[1]

Baldrian P, López-Mondéjar R, Kohout P. 2023. Forest microbiome and global change. Nature Reviews Microbiology 21:487−501

doi: 10.1038/s41579-023-00876-4
[2]

Harris NL, Gibbs DA, Baccini A, Birdsey RA, de Bruin S, et al. 2021. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change 11:234−40

doi: 10.1038/s41558-020-00976-6
[3]

Zalesny RSJr, Barzagli A, Caldwell B, Minotta G, Nervo G, et al. 2025. Innovative practices in the sustainable management of fast-growing trees – Lessons learned from poplars and willows and other experiences with fast-growing trees around the world. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). doi: 10.4060/cd4104en

[4]

Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. 2015. Boreal forest health and global change. Science 349:819−22

doi: 10.1126/science.aaa9092
[5]

Luo ZB, Calfapietra C, Liberloo M, Scarascia-Mugnozza G, Polle A. 2006. Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N fertilization. Global Change Biology 12:272−83

doi: 10.1111/j.1365-2486.2005.01091.x
[6]

Albaugh TJ, Fox TR, Rubilar RA, Cook RL, Amateis RL, et al. 2017. Post-thinning density and fertilization affect Pinus taeda stand and individual tree growth. Forest Ecology and Management 396:207−16

doi: 10.1016/j.foreco.2017.04.030
[7]

da Silva PHM, Poggiani F, Libardi PL, Gonçalves AN. 2013. Fertilizer management of eucalypt plantations on sandy soil in Brazil: Initial growth and nutrient cycling. Forest Ecology and Management 301:67−78

doi: 10.1016/j.foreco.2012.10.033
[8]

Luo J, Zhou JJ. 2019. Growth performance, photosynthesis, and root characteristics are associated with nitrogen use efficiency in six poplar species. Environmental and Experimental Botany 164:40−51

doi: 10.1016/j.envexpbot.2019.04.013
[9]

Lu Y, Zheng B, Zhang C, Yu C, Luo J. 2024. Wood formation in trees responding to nitrogen availability. Industrial Crops and Products 218:118978

doi: 10.1016/j.indcrop.2024.118978
[10]

Good AG, Shrawat AK, Muench DG. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science 9:597−605

doi: 10.1016/j.tplants.2004.10.008
[11]

Zhou X, Xiang X, Zhang M, Cao D, Du C, et al. 2023. Combining GS-assisted GWAS and transcriptome analysis to mine candidate genes for nitrogen utilization efficiency in Populus cathayana. BMC Plant Biology 23:182

doi: 10.1186/s12870-023-04202-1
[12]

Gu B, Zhang X, Lam SK, Yu Y, van Grinsven HJM, et al. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613:77−84

doi: 10.1038/s41586-022-05481-8
[13]

Jaquetti RK, Gonçalves JFC. 2021. Data on the effects of fertilization on growth rates, biomass allocation, carbohydrates and nutrients of nitrogen-fixing and non-nitrogen-fixing tree legumes during tropical forest restoration. BMC Research Notes 14:153

doi: 10.1186/s13104-021-05552-5
[14]

Bredemeier M, Busch G, Hartmann L, Jansen M, Richter F, et al. 2015. Fast growing plantations for wood production – integration of ecological effects and economic perspectives. Frontiers in Bioengineering and Biotechnology 3:72

doi: 10.3389/fbioe.2015.00072
[15]

Dijkstra FA, Jenkins M, de Rémy de Courcelles V, Keitel C, Barbour MM, et al. 2017. Enhanced decomposition and nitrogen mineralization sustain rapid growth of Eucalyptus regnans after wildfire. Journal of Ecology 105:229−36

doi: 10.1111/1365-2745.12663
[16]

Valadares RV, Neves JCL, Costa MD, Smethurst PJ, Peternelli LA, et al. 2018. Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil. Biogeosciences 15:4943−54

doi: 10.5194/bg-15-4943-2018
[17]

Valadares RV, Costa MD, Neves JCL, Vieira Netto JAF, da Silva IR, et al. 2020. Rhizosphere microbiological processes and eucalypt nutrition: Synthesis and conceptualization. Science of The Total Environment 746:141305

doi: 10.1016/j.scitotenv.2020.141305
[18]

