[1]

Xia L, Lam SK, Yan X, Chen D. 2017. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environmental Science & Technology 51:7450−7457

doi: 10.1021/acs.est.6b06470
[2]

Zhang Y, Su JQ, Liao H, Breed MF, Yao H, et al. 2023. Increasing antimicrobial resistance and potential human bacterial pathogens in an invasive land snail driven by urbanization. Environmental Science & Technology 57:7273−7284

doi: 10.1021/acs.est.3c01233
[3]

Song M, Peng K, Jiang L, Zhang D, Song D, et al. 2020. Alleviated antibiotic-resistant genes in the rhizosphere of agricultural soils with low antibiotic concentration. Journal of Agricultural and Food Chemistry 68:2457−2466

doi: 10.1021/acs.jafc.9b06634
[4]

Zhang J, Lu K, Zhu L, Li N, Lin D, et al. 2024. Inhibition of quorum sensing serves as an effective strategy to mitigate the risks of human bacterial pathogens in soil. Journal of Hazardous Materials 465:133272

doi: 10.1016/j.jhazmat
[5]

Wang C, Zhu W, Strong PJ, Zhu F, Han X, et al. 2021. Disentangling the effects of physicochemical, genetic, and microbial properties on phase-driven resistome dynamics during multiple manure composting processes. Environmental Science & Technology 55:14732−14745

doi: 10.1021/acs.est.1c03933
[6]

Li WJ, Li HZ, An XL, Lin CS, Li LJ, et al. 2022. Effects of manure fertilization on human pathogens in endosphere of three vegetable plants. Environmental Pollution 314:120344

doi: 10.1016/j.envpol.2022.120344
[7]

Quilliam RS, Pow CJ, Shilla DJ, Mwesiga JJ, Shilla DA, et al. 2023. Microplastics in agriculture – a potential novel mechanism for the delivery of human pathogens onto crops. Frontiers in Plant Science 14:1152419

doi: 10.3389/fpls.2023.1152419
[8]

Cheng Y, Lu K, Chen Z, Li N, Wang M. 2024. Biochar reduced the risks of human bacterial pathogens in soil via disturbing quorum sensing mediated by persistent free radicals. Environmental Science & Technology 58:22343−22354

doi: 10.1021/acs.est.4c07668
[9]

Pu Q, Fan XT, Sun AQ, Pan T, Li H, et al. 2021. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes. Environmental International 152:106453

doi: 10.1016/j.envint.2021.106453
[10]

Xue W, Shi X, Guo J, Wen S, Lin W, et al. 2024. Affecting factors and mechanism of removing antibiotics and antibiotic resistance genes by nano zero-valent iron (nZVI) and modified nZVI: a critical review. Water Resources Research 253:121309

doi: 10.1016/j.watres.2024.121309
[11]

Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, et al. 2023. Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules 28:463

doi: 10.3390/molecules28010463
[12]

Singh AV, Shelar A, Rai M, Laux P, Thakur M, et al. 2024. Harmonization risks and rewards: nano-QSAR for agricultural nanomaterials. Journal of Agricultural and Food Chemistry 72:2835−2852

doi: 10.1021/acs.jafc.3c06466
[13]

Han R, Dai H, Guo B, Noori A, Sun W, et al. 2021. The potential of medicinal plant extracts in improving the phytoremediation capacity of Solanum nigrum L. for heavy metal contaminated soil. Ecotoxicology and Environmental Safety 220:112411

doi: 10.1016/j.ecoenv.2021.112411
[14]

Li Y, Wang Y, Khan MA, Luo W, Xiang Z, et al. 2021. Effect of plant extracts and citric acid on phytoremediation of metal-contaminated soil. Ecotoxicology and Environmental Safety 211:111902

doi: 10.1016/j.ecoenv.2021.111902
[15]

Cao J, Liu B, Xu X, Zhang X, Zhu C, et al. 2021. Plant endophytic fungus extract ZNC improved potato immunity, yield, and quality. Frontiers in Plant Science 12:707256

doi: 10.3389/fpls.2021.707256
[16]

Zhou Y, Chen X, Chen T, Chen X. 2022. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends in Food Science & Technology 123:264−280

doi: 10.1016/j.jpgs.2022.03.020
[17]

Song M, Liu Y, Li T, Liu X, Hao Z, et al. 2021. Plant natural flavonoids against multidrug resistant pathogens. Advanced Science 8:2100749

doi: 10.1002/advs.202100749
[18]

Rathinasabapathy T, Sakthivel LP, Komarnytsky S. 2022. Plant-based support of respiratory health during viral outbreaks. Journal of Agricultural and Food Chemistry 70:2064−2076

doi: 10.1021/acs.jafc.1c06227
[19]

