j.jhazmat.2024.133563
[14]

Tang HZ, Zhao T, Yin QJ, Zheng PF, Zhu FC, et al. 2024. A meta-analysis of antibiotic residues in the Beibu Gulf. Marine Environmental Research 198:106560

doi: 10.1016/j.marenvres.2024.106560
[15]

Zhou X, Shi Y, Lu Y, Song S, Wang C, et al. 2024. Ecological risk assessment of commonly used antibiotics in aquatic ecosystems along the coast of China. Science of The Total Environment 935:173263

doi: 10.1016/j.scitotenv.2024.173263
[16]

Chen C, Li Y, Yin G, Hou L, Liu M, et al. 2022. Antibiotics sulfamethoxazole alter nitrous oxide production and pathways in estuarine sediments: evidenced by the N15-O18 isotopes tracing. Journal of Hazardous Materials 437:129281

doi: 10.1016/j.jhazmat.2022.129281
[17]

Chen C, Yin G, Hou L, Liu M, Jiang Y, et al. 2021. Effects of sulfamethoxazole on coupling of nitrogen removal with nitrification in Yangtze Estuary sediments. Environmental Pollution 271:116382

doi: 10.1016/j.envpol.2020.116382
[18]

Yin G, Hou L, Liu M, Zheng Y, Li X, et al. 2016. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments. Environmental Pollution 214:265−272

doi: 10.1016/j.envpol.2016.04.041
[19]

Yin G, Hou L, Liu M, Zheng Y, Li X, et al. 2017. Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments. Chemosphere 171:118−125

doi: 10.1016/j.chemosphere.2016.12.068
[20]

Bílková Z, Malá J, Hrich K. 2019. Fate and behaviour of veterinary sulphonamides under denitrifying conditions. Science of The Total Environment 695:133824

doi: 10.1016/j.scitotenv.2019.133824
[21]

Zhou Z, Huang F, Chen L, Liu F, Wang B, et al. 2024. Effects of antibiotics on microbial nitrogen cycling and N2O emissions: a review. Chemosphere 357:142034

doi: 10.1016/j.chemosphere.2024.142034
[22]

Shan J, Yang P, Rahman MM, Shang X, Yan X. 2018. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N2O release in rice fields. Environmental Pollution 242:788−796

doi: 10.1016/j.envpol.2018.07.061
[23]

Chen QQ, Wu WD, Zhang ZZ, Xu JJ, Jin RC. 2017. Inhibitory effects of sulfamethoxazole on denitrifying granule properties: short- and long-term tests. Bioresource Technology 233:391−398

doi: 10.1016/j.biortech.2017.02.102
[24]

Xu H, Lu G, Xue C. 2020. Effects of sulfamethoxazole and 2-ethylhexyl-4-methoxycinnamate on the dissimilatory nitrate reduction processes and N2O release in sediments in the Yarlung Zangbo River. International Journal of Environmental Research and Public Health 17:1822

doi: 10.3390/ijerph17061822
[25]

DeVries SL, Loving M, Li X, Zhang P. 2015. The effect of ultralow-dose antibiotics exposure on soil nitrate and N2O flux. Scientific Reports 5:16818

doi: 10.1038/srep16818
[26]

Guan A, Qi W, Peng Q, Zhou J, Bai Y, et al. 2022. Environmental heterogeneity determines the response patterns of microbially mediated N-reduction processes to sulfamethoxazole in river sediments. Journal of Hazardous Materials 421:126730

doi: 10.1016/j.jhazmat.2021.126730
[27]

Chen S, Chee-Sanford JC, Yang WH, Sanford RA, Chen J, et al. 2019. Effects of triclosan and triclocarban on denitrification and N2O emissions in paddy soil. Science of The Total Environment 695:133782

doi: 10.1016/j.scitotenv.2019.133782
[28]

Zhang Y, Dong W, Li C, Wang H, Wang H, et al. 2023. Effects of antibiotics on corncob supported solid-phase denitrification: denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes. Journal of Environmental Sciences 130:24−36

doi: 10.1016/j.jes.2022.10.020
[29]

Wu J, Zhang Y, Huang M, Zou Z, Guo S, et al. 2022. Sulfonamide antibiotics alter gaseous nitrogen emissions in the soil-plant system: a mesocosm experiment and meta-analysis. Science of The Total Environment 828:154230

doi: 10.1016/j.scitotenv.2022.154230
[30]

Dumont MG, Murrell JC. 2005. Stable isotope probing — linking microbial identity to function. Nature Reviews Microbiology 3:499−504

doi: 10.1038/nrmicro1162
[31]

Tang X, Li Y, Jin R, Yin G, Hou L, et al. 2023. Community pattern of potential phenanthrene (PHE) degrading bacteria in PHE contaminated soil revealed by 13C-DNA stable isotope probing. Chemosphere 344:140377

doi: 10.1016/j.chemosphere.2023.140377
[32]