Csiszár Á, Winkler D, Bartha D, Zagyvai G. 2023. Diverse interactions: root-nodule formation and herb-layer composition in black locust (Robinia pseudoacacia) stands. Plants 12:3253

doi: 10.3390/plants12183253
[19]

Taylor BN, Menge DNL. 2021. Light, nitrogen supply, and neighboring plants dictate costs and benefits of nitrogen fixation for seedlings of a tropical nitrogen-fixing tree. New Phytologist 231:1758−69

doi: 10.1111/nph.17508
[20]

Eissenstat DM, Volder A. 2005. The efficiency of nutrient acquisition over the life of a root. In Nutrient Acquisition by Plants: An Ecological Perspective, ed. BassiriRad H. Berlin, Heidelberg: Springer. pp. 185−220 doi: 10.1007/3-540-27675-0_8

[21]

Luo J, Zhou J, Li H, Shi W, Polle A, et al. 2015. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology 35:1283−302

doi: 10.1093/treephys/tpv091
[22]

Bian C, Demirer GS, Oz MT, Cai YM, Witham S, et al. 2025. Conservation and divergence of regulatory architecture in nitrate-responsive plant gene circuits. The Plant Cell 37:koaf124

doi: 10.1093/plcell/koaf124
[23]

Fitter AH. 1987. An architectural approach to the comparative ecology of plant root systems. New Phytologist 106:61−77

doi: 10.1111/j.1469-8137.1987.tb04683.x
[24]

Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle RC. 2009. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil 324:1−30

doi: 10.1007/s11104-009-0159-y
[25]

Roumet C, Urcelay C, Díaz S. 2006. Suites of root traits differ between annual and perennial species growing in the field. New Phytologist 170:357−68

doi: 10.1111/j.1469-8137.2006.01667.x
[26]

Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, et al. 2017. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. The Plant Journal 89:692−705

doi: 10.1111/tpj.13413
[27]

Li J, Bo W, Bu C, Zhou J, Li P, et al. 2025. Integrating 3D imaging, GWAS and single-cell transcriptome approaches to elucidate root system architecture in Populus. Plant Physiology 199:kiaf432

doi: 10.1093/plphys/kiaf432
[28]

Sun L, Dong X, Song X. 2023. PtrABR1 increases tolerance to drought stress by enhancing lateral root formation in Populus trichocarpa. International Journal of Molecular Sciences 24:13748

doi: 10.3390/ijms241813748
[29]

Li J, Chen H, Zhao Z, Yao Y, Pan J, et al. 2025. MicroRNA319-TCP19-IAA3.2 module mediates lateral root growth in Populus tomentosa. Plants 14:2494

doi: 10.3390/plants14162494
[30]

He F, Xu C, Fu X, Shen Y, Guo L, et al. 2018. The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway. Plant Physiology 177:775−91

doi: 10.1104/pp.17.01559
[31]

Liu R, Wen SS, Sun TT, Wang R, Zuo WT, et al. 2022. PagWOX11/12a positively regulates the PagSAUR36 gene that enhances adventitious root development in poplar. Journal of Experimental Botany 73:7298−311

doi: 10.1093/jxb/erac345
[32]

Lv J, Feng Y, Zhai L, Jiang L, Wu Y, et al. 2024. MdARF3 switches the lateral root elongation to regulate dwarfing in apple plants. Horticulture Research 11:uhae051

doi: 10.1093/hr/uhae051
[33]

Xu R, Jiang S, Ge H, Zhang B, Shu J, et al. 2025. MhIDA small peptides modulate the growth and development of roots in Malus hupehensis. Plant Cell Reports 44:110

doi: 10.1007/s00299-025-03492-z
[34]

Zhang CL, Wang GL, Zhang YL, Hu X, Zhou LJ, et al. 2021. Apple SUMO E3 ligase MdSIZ1 facilitates SUMOylation of MdARF8 to regulate lateral root formation. New Phytologist 229:2206−22

doi: 10.1111/nph.16978
[35]

