[1]

Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399:629−655

doi: 10.1016/S0140-6736(21)02724-0
[2]

Hutchings MI, Truman AW, Wilkinson B. 2019. Antibiotics: past, present and future. Current Opinion in Microbiology 51:72−80

doi: 10.1016/j.mib.2019.10.008
[3]

Cook MA, Wright GD. 2022. The past, present, and future of antibiotics. Science Translational Medicine 14:eabo7793

doi: 10.1126/scitranslmed.abo7793
[4]

Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, et al. 2021. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry 5:726−749

doi: 10.1038/s41570-021-00313-1
[5]

Douafer H, Andrieu V, Phanstiel OIV, Brunel JM. 2019. Antibiotic adjuvants: make antibiotics great again! Journal of Medicinal Chemistry 62:8665−8681

doi: 10.1021/acs.jmedchem.8b01781
[6]

Dhanda G, Acharya Y, Haldar J. 2023. Antibiotic adjuvants: a versatile approach to combat antibiotic resistance. ACS Omega 8:10757−10783

doi: 10.1021/acsomega.3c00312
[7]

Lattanzio V, Lattanzio VM, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research 661:23−67

[8]

Jenner AM, Rafter J, Halliwell B. 2005. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radical Biology and Medicine 38:763−772

doi: 10.1016/j.freeradbiomed.2004.11.020
[9]

Daglia M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology 23:174−181

doi: 10.1016/j.copbio.2011.08.007
[10]

Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR. 2010. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. International Journal of Biological Sciences 6:556

doi: 10.7150/ijbs.6.556
[11]

Borges A, Ferreira C, Saavedra MJ, Simões M. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance 19:256−265

doi: 10.1089/mdr.2012.0244
[12]

Cueva C, Moreno-Arribas MV, Martín-Álvarez PJ, Bills G, Vicente MF, et al. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology 161:372−382

doi: 10.1016/j.resmic.2010.04.006
[13]

Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, et al. 2021. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Frontiers in Pharmacology 12:720726

doi: 10.3389/fphar.2021.720726
[14]

Simões M, Bennett RN, Rosa EAS. 2009. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports 26:746−757

doi: 10.1039/B821648G
[15]

Chen Z, Zhang Y, Gao Y, Boyd SA, Zhu D, et al. 2015. Influence of dissolved organic matter on tetracycline bioavailability to an antibiotic-resistant bacterium. Environmental science & amp; technology 49:10903−10910

doi: 10.1021/acs.est.5b02158
[16]

Ajiboye TO, Skiebe E, Wilharm G. 2018. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance. Biomedicine & Pharmacotherapy 101:737−744

doi: 10.1016/j.biopha.2018.02.051
[17]

Ibitoye OB, Ajiboye TO. 2019. Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. Microbial Pathogenesis 126:393−398

doi: 10.1016/j.micpath.2018.11.033
[18]

Lima VN, Oliveira-Tintino CDM, Santos ES, Morais LP, Tintino SR, et al. 2016. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial Pathogenesis 99:56−61

doi: 10.1016/j.micpath.2016.08.004
[19]

Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews 65:232−260

doi: 10.1128/MMBR.65.2.232-260.2001
[20]

Grossman TH. 2016. Tetracycline antibiotics and resistance. Cold Spring Harbor perspectives in medicine 6:a025387

doi: 10.1101/cshperspect.a025387
[21]

Van TTH, Yidana Z, Smooker PM, Coloe PJ. 2020. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. Journal of Global Antimicrobial Resistance 20:170−177

doi: 10.1016/j.jgar.2019.07.031
[22]

Do K, Unemo M, Kenyon C, Hocking JS, Kong FYS. 2025. Tetracycline-resistant Neisseria gonorrhoeae global estimates-impacts on doxycycline post-exposure prophylaxis implementation and monitoring: a systematic review. JAC - Antimicrobial Resistance 7:dlaf120

doi: 10.1093/jacamr/dlaf120
[23]

Ahmadi MH. 2021. Global status of tetracycline resistance among clinical isolates of Vibrio cholerae: a systematic review and meta-analysis. Antimicrobial Resistance and Infection Control 10:115

doi: 10.1186/s13756-021-00985-w
[24]

Messele YE, Werid GM, Petrovski K. 2023. Meta-analysis on the global prevalence of tetracycline resistance in escherichia coli isolated from beef cattle. Veterinary Sciences 10:479

doi: 10.3390/vetsci10070479
[25]

