[1]

Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews 74:417−433

doi: 10.1128/MMBR.00016-10
[2]

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, et al. 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology 13:310−317

doi: 10.1038/nrmicro3439
[3]

Kümmerer K. 2009. Antibiotics in the aquatic environment – a review – part I. Chemosphere 75:417−434

doi: 10.1016/j.chemosphere.2008.11.086
[4]

Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, et al. 2013. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases 13:155−165

doi: 10.1016/S1473-3099(12)70317-1
[5]

Martínez JL. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution 157:2893−2902

doi: 10.1016/j.envpol.2009.05.051
[6]

Bengtsson-Palme J, Larsson DGJ. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environment International 86:140−149

doi: 10.1016/j.envint.2015.10.015
[7]

Stanton IC, Murray AK, Zhang L, Snape J, Gaze WH. 2020. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Communications Biology 3:467

doi: 10.1038/s42003-020-01176-w
[8]

Pärnänen KMM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, et al. 2019. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances 5:eaau9124

doi: 10.1126/sciadv.aau9124
[9]

Brochado AR, Bobonis J, Banzhaf M, Mateus A, et al. 2018. Species-specific activity of antibacterial drug combinations. Nature 559:259−263

doi: 10.1038/s41586-018-0278-9
[10]

Cacace E, Kim V, Varik V, Knopp M, Tietgen M, et al. 2023. Systematic analysis of drug combinations against Gram-positive bacteria. Nature Microbiology 8:2196−2212

doi: 10.1038/s41564-023-01486-9
[11]

Smith TP, Clegg T, Ransome E, Martin-Lilley T, Rosindell J, et al. 2024. High-throughput characterization of bacterial responses to complex mixtures of chemical pollutants. Nature Microbiology 9:938−948

doi: 10.1038/s41564-024-01626-9
[12]

Bollenbach T, Kishony R. 2011. Resolution of gene regulatory conflicts caused by combinations of antibiotics. Molecular Cell 42:413−425

doi: 10.1016/j.molcel.2011.04.016
[13]

Foster KR, Bell T. 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology 22:1845−1850

doi: 10.1016/j.cub.2012.08.005
[14]

Coyte KZ, Schluter J, Foster KR. 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:663−666

doi: 10.1126/science.aad2583
[15]

EUCAST. 2024. European Committee on Antimicrobial Susceptibility Testing: breakpoint tables for interpretation of MICs and zone diameters, version 14.0

[16]

Clinical and Laboratory Standards Institute (CLSI). 2024. Performance standards for antimicrobial susceptibility testing, CLSI supplement M100, 34th edition. Clinical and Laboratory Standards Institute, US

[17]

Larsson DGJ, Flach CF, Laxminarayan R. 2023. Sewage surveillance of antibiotic resistance holds both opportunities and challenges. Nature Reviews Microbiology 21:213−214

doi: 10.1038/s41579-022-00835-5
[18]

Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. 2006. Co-selection of antibiotic and metal resistance. Trends in Microbiology 14:176−182

doi: 10.1016/j.tim.2006.02.006
[19]

Joseph OJ, Ogunleye GE, Oyinlola KA, Balogun AI, Olumeko DT. 2023. Co-occurrence of heavy metals and antibiotics resistance in bacteria isolated from metal-polluted soil. Environmental Analysis Health and Toxicology 38:e2023024

doi: 10.5620/eaht.2023024
[20]

Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, et al. 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 7:e1002158

doi: 10.1371/journal.ppat.1002158
[21]

Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology 8:15−25

doi: 10.1038/nrmicro2259
[22]

Mitri S, Foster KR. 2013. The genotypic view of social interactions in microbial communities. Annual Review Genetics 47:247−273

doi: 10.1146/annurev-genet-111212-133307
[23]

Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology 3:722−732

doi: 10.1038/nrmicro1235
[24]

Liu HY, Prentice EL, Webber MA. 2024. Mechanisms of antimicrobial resistance in biofilms. npj Antimicrob Resist 2:27

doi: 10.1038/s44259-024-00046-3
[25]

Murray LM, Hayes A, Snape J, Kasprzyk-Hordern B, Gaze WH, et al. 2024. Co-selection for antibiotic resistance by environmental contaminants. NPJ Antimicrobials and Resistance 2:9

doi: 10.1038/s44259-024-00026-7
[26]

Chait R, Craney A, Kishony R. 2007. Antibiotic interactions that select against resistance. Nature 446:668−671

doi: 10.1038/nature05685
[27]

Ding P, Lu J, Lei T, Guo Y, Zhu B, et al. 2025. Antidepressant drugs promote the spread of broad-host-range plasmid in mouse and human gut microbiota. Gut Microbes 17:2346761

doi: 10.1080/19490976.2025.2514138
[28]