Xu R, Wang P, Pang Y, Liu H, Zhang T, et al. 2025. Involvement of the miR156/SPLs/NLP7 modules in plant lateral root development and nitrogen uptake. Planta 261:127

doi: 10.1007/s00425-025-04688-z
[36]

Zhao H, Fu Y, Lv W, Zhang X, Li J, et al. 2025. PuUBL5-mediated ZINC FINGER PROTEIN 1 stability is critical for root development under drought stress in Populus ussuriensis. Plant Physiology 198:kiaf181

doi: 10.1093/plphys/kiaf181
[37]

Zhang M, Wang F, Hu Z, Wang X, Yi Q, et al. 2023. CcRR5 interacts with CcRR14 and CcSnRK2s to regulate the root development in citrus. Frontiers in Plant Science 14:1170825

doi: 10.3389/fpls.2023.1170825
[38]

Mo J, Xiong X, Zhong Z, Liu L, Xiong Y, et al. 2025. CrWRKY57 and CrABF3 cooperatively activate CrCYCD6;1 to modulate drought tolerance and root development. Horticulture Research 12:uhaf158

doi: 10.1093/hr/uhaf158
[39]

Liu SJ, Zhang H, Jin XT, Niu MX, Feng CH, et al. 2025. PeFUS3 drives lateral root growth via auxin and ABA signalling under drought stress in populus. Plant, Cell & Environment 48:664−81

doi: 10.1111/pce.15163
[40]

Wang LQ, Li Z, Wen SS, Wang JN, Zhao ST, et al. 2020. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar. Journal of Experimental Botany 71:1503−13

doi: 10.1093/jxb/erz490
[41]

Giehl RFH, von Wirén N. 2014. Root nutrient foraging. Plant Physiology 166:509−17

doi: 10.1104/pp.114.245225
[42]

Gruber BD, Giehl RFH, Friedel S, von Wirén N. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology 163:161−79

doi: 10.1104/pp.113.218453
[43]

Dash M, Yordanov YS, Georgieva T, Kumari S, Wei H, et al. 2015. A systems biology approach identifies new regulators of poplar root development under low nitrogen. The Plant Journal 84:335−46

doi: 10.1111/tpj.13002
[44]

Wei H, Yordanov YS, Georgieva T, Li X, Busov V. 2013. Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytologist 200:483−97

doi: 10.1111/nph.12375
[45]

Liu Y, von Wirén N. 2017. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany 68:2581−92

doi: 10.1093/jxb/erx086
[46]

Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants. Cell 138:1184−94

doi: 10.1016/j.cell.2009.07.004
[47]

Liu KH, Liu M, Lin Z, Wang ZF, Chen B, et al. 2022. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science 377:1419−25

doi: 10.1126/science.add1104
[48]

Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, et al. 2006. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America 103:19206−11

doi: 10.1073/pnas.0605275103
[49]

Liu KH, Niu Y, Konishi M, Wu Y, Du H, et al. 2017. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature 545:311−16

doi: 10.1038/nature22077
[50]

Wu J, Liu S, Zhang H, Chen S, Si J, et al. 2025. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus. Nature Communications 16:1461

doi: 10.1038/s41467-025-56226-w
[51]

Sher AW, Aufrecht JA, Herrera D, Zimmerman AE, Kim YM, et al. 2024. Dynamic nitrogen fixation in an aerobic endophyte of Populus. The ISME Journal 18:wrad012

doi: 10.1093/ismejo/wrad012
[52]

Bizos G, Papatheodorou EM, Chatzistathis T, Ntalli N, Aschonitis VG, et al. 2020. The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europea L.). Plants 9:743

doi: 10.3390/plants9060743
[53]

Garcia-Lemos AM, Großkinsky DK, Saleem Akhtar S, Nicolaisen MH, Roitsch T, et al. 2020. Identification of root-associated bacteria that influence plant physiology, increase seed germination, or promote growth of the christmas tree species Abies nordmanniana. Frontiers in Microbiology 11:566613

doi: 10.3389/fmicb.2020.566613
[54]

Chen Y, Fu W, Xiao H, Zhai Y, Luo Y, et al. 2023. A review on rhizosphere microbiota of tea plant (Camellia sinensis L): recent insights and future perspectives. Journal of Agricultural and Food Chemistry 71:19165−88

doi: 10.1021/acs.jafc.3c02423
[55]