Zhao C, Wang Y, Mulchandani R, Van Boeckel TP. 2024. Global surveillance of antimicrobial resistance in food animals using priority drugs maps. Nature Communications 15:763

doi: 10.1038/s41467-024-45111-7
[26]

Zhang P, Shen Z, Zhang C, Song L, Wang B, et al. 2017. Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Veterinary microbiology 203:49−55

doi: 10.1016/j.vetmic.2017.02.008
[27]

Clinical and Laboratory Standards Institute (CLSI). 2020. Performance Standards for Antimicrobial Susceptibility Testing. 30th Edition. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute. www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

[28]

MacNair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK, et al. 2018. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nature communications 9:458

doi: 10.1038/s41467-018-02875-z
[29]

Clinical and Laboratory Standards Institute (CLSI). 2025. Performance Standards for Antimicrobial Susceptibility Testing. 35th Edition. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m100

[30]

Maisuria VB, Okshevsky M, Déziel E, Tufenkji N. 2019. Proanthocyanidin interferes with intrinsic antibiotic resistance mechanisms of gram-negative bacteria. Advanced Science 6:1802333

doi: 10.1002/advs.201802333
[31]

Bahl MI, Hansen LH, Sørensen SJ. 2005. Construction of an extended range whole-cell tetracycline biosensor by use of the tet(M) resistance gene. FEMS Microbiology Letters 253:201−205

doi: 10.1016/j.femsle.2005.09.034
[32]

Zhang Y, Boyd SA, Teppen BJ, Tiedje JM, Li H. 2014. Role of tetracycline speciation in the bioavailability to escherichia coli for uptake and expression of antibiotic resistance. Environmental Science & Technology 48:4893−4900

doi: 10.1021/es5003428
[33]

Zhang Y, Boyd SA, Teppen BJ, Tiedje JM, Li H. 2014. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance. Water Research 65:98−106

doi: 10.1016/j.watres.2014.07.021
[34]

Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, et al. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. Journal of Molecular Microbiology and Biotechnology 1:107−125

[35]

Nikaido H, Zgurskaya HI. 2001. AcrAB and related multidrug efflux pumps of Escherichia coli. Journal of Molecular Microbiology and Biotechnology 3:215−218

[36]

Du D, Wang Z, James NR, Voss JE, Klimont E, et al. 2014. Structure of the AcrAB-TolC multidrug efflux pump. Nature 509:512−515

doi: 10.1038/nature13205
[37]

Stavropoulos TA, Strathdee CA. 2000. Expression of the tetA(C) tetracycline efflux pump in Escherichia coli confers osmotic sensitivity. FEMS Microbiology Letters 190:147−150

doi: 10.1111/j.1574-6968.2000.tb09277.x
[38]

Jellen-Ritter AS, Kern WV. 2001. Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants Selected with a fluoroquinolone. Antimicrobial Agents and Chemotherapy 45:1467−1472

doi: 10.1128/aac.45.5.1467-1472.2001
[39]

Møller TSB, Overgaard M, Nielsen SS, Bortolaia V, Sommer MOA, et al. 2016. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC microbiology 16:1−8

doi: 10.1186/s12866-016-0649-z
[40]

Van Bambeke F, Balzi E, Tulkens PM. 2000. Antibiotic efflux pumps. Biochemical Pharmacology 60:457−470

doi: 10.1016/S0006-2952(00)00291-4
[41]

Sun J, Deng Z, Yan A. 2014. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical research Communications 453:254−267

doi: 10.1016/j.bbrc.2014.05.090
[42]

Webber MA, Piddock LJV. 2003. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy 51:9−11

doi: 10.1093/jac/dkg050
[43]

Kashket ER. 1985. The proton motive force in bacteria: a critical assessment of methods. Annual Review of Microbiology 39:219−242

doi: 10.1146/annurev.mi.39.100185.001251
[44]

Pradel E, Pagès JM. 2002. The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrobial Agents and Chemotherapy 46:2640−2643

doi: 10.1128/aac.46.8.2640-2643.2002
[45]

Kumar N, Goel N. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports 24:e00370

doi: 10.1016/j.btre.2019.e00370
[46]

Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, et al. 2019. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clinical Microbiology Reviews 32:e00135-18

doi: 10.1128/cmr.00135-18
[47]

Smith JL, Fratamico PM, Gunther NW. 2007. Extraintestinal pathogenic Escherichia coli. Foodborne Pathogens and Disease 4:134−163

doi: 10.1089/fpd.2007.0087