Dai H, Gao J, Li D, Wang Z, Duan W. 2022. DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Water Research 210:118011

doi: 10.1016/j.watres.2021.118011
[33]

Lerner H, Öztürk B, Dohrmann AB, Thomas J, Marchal K, et al. 2020. Culture-independent analysis of linuron-mineralizing microbiota and functions in on-farm biopurification systems via DNA-stable isotope probing: comparison with enrichment culture. Environmental Science & Technology 54:9387−9397

doi: 10.1021/acs.est.0c02124
[34]

Chen J, Yang Y, Ke Y, Chen X, Jiang X, et al. 2022. Anaerobic sulfamethoxazole-degrading bacterial consortia in antibiotic-contaminated wetland sediments identified by DNA-stable isotope probing and metagenomics analysis. Environmental Microbiology 24:3751−3763

doi: 10.1111/1462-2920.16091
[35]

Chen J, Yang Y, Ke Y, Chen X, Jiang X, et al. 2022. Sulfonamide-metabolizing microorganisms and mechanisms in antibiotic-contaminated wetland sediments revealed by stable isotope probing and metagenomics. Environment International 165:107332

doi: 10.1016/j.envint.2022.107332
[36]

Ouyang WY, Su JQ, Richnow HH, Adrian L. 2019. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing. Environment International 126:118−126

doi: 10.1016/j.envint.2019.02.001
[37]

Song M, Luo C, Jiang L, Peng K, Zhang D, et al. 2019. The presence of in situ sulphamethoxazole degraders and their interactions with other microbes in activated sludge as revealed by DNA stable isotope probing and molecular ecological network analysis. Environment International 124:121−129

doi: 10.1016/j.envint.2018.12.039
[38]

Guo XP, Zhao S, Chen YR, Yang J, Hou LJ, et al. 2020. Antibiotic resistance genes in sediments of the Yangtze Estuary: from 2007 to 2019. Science of The Total Environment 744:140713

doi: 10.1016/j.scitotenv.2020.140713
[39]

Zheng D, Yin G, Liu M, Chen C, Jiang Y, et al. 2021. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Science of The Total Environment 777:146009

doi: 10.1016/j.scitotenv.2021.146009
[40]

Chen K, Zhou JL. 2014. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 95:604−612

doi: 10.1016/j.chemosphere.2013.09.119
[41]

Yan C, Dinh QT, Chevreuil M, Garnier J, Roose-Amsaleg C, et al. 2013. The effect of environmental and therapeutic concentrations of antibiotics on nitrate reduction rates in river sediment. Water Research 47(11):3654−3662

doi: 10.1016/j.watres.2013.04.025
[42]

Hinshaw SE, Dahlgren RA. 2013. Dissolved nitrous oxide concentrations and fluxes from the eutrophic San Joaquin River, California. Environmental Science & Technology 47:1313−1322

doi: 10.1021/es301373h
[43]

Sun D, Tang X, Li J, Liu M, Hou L, et al. 2022. Chlorate as a comammox Nitrospira specific inhibitor reveals nitrification and N2O production activity in coastal wetland. Soil Biology & Biochemistry 173:108782

doi: 10.1016/j.soilbio.2022.108782
[44]

Han P, Tang X, Koch H, Dong X, Hou L, et al. 2024. Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica. Nature Communications 15:3143

doi: 10.1038/s41467-024-47392-4
[45]

Liu B, Hou L, Zheng Y, Zhang Z, Tang X, et al. 2022. Dark carbon fixation in intertidal sediments: controlling factors and driving microorganisms. Water Research 216:118381

doi: 10.1016/j.watres.2022.118381
[46]

Wang H, Yang Q, Li D, Wu J, Yang S, et al. 2023. Stable isotopic and metagenomic analyses reveal microbial-mediated effects of microplastics on sulfur cycling in coastal sediments. Environmental Science & Technology 57(2):1167−1176

doi: 10.1021/acs.est.2c06546
[47]

Grenni P, Ancona V, Caracciolo AB. 2018. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical Journal 136:25−39

doi: 10.1016/j.microc.2017.02.006
[48]

Yu W, Hayat K, Ma J, Fan X, Yang Y, et al. 2024. Effect of antibiotic perturbation on nitrous oxide emissions: an in-depth analysis. Critical Reviews in Environmental Science and Technology 54(22):1612−1632

doi: 10.1080/10643389.2024.2339795
[49]

Ma L, Li Z, Liu G, Liu W. 2023. Low-level cadmium alleviates the disturbance of doxycycline on nitrogen removal and N2O emissions in ditch wetlands by altering microbial community and enzymatic activity. Journal of Cleaner Production 387:135807

doi: 10.1016/j.jclepro.2022.135807
[50]