Li XG, Ding CF, Hua K, Zhang TL, Zhang YN, et al. 2014. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biology and Biochemistry 78:149−159

doi: 10.1016/j.soilbio.2014.07.019
[20]

Liu C, Geng HY, Li WX, Li YY, Lu YS, et al. 2023. Innate root exudates contributed to contrasting coping strategies in response to Ralstonia solanacearum in resistant and susceptible tomato cultivars. Journal of Agricultural and Food Chemistry 71:20092−20104

doi: 10.1021/acs.jafc.3c06410
[21]

Mukherjee S, Bossier BL. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology 17:371−382

doi: 10.1038/s41579-019-0186-5
[22]

Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, et al. 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecology Letters 19:926−936

doi: 10.1111/ele.12630
[23]

Michaelis C, Grohmann E. 2023. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 12:328

doi: 10.3390/antibiotics12020328
[24]

Hartmann A, Binder T, Rothballer M. 2024. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. Federation of European Microbiological Societies Microbiology Ecology 100:fiae076

doi: 10.1093/femsec/fiae076
[25]

Qiu X, Wang B, Ren S, Liu X, Wang Y. 2024. Regulation of quorum sensing for the manipulation of conjugative transfer of antibiotic resistance genes in wastewater treatment system. Water Research 253:121222

doi: 10.1016/j.watres.2024.121222
[26]

Lu X, Yan G, Fu L, Cui B, Wang J, et al. 2023. A review of filamentous sludge bulking controls from conventional methods to emerging quorum quenching strategies. Water Research 236:119922

doi: 10.1016/j.watres.2023.119922
[27]

Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, et al. 2020. Antibacterial mechanism of curcumin: a review. Chemistry & Biodiversity 17:e2000171

doi: 10.1002/cbdv.202000171
[28]

Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Qrimida AM, et al. 2021. Andrographis paniculata (Burm. f.) Wall. ex Nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life 11:348.

doi: 10.3390/life11040348
[29]

Kachur K, Suntres Z. 2020. The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition 60:3042−3053

doi: 10.1080/10408398.2019.1675585
[30]

Zhu L, Li J, Yang J, Li X, Lin D, et al. 2024. Fermentation broth from fruit and vegetable waste works: reducing the risk of human bacterial pathogens in soil by inhibiting quorum sensing. Environmental International 188:108753

doi: 10.1016/j.envint.2024.108753
[31]

Liang Y, Pei M, Wang D, Cao S, Xiao X, et al. 2017. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes. Environmental Science & Technology 51:4988−4998

doi: 10.1021/acs.est.7b00693
[32]

Li X, Zhu L, Zhang SY, Li J, Lin D, et al. 2024. Characterization of microbial contamination in agricultural soil: a public health perspective. Science of The Total Environment 912:169139

doi: 10.1016/j.scitotenv.2023.169139
[33]

Lin D, Zhu L, Yao Y, Zhu L, Wang M. 2023. The ecological and molecular mechanism underlying effective reduction of antibiotic resistance genes pollution in soil by fermentation broth from fruit and vegetable waste. Journal of Hazardous Materials 451:131201

doi: 10.1016/j.jhazmat.2023.131201
[34]

Zhu N, Long Y, Kan Z, Zhu Y, Jin H. 2023. Reduction of mobile genetic elements determines the removal of antibiotic resistance genes during pig manure composting after thermal pretreatment. Bioresource Technology 387:129672

doi: 10.1016/j.biortech.2023.129672
[35]

Wang Q, Gu J, Wang X, Ma J, Hu T, et al. 2020. Effects of nano-zerovalent iron on antibiotic resistance genes and mobile genetic elements during swine manure composting. Environmental Pollution 258:113654

doi: 10.1016/j.envpol.2019.113654
[36]

Wang FH, Qiao M, Chen Z, Su JQ, Zhu YG. 2015. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazardous Materials 299:215−221

doi: 10.1016/j.jhazmat.2015.05.028
[37]

Chen C, Guron GK, Pruden A, Ponder M, Du P, et al. 2018. Antibiotics and antibiotic resistance genes in bulk and rhizosphere soils subject to manure amendment and vegetable cultivation. Journal of Environmental Quality 47:1318−1326

doi: 10.2134/jeq2018.02.0078
[38]

Muurinen J, Stedtfeld R, Karkman A, Pärnänen K, Tiedje J, et al. 2017. Influence of manure application on the environmental resistome under finnish agricultural practice with restricted antibiotic use. Environmental Science & Technology 51:5989−5999

doi: 10.1021/acs.est.7b00551
[39]