Qu ZL, Liu B, Zhang YM, Huang L, Ming AG, et al. 2022. Impacts of near-natural management in eucalyptus plantations on soil bacterial community assembly and function related to nitrogen cycling. Functional Ecology 36:1912−23

doi: 10.1111/1365-2435.14106
[56]

Li Y, Chen Y, Fu Y, Shao J, Liu Y, et al. 2024. Signal communication during microbial modulation of root system architecture. Journal of Experimental Botany 75:526−37

doi: 10.1093/jxb/erad263
[57]

Yu P, He X, Baer M, Beirinckx S, Tian T, et al. 2021. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants 7:481−99

doi: 10.1038/s41477-021-00897-y
[58]

Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, et al. 2017. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiologiae Plantarum 39:253

doi: 10.1007/s11738-017-2556-9
[59]

Zaheer A, Mirza BS, McLean JE, Yasmin S, Shah TM, et al. 2016. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Research in Microbiology 167:510−20

doi: 10.1016/j.resmic.2016.04.001
[60]

Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M. 2016. Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. Journal of Plant Growth Regulation 35:303−15

doi: 10.1007/s00344-015-9534-5
[61]

Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, et al. 2007. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil 292:305−15

doi: 10.1007/s11104-007-9233-5
[62]

Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, et al. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754−73

doi: 10.3390/molecules170910754
[63]

Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-y-Terrón R, Martínez-Contreras RD. 2018. Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiological Research 208:85−98

doi: 10.1016/j.micres.2018.01.010
[64]

Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, et al. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry 84:115−24

doi: 10.1016/j.plaphy.2014.09.001
[65]

Norby RJ, Iversen CM. 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology 87:5−14

doi: 10.1890/04-1950
[66]

Mao J, Wang J, Liao J, Xu X, Tian D, et al. 2025. Plant nitrogen uptake preference and drivers in natural ecosystems at the global scale. New Phytologist 246:972−83

doi: 10.1111/nph.70030
[67]

Geßler A, Jung K, Gasche R, Papen H, Heidenfelder A, et al. 2005. Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. European Journal of Forest Research 124:95−111

doi: 10.1007/s10342-005-0055-9
[68]

Choi WJ, Chang SX, Hao X. 2005. Soil retention, tree uptake, and tree resorption of 15NH4NO3 and NH415NO3 applied to trembling and hybrid aspens at planting. Canadian Journal of Forest Research 35:823−31

doi: 10.1139/x05-011
[69]

Craig ME, Walker AP, Iversen CM, Knox RG, Yaffar D, et al. 2025. Tree root nutrient uptake kinetics vary with nutrient availability, environmental conditions, and root traits: a global analysis. New Phytologist 246:2495−505

doi: 10.1111/nph.70140
[70]

Bai H, Euring D, Volmer K, Janz D, Polle A. 2013. The nitrate transporter (NRT) gene family in poplar. PLoS ONE 8:e72126

doi: 10.1371/journal.pone.0072126
[71]

Wei M, Zhang M, Sun J, Zhao Y, Pak S, et al. 2023. PuHox52 promotes coordinated uptake of nitrate, phosphate, and iron under nitrogen deficiency in Populus ussuriensis. Journal of Integrative Plant Biology 65:791−809

doi: 10.1111/jipb.13389
[72]

Shen C, Li Q, An Y, Zhou Y, Zhang Y, et al. 2022. The transcription factor GNC optimizes nitrogen use efficiency and growth by up-regulating the expression of nitrate uptake and assimilation genes in poplar. Journal of Experimental Botany 73:4778−92

doi: 10.1093/jxb/erac190
[73]

Liu X, Liu HF, Li HL, An XH, Song LQ, et al. 2022. MdMYB10 affects nitrogen uptake and reallocation by regulating the nitrate transporter MdNRT2.4-1 in red-fleshed apple. Horticulture Research 9:uhac016

doi: 10.1093/hr/uhac016
[74]

Wen B, Gong X, Deng W, Chen X, Li D, et al. 2022. The apple GARP family gene MdHHO3 regulates the nitrate response and leaf senescence. Frontiers in Plant Science 13:932767

doi: 10.3389/fpls.2022.932767
[75]