Martín Julia, Santos JL, Aparicio I, Alonso E. 2022. Microplastics and associated emerging contaminants in the environment: analysis, sorption mechanisms and effects of co-exposure. Trends in Environmental Analytical Chemistry 35:e00170

doi: 10.1016/j.teac.2022.e00170
[29]

Lotfollahi M, Klimovskaia Susmelj A, De Donno C, Hetzel L, Ibarra IL, et al. 2023. Predicting cellular responses to complex perturbations in high-throughput screens. Molecular Systems Biology 19:e11517

doi: 10.15252/msb.202211517
[30]

Jago MJ, Soley JK, Denisov S, Walsh CJ, Gifford, DR, et al. 2025. High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations. Nature Communications 16:780

doi: 10.1038/s41467-025-56050-2
[31]

Vega NM, Gore J. 2014. Collective antibiotic resistance: mechanisms and implications. Current Opinion in Microbiology 21:28−34

doi: 10.1016/j.mib.2014.09.003
[32]

Zhu C, Wu L, Ning D, Tian R, Gao S, et al. 2025. Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems. Nature Communications 16:4006

doi: 10.1038/s41467-025-59019-3
[33]

Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, et al. 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 14:563−575

doi: 10.1038/nrmicro.2016.94
[34]

Bottery MJ, Pitchford JW, Friman VP. 2021. Ecology and evolution of antimicrobial resistance in bacterial communities. The ISME Journal 15:939−948

doi: 10.1038/s41396-020-00832-7
[35]

Hall JPJ, Brockhurst MA, Dytham C, Harrison E. 2017. The evolution of plasmid stability: are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid 91:90−95

doi: 10.1016/j.plasmid.2017.04.003
[36]

Kraemer SA, Ramachandran A, Perron GG. 2019. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7:180

doi: 10.3390/microorganisms7060180
[37]

Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR, et al. 2015. Interchange of entire communities: microbial community coalescence. Trends in Ecology & Evolution 30:470−476

doi: 10.1016/j.tree.2015.06.004
[38]

Bedia C. 2022. Metabolomics in environmental toxicology: applications and challenges. Trends in Environmental Analytical Chemistry 34:e00161

doi: 10.1016/j.teac.2022.e00161
[39]

Kneis D, de la Cruz Barron M, Konyali D, Westphal V, Schröder P, et al. 2025. Ecology-based approach to predict no-effect antibiotic concentrations for minimizing environmental selection of resistance. The ISME Journal 19:wraf172

doi: 10.1093/ismejo/wraf172
[40]

Baquero F, Coque TM. 2011. Multilevel population genetics in antibiotic resistance. FEMS Microbiology Reviews 35:705−706

doi: 10.1111/j.1574-6976.2011.00293.x
[41]

Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, et al. 2018. Evolution of high-level resistance during low-level antibiotic exposure. Nature Communications 9:1599

doi: 10.1038/s41467-018-04059-1
[42]

Lopatkin AJ, Collins JJ. 2020. Predictive biology: modelling, understanding and harnessing microbial complexity. Nature Reviews Microbiology 18:507−520

doi: 10.1038/s41579-020-0372-5
[43]

Li LG, Yin X, Zhang T. 2018. Tracking antibiotic resistance gene pollution from different sources using machine learning. Microbiome 6:93

doi: 10.1186/s40168-018-0480-x
[44]

Ou F, McGoverin C, Swift S, Vanholsbeeck F. 2019. Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy. Analytical and Bioanalytical Chemistry 411:3653−3663

doi: 10.1007/s00216-019-01848-5
[45]

Yu P, Liu Y, Song Q, Qian S, Fan J, et al. 2025. Recent progress on fluorescence labeling of bacteria: binding strategies, probes, and applications. Chemical Engineering Journal 520:16607

doi: 10.1016/j.cej.2025.166078
[46]

Norman A, Hansen LH, Sørensen SJ. 2009. Conjugative plasmids: vessels of the communal gene pool. Philosophical Transactions of the Royal Society B: Biological Sciences 364:2275−2289

doi: 10.1098/rstb.2009.0037
[47]

Sorek R, Cossart P. 2010. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nature Reviews Genetics 11:9−16

doi: 10.1038/nrg2695
[48]

Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, et al. 2020. A deep learning approach to antibiotic discovery. Cell 180:688−702.e13

doi: 10.1016/j.cell.2020.01.021
[49]

Verlicchi P, Zambello E. 2015. Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review. Science of The Total Environment 538:750−767

doi: 10.1016/j.scitotenv.2015.08.108
[50]

Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, et al. 2022. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: a review. Science of The Total Environment 10:155222

doi: 10.1016/j.scitotenv.2022.155222