Song J, Li T, Zheng Z, Fu W, Long Z, et al. 2022. Carbendazim shapes microbiome and enhances resistome in the earthworm gut. Microbiome 10:63

doi: 10.1186/s40168-022-01261-8
[40]

Li LJ, Xu F, Xu JX, Yan Y, Su JQ, et al. 2024. Spatiotemporal changes of antibiotic resistance, potential pathogens, and health risk in kindergarten dust. Environmental Science & Technology 58:3919−3930

doi: 10.1021/acs.est.3c07935
[41]

Zhang J, Chen M, Sui Q, Tong J, Jiang C, et al. 2016. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research 91:339−349

doi: 10.1016/j.watres.2016.01.010
[42]

Wang HT, Gan QY, Li G, Zhu D. 2023. Effects of zinc thiazole and oxytetracycline on the microbial metabolism, antibiotic resistance, and virulence factor genes of soil, earthworm gut, and phyllosphere. Environmental Science & Technology 58:160−170

doi: 10.1021/acs.est.3c06513
[43]

Jia S, Gao X, Zhang Y, Shi P, Wang C, et al. 2023. Tertiary wastewater treatment processes can be a double-edged sword for water quality improvement in view of mitigating antimicrobial resistance and pathogenicity. Environmental Science & Technology 57:509−519

doi: 10.1021/acs.est.2c06168
[44]

Zhou ZZ, Zhu J, Yin Y, Ding LJ. 2024. Seasonal variations of profiles of antibiotic resistance genes and virulence factor genes in household dust from Beijing, China revealed by the metagenomics. Science of The Total Environment 928:172542

doi: 10.1016/j.scitotenv.2024.172542
[45]

Zhu Y, Pang L, Lai S, Xie X, Zhang H, et al. 2023. Deciphering risks of resistomes and pathogens in intensive laying hen production chain. Science of The Total Environment 869:161790

doi: 10.1016/j.scitotenv.2023.161790
[46]

Ni B, Zhang TL, Cai TG, Xiang Q, Zhu D. 2024. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. Journal of Hazardous Materials 465:133335

doi: 10.1016/j.jhazmat.2023.133335
[47]

Yu T, Jiang X, Xu X, Jiang C, Kang R, et al. 2022. Andrographolide inhibits biofilm and virulence in Listeria monocytogenes as a quorum-sensing inhibitor. Molecules 27:3234

doi: 10.3390/molecules27103234
[48]

Saptami K, Rex DAB, Chandrasekaran J, Rekha PD. 2022. Competitive interaction of thymol with cviR inhibits quorum sensing and associated biofilm formation in Chromobacterium violaceum. International Microbiology 25:629−638

doi: 10.1007/s10123-022-00247-8
[49]

Shou W, Kang F, Huang S, Yan C, Zhou J, et al. 2019. Substituted aromatic-facilitated dissemination of mobile antibiotic resistance genes via an antihydrolysis mechanism across an extracellular polymeric substance permeable barrier. Environmental Science & Technology 53:604−613

doi: 10.1021/acs.est.8b05750
[50]

Luo T, Dai X, Wei W, Xu Q, Ni BJ. 2023. Microplastics enhance the prevalence of antibiotic resistance genes in anaerobic sludge digestion by enriching antibiotic-resistant bacteria in surface biofilm and facilitating the vertical and horizontal gene transfer. Environmental Science & Technology 57:14611−14621

doi: 10.1021/acs.est.3c02815
[51]

Liu X, Yao H, Zhao X, Ge C. 2023. Biofilm formation and control of foodborne pathogenic bacteria. Molecules 28:2432

doi: 10.3390/molecules28062432
[52]

Semenec L, Cain AK, Dawson CJ, Liu Q, Dinh H, et al. 2023. Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence. Nature Communications 14:702

doi: 10.1038/s41467-023-36252-2
[53]

Wang Q, Mao D, Luo Y. 2015. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4. Environmental Science & Technology 49:8731−8740

doi: 10.1021/acs.est.5b01129
[54]

Schwechheimer C, Kuehn MJ. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology 13:605−619

doi: 10.1038/nrmicro3525
[55]

Yu K, Chen F, Yue L, Luo Y, Wang Z, et al. 2020. CeO2 Nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer. Environmental Science & Technology 54:10012−10021

doi: 10.1021/acs.est.0c01870
[56]

Jayaprada T, Hu J, Zhang Y, Feng H, Shen D, et al. 2020. The interference of nonylphenol with bacterial cell-to-cell communication. Environmental Pollution 257:113352

doi: 10.1016/j.envpol.2019.113352
[57]

Kim HS, Lee SH, Byun Y, Park HD. 2015. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Scientific Reports 5:8656

doi: 10.1038/srep08656