Wen B, Gong X, Tan Q, Zhao W, Chen X, et al. 2022. MdNAC4 interacts with MdAPRR2 to regulate nitrogen deficiency-induced leaf senescence in apple (Malus domestica). Frontiers in Plant Science 13:925035

doi: 10.3389/fpls.2022.925035
[76]

Hu B, Wang W, Ou S, Tang J, Li H, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47:834−38

doi: 10.1038/ng.3337
[77]

Wang W, Hu B, Yuan D, Liu Y, Che R, et al. 2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell 30:638−51

doi: 10.1105/tpc.17.00809
[78]

Cao H, Liu Z, Guo J, Jia Z, Shi Y, et al. 2024. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. Plant Biotechnology Journal 22:316−29

doi: 10.1111/pbi.14185
[79]

Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, et al. 2019. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants 5:401−13

doi: 10.1038/s41477-019-0384-1
[80]

Alfatih A, Wu J, Zhang ZS, Xia JQ, Jan SU, et al. 2020. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. Journal of Experimental Botany 71:6032−42

doi: 10.1093/jxb/eraa292
[81]

Sun LQ, Bai Y, Wu J, Fan SJ, Chen SY, et al. 2024. OsNLP3 enhances grain weight and reduces grain chalkiness in rice. Plant Communications 5:100999

doi: 10.1016/j.xplc.2024.100999
[82]

Wu J, Sun LQ, Song Y, Bai Y, Wan GY, et al. 2023. The OsNLP3/4-OsRFL module regulates nitrogen-promoted panicle architecture in rice. New Phytologist 240:2404−18

doi: 10.1111/nph.19318
[83]

Shi TL, Jia KH, Bao YT, Nie S, Tian XC, et al. 2024. High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar. Plant Physiology 195:652−70

doi: 10.1093/plphys/kiae078
[84]

Hui J, An X, Li Z, Neuhäuser B, Ludewig U, et al. 2022. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. The Plant Cell 34:4066−87

doi: 10.1093/plcell/koac225
[85]

Britto DT, Kronzucker HJ. 2002. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 159:567−84

doi: 10.1078/0176-1617-0774
[86]

Huang CH, Peng J. 2005. Evolutionary conservation and diversification of Rh family genes and proteins. Proceedings of the National Academy of Sciences of the United States of America 102:15512−7

doi: 10.1073/pnas.0507886102
[87]

Ludewig U, von Wirén N, Rentsch D, Frommer WB. 2001. Rhesus factors and ammonium: a function in efflux? Genome Biology 2:reviews1010.1

doi: 10.1186/gb-2001-2-3-reviews1010
[88]

McDonald TR, Dietrich FS, Lutzoni F. 2012. Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Molecular Biology and Evolution 29:51−60

doi: 10.1093/molbev/msr123
[89]

Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, et al. 2007. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell 19:2636−52

doi: 10.1105/tpc.107.052134
[90]

Qin DB, Liu MY, Yuan L, Zhu Y, Li XD, et al. 2020. CALCIUM-DEPENDENT PROTEIN KINASE 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots. Journal of Experimental Botany 71:5087−97

doi: 10.1093/jxb/eraa249
[91]

Wu X, Xie X, Yang S, Yin Q, Cao H, et al. 2022. OsAMT1;1 and OsAMT1;2 coordinate root morphological and physiological responses to ammonium for efficient nitrogen foraging in rice. Plant and Cell Physiology 63:1309−20

doi: 10.1093/pcp/pcac104
[92]

Gao S, Yang Y, Guo J, Zhang X, Feng M, et al. 2023. Ectopic expression of sugarcane ScAMT1.1 has the potential to improve ammonium assimilation and grain yield in transgenic rice under low nitrogen stress. International Journal of Molecular Sciences 24:1595

doi: 10.3390/ijms24021595
[93]

Couturier J, Montanini B, Martin F, Brun A, Blaudez D, et al. 2007. The expanded family of ammonium transporters in the perennial poplar plant. New Phytologist 174:137−50

doi: 10.1111/j.1469-8137.2007.01992.x
[94]