Li ZL, Cheng R, Chen F, Lin XQ, Yao XJ, et al. 2021. Selective stress of antibiotics on microbial denitrification: inhibitory effects, dynamics of microbial community structure and function. Journal of Hazardous Materials 405:124366

doi: 10.1016/j.jhazmat.2020.124366
[51]

Russell MV, Messer TL, Repert DA, Smith RL, Bartelt-Hunt S, et al. 2024. Influence of four veterinary antibiotics on constructed treatment wetland nitrogen transformation. Toxics 12:346

doi: 10.3390/toxics12050346
[52]

Thamdrup B. 2012. New pathways and processes in the global nitrogen cycle. Annual Review of Ecology, Evolution, and Systematics 43:407−428

doi: 10.1146/annurev-ecolsys-102710-145048
[53]

Reis PJM, Reis AC, Ricken B, Kolvenbach BA, Manaia CM, et al. 2014. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials 280:741−749

doi: 10.1016/j.jhazmat.2014.08.039
[54]

Jiang B, Li A, Cui D, Cai R, Ma F, et al. 2014. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Applied Microbiology and Biotechnology 98:4671−4681

doi: 10.1007/s00253-013-5488-3
[55]

Zhang L, Sun F, Wu D, Yan W, Zhou Y. 2020. Biological conversion of sulfamethoxazole in an autotrophic denitrification system. Water Research 185:116156

doi: 10.1016/j.watres.2020.116156
[56]

Li H, Xu H, Yang YL, Yang XL, Wu Y, et al. 2019. Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. Water Research 165:114988

doi: 10.1016/j.watres.2019.114988
[57]

Knecht CA, Hinkel M, Mäusezahl I, Kaster AK, Nivala J, et al. 2023. Identification of antibiotic resistance gene hosts in treatment wetlands using a single-cell based high-throughput approach. Water 15:2432

doi: 10.3390/w15132432
[58]

Zhao Y, Min H, Luo K, Chen H, Chen Q, et al. 2023. Insight into sulfamethoxazole effects on aerobic denitrification by strain Pseudomonas aeruginosa PCN-2: from simultaneous degradation performance to transcriptome analysis. Chemosphere 313:137471

doi: 10.1016/j.chemosphere.2022.137471
[59]

He Y, Liu L, Wang Q, Dong X, Huang J, et al. 2024. Bio-degraded of sulfamethoxazole by microbial consortia without addition nutrients: mineralization, nitrogen removal, and proteomic characterization. Journal of Hazardous Materials 466:133558

doi: 10.1016/j.jhazmat.2024.133558
[60]

Guo N, Liu M, Yang Z, Wu D, Chen F, et al. 2023. The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Environmental Research 216:114419

doi: 10.1016/j.envres.2022.114419
[61]

Hu J, Chen Q, Zhong S, Liu Y, Gao Q, et al. 2022. Insight into co-hosts of nitrate reduction genes and antibiotic resistance genes in an urban river of the Qinghai-Tibet Plateau. Water Research 225:119189

doi: 10.1016/j.watres.2022.119189
[62]

Lin X, Xu G, Li Y, Yu Y. 2024. Chemical fertilizers promote dissemination of ARGs in maize rhizosphere: an overlooked risk revealed after 37-year traditional agriculture practice. Science of The Total Environment 941:173737

doi: 10.1016/j.scitotenv.2024.173737
[63]

Feng Y, Lu Y, Chen Y, Xu J, Jiang J. 2023. Microbial community structure and antibiotic resistance profiles in sediments with long-term aquaculture history. Journal of Environmental Management 341:118052

doi: 10.1016/j.jenvman.2023.118052
[64]

Cao R, Ben W, Qiang Z, Zhang J. 2020. Removal of antibiotic resistance genes in pig manure composting influenced by inoculation of compound microbial agents. Bioresource Technology 317:123966

doi: 10.1016/j.biortech.2020.123966
[65]

Wang M, Xiong W, Zou Y, Lin M, Zhou Q, et al. 2019. Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment. Environmental Pollution 248:1010−1019

doi: 10.1016/j.envpol.2019.02.048
[66]

Luo Y, Ren H. 2025. Biocontaminant—toward sustainable development and planetary health. Biocontaminant 1:e001

doi: 10.48130/biocontam-0025-0001
[67]

Deng Y, Li B, Zhang T. 2018. Bacteria that make a meal of sulfonamide antibiotics: blind spots and emerging opportunities. Environmental Science & Technology 52:3854−3868

doi: 10.1021/acs.est.7b06026
[68]

Vila-Costa M, Gioia R, Aceña J, Pérez S, Casamayor EO, et al. 2017. Degradation of sulfonamides as a microbial resistance mechanism. Water Research 115:309−317

doi: 10.1016/j.watres.2017.03.007