Yang C, Huang C, Gou L, Yang H, Liu G. 2023. Functional identification and genetic transformation of the ammonium transporter PtrAMT1;6 in Populus. International Journal of Molecular Sciences 24:8511

doi: 10.3390/ijms24108511
[95]

Li W, Feng Z, Zhang C. 2021. Ammonium transporter PsAMT1.2 from Populus simonii functions in nitrogen uptake and salt resistance. Tree Physiology 41:2392−408

doi: 10.1093/treephys/tpab071
[96]

Zhuang S, Yu Z, Li J, Wang F, Zhang C. 2024. Physiological and transcriptomic analyses reveal the molecular mechanism of PsAMT1.2 in salt tolerance. Tree Physiology 44:tpae113

doi: 10.1093/treephys/tpae113
[97]

Ma L, Qin DB, Sun L, Zhang K, Yu X, et al. 2025. SALT OVERLY SENSITIVE2 and AMMONIUM TRANSPORTER1;1 contribute to plant salt tolerance by maintaining ammonium uptake. The Plant Cell 37:koaf034

doi: 10.1093/plcell/koaf034
[98]

Elrys AS, Uwiragiye Y, Zhang Y, Abdel-Fattah MK, Chen ZX, et al. 2023. Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nature Food 4:109−21

doi: 10.1038/s43016-022-00657-x
[99]

Zhang J, Liu YX, Zhang N, Hu B, Jin T, et al. 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology 37:676−84

doi: 10.1038/s41587-019-0104-4
[100]

Lu T, Ke M, Lavoie M, Jin Y, Fan X, et al. 2018. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:231

doi: 10.1186/s40168-018-0615-0
[101]

Vitousek PM, Menge DNL, Reed SC, Cleveland CC. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130119

doi: 10.1098/rstb.2013.0119
[102]

Du E, de Vries W. 2018. Nitrogen-induced new net primary production and carbon sequestration in global forests. Environmental Pollution 242:1476−87

doi: 10.1016/j.envpol.2018.08.041
[103]

Zhu YG, Peng J, Chen C, Xiong C, Li S, et al. 2023. Harnessing biological nitrogen fixation in plant leaves. Trends in Plant Science 28:1391−405

doi: 10.1016/j.tplants.2023.05.009
[104]

Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, et al. 2020. DNRA: a short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Science of The Total Environment 738:139710

doi: 10.1016/j.scitotenv.2020.139710
[105]

Shi X, Hu HW, Müller C, He JZ, Chen D, et al. 2016. Effects of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Applied and Environmental Microbiology 82:5236−48

doi: 10.1128/AEM.01031-16
[106]

Zakir HAKM, Subbarao GV, Pearse SJ, Gopalakrishnan S, Ito O, et al. 2008. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist 180:442−51

doi: 10.1111/j.1469-8137.2008.02576.x
[107]

Sun L, Lu Y, Yu F, Kronzucker HJ, Shi W. 2016. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist 212:646−56

doi: 10.1111/nph.14057
[108]

Xi D, Bai R, Zhang L, Fang Y. 2016. Contribution of anammox to nitrogen removal in two temperate forest soils. Applied and Environmental Microbiology 82:4602−12

doi: 10.1128/AEM.00888-16
[109]

Kartal B, van Niftrik L, Rattray J, van de Vossenberg JLCM, Schmid MC, et al. 2008. Candidatus 'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology 63:46−55

doi: 10.1111/j.1574-6941.2007.00408.x
[110]

Pajares S, Bohannan BJM. 2016. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in Microbiology 7:1045

doi: 10.3389/fmicb.2016.01045
[111]

Davies-Barnard T, Friedlingstein P. 2020. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Global Biogeochemical Cycles 34:e2019GB006387

doi: 10.1029/2019GB006387
[112]

Bizjak T, Sellstedt A, Gratz R, Nordin A. 2023. Presence and activity of nitrogen-fixing bacteria in Scots pine needles in a boreal forest: a nitrogen-addition experiment. Tree Physiology 43:1354−64

doi: 10.1093/treephys/tpad048
[113]

Reed SC, Cleveland CC, Townsend AR. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution, and Systematics 42:489−512

doi: 10.1146/annurev-ecolsys-102710-145034
[114]

Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, et al. 2018. Nitrogen fixation in cereals. Frontiers in Microbiology 9:1794

doi: 10.3389/fmicb.2018.01794
[115]

Smercina DN, Evans SE, Friesen ML, Tiemann LK. 2019. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology 85:e02546-18

doi: 10.1128/aem.02546-18
[116]

Pankievicz VCS, do Amaral FP, Santos KFDN, Agtuca B, Xu Y, et al. 2015. Robust biological nitrogen fixation in a model grass–bacterial association. The Plant Journal 81:907−19

doi: 10.1111/tpj.12777
[117]

Ambrosio R, Ortiz-Marquez JCF, Curatti L. 2017. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metabolic Engineering 40:59−68

doi: 10.1016/j.ymben.2017.01.002
[118]

Healy FG, Latorre C, Albrecht SL, Reddy PM, Shanmugam KT. 2003. Altered kinetic properties of tyrosine-183 to cysteine mutation in glutamine synthetase of Anabaena variabilis strain SA1 is responsible for excretion of ammonium ion produced by nitrogenase. Current Microbiology 46:423−31

doi: 10.1007/s00284-002-3914-3
[119]

Santos KFDN, Moure VR, Hauer V, Santos ARS, Donatti L, et al. 2017. Wheat colonization by an Azospirillum brasilense ammonium-excreting strain reveals upregulation of nitrogenase and superior plant growth promotion. Plant and Soil 415:245−55

doi: 10.1007/s11104-016-3140-6
[120]

Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, et al. 2020. Control of nitrogen fixation in bacteria that associate with cereals. Nature Microbiology 5:314−30

doi: 10.1038/s41564-019-0631-2
[121]

Brophy JAN, Triassi AJ, Adams BL, Renberg RL, Stratis-Cullum DN, et al. 2018. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nature Microbiology 3:1043−53

doi: 10.1038/s41564-018-0216-5
[122]

Wu R, Chai Y, Li Y, Chen T, Qi W, et al. 2025. A visual monitoring DNA-free multi-gene editing system excised via LoxP::FRT/FLP in poplar. Plant Biotechnology Journal 23:4017−29

doi: 10.1111/pbi.70219
[123]

Ma M, Zhang C, Yu L, Yang J, Li C. 2024. CRISPR/Cas9 ribonucleoprotein mediated DNA-free genome editing in larch. Forestry Research 4:e036

doi: 10.48130/forres-0024-0033
[124]

Zhu C, Yuan T, Yang K, Liu Y, Li Y, et al. 2023. Identification and characterization of CircRNA-associated CeRNA networks in moso bamboo under nitrogen stress. BMC Plant Biology 23:142

doi: 10.1186/s12870-023-04155-5
[125]

Liu X, Lu Z, Yao Q, Xu L, Fu J, et al. 2024. MicroRNAs participate in morphological acclimation of sugar beet roots to nitrogen deficiency. International Journal of Molecular Sciences 25:9027

doi: 10.3390/ijms25169027
[126]

Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, et al. 2012. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One 7:e50261

doi: 10.1371/journal.pone.0050261
[127]

Aung B, Gao R, Gruber MY, Yuan ZC, Sumarah M, et al. 2017. MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa. Transgenic Research 26:541−57

doi: 10.1007/s11248-017-0024-3
[128]

Hasegawa T, Lucob-Agustin N, Yasufuku K, Kojima T, Nishiuchi S, et al. 2021. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. Plant Science 306:110861

doi: 10.1016/j.plantsci.2021.110861
[129]

Tanaka N, Yoshida S, Islam MS, Yamazaki K, Fujiwara T, et al. 2024. OsbZIP1 regulates phosphorus uptake and nitrogen utilization, contributing to improved yield. The Plant Journal 118:159−70

doi: 10.1111/tpj.16598
[130]

Zhang Y, Yang X, Cao P, Xiao Z, Zhan C, et al. 2020. The bZIP53–IAA4 module inhibits adventitious root development in Populus. Journal of Experimental Botany 71:3485−98

doi: 10.1093/jxb/eraa096
[131]

Pak S, Li C. 2022. Progress and challenges in applying CRISPR/Cas techniques to the genome editing of trees. Forestry Research 2:6

doi: 10.48130/fr-2022-0006
[132]

Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−79

doi: 10.1038/s41587-020-0703-0
[133]

Liu L, Qu J, Wang C, Liu M, Zhang C, et al. 2024. An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion. Plant Biotechnology Journal 22:2093−103

doi: 10.1111/pbi.14328
[134]

Yin M, Jiang Y, Wen Y, Shi F, Huang H, et al. 2025. Establishment of an efficient Agrobacterium rhizogenes-mediated hairy root transformation method for subtropical fruit trees. Horticultural Plant Journal 11:1699−702

doi: 10.1016/j.hpj.2025.04.001
[135]

Liu W, Stewart CN, Jr. 2015. Plant synthetic biology. Trends in Plant Science 20:309−17

doi: 10.1016/j.tplants.2015.02.004
[136]

Chen KE, Chen HY, Tseng CS, Tsay YF. 2020. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nature Plants 6:1126−35

doi: 10.1038/s41477-020-00758-0
[137]

Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, et al. 2016. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnology Journal 14:1705−15

doi: 10.1111/pbi.12531
[138]

Liu X, Zhang P, Zhao Q, Huang AC. 2023. Making small molecules in plants: a chassis for synthetic biology-based production of plant natural products. Journal of Integrative Plant Biology 65:417−43

doi: 10.1111/jipb.13330
[139]

Barney BM, Eberhart LJ, Ohlert JM, Knutson CM, Plunkett MH. 2015. Gene deletions resulting in increased nitrogen release by Azotobacter vinelandii: application of a novel nitrogen biosensor. Applied and Environmental Microbiology 81:4316−28

doi: 10.1128/AEM.00554-15
[140]

Bloch SE, Ryu MH, Ozaydin B, Broglie R. 2020. Harnessing atmospheric nitrogen for cereal crop production. Current Opinion in Biotechnology 62:181−88

doi: 10.1016/j.copbio.2019.09.024
[141]

Tang Y, Qin D, Tian Z, Chen W, Ma Y, et al. 2023. Diurnal switches in diazotrophic lifestyle increase nitrogen contribution to cereals. Nature Communications 14:7516

doi: 10.1038/s41467-023-43370-4
[142]

Haskett TL, Tkacz A, Poole PS. 2021. Engineering rhizobacteria for sustainable agriculture. The ISME Journal 15:949−64

doi: 10.1038/s41396-020-00835-4
[143]

Liu D, Liberton M, Yu J, Pakrasi HB, Bhattacharyya-Pakrasi M. 2018. Engineering nitrogen fixation activity in an oxygenic phototroph. mBio 9:e01029-18

doi: 10.1128/mbio.01029-18
[144]

Coale TH, Loconte V, Turk-Kubo KA, Vanslembrouck B, Mak WKE, et al. 2024. Nitrogen-fixing organelle in a marine alga. Science 384:217−22

doi: 10.1126/science.adk1075
[145]

Cornejo-Castillo FM, Inomura K, Zehr JP, Follows MJ. 2024. Metabolic trade-offs constrain the cell size ratio in a nitrogen-fixing symbiosis. Cell 187:1762−1768. e9

doi: 10.1016/j.cell.2024.02.016
[146]

Haskett TL, Paramasivan P, Mendes MD, Green P, Geddes BA, et al. 2022. Engineered plant control of associative nitrogen fixation. Proceedings of the National Academy of Sciences of the United States of America 119:e2117465119

doi: 10.1073/pnas.2117465119
[147]

Boo A, Toth T, Yu Q, Pfotenhauer A, Fields BD, et al. 2024. Synthetic microbe-to-plant communication channels. Nature Communications 15:1817

doi: 10.1038/s41467-024-45897-6
[148]

Ma X, Wang W, Zhang J, Jiang Z, Xu C, et al. 2025. NRT1.1B acts as an abscisic acid receptor in integrating compound environmental cues for plants. Cell 188:5231−5248. e20

doi: 10.1016/j.cell.2025.07.027