[1]

Dickman RA, Aga DS. 2022. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). Journal of Hazardous Materials 436:129120

doi: 10.1016/j.jhazmat.2022.129120
[2]

Koelmel JP, Stelben P, McDonough CA, Dukes DA, Aristizabal-Henao JJ, et al. 2022. FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Analytical and Bioanalytical Chemistry 414:1201−1215

doi: 10.1007/S00216-021-03392-7/METRICS
[3]

Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, et al. 2022. Per- and polyfluoroalkyl substances in the environment. Science 375:eabg9065

doi: 10.1126/science.abg9065
[4]

Lin EZ, Nason SL, Zhong A, Fortner J, Godri Pollitt KJ. 2023. Trace analysis of per- and polyfluorinated alkyl substances (PFAS) in dried blood spots – Demonstration of reproducibility and comparability to venous blood samples. Science of The Total Environment 883:163530

doi: 10.1016/j.scitotenv.2023.163530
[5]

Kirk M, Smurthwaite K, Bräunig J, Trevenar S, D'Este C, et al. 2018. The PFAS Health Study: systematic literature review. https://scispace.com/pdf/the-pfas-health-study-systematic-literature-review-2mapxnswyt.pdf (Accessed November 3, 2022)

[6]

Ofoegbu PC, Wagner DC, Abolade O, Clubb P, Dobbs Z, et al. 2022. Impacts of perfluorooctanesulfonic acid on plant biometrics and grain metabolomics of wheat (Triticum aestivum L.). Journal of Hazardous Materials Advances 7:100131

doi: 10.1016/j.hazadv.2022.100131
[7]

Hearon SE, Orr AA, Moyer H, Wang M, Tamamis P, et al. 2022. Montmorillonite clay-based sorbents decrease the bioavailability of per- and polyfluoroalkyl substances (PFAS) from soil and their translocation to plants. Environmental Research 205:112433

doi: 10.1016/j.envres.2021.112433
[8]

Ghisi R, Vamerali T, Manzetti S. 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environmental Research 169:326−341

doi: 10.1016/j.envres.2018.10.023
[9]

Gobelius L, Lewis J, Ahrens L. 2017. Plant uptake of per- and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environmental Science & Technology 51:12602−12610

doi: 10.1021/acs.est.7b02926
[10]

Pesek S. 2020. Forever chemicals in Maine. https://storymaps.arcgis.com/stories/b1f0b7bf7887473e9cdbbb4a591a8fa9 (Accessed December 2, 2024)

[11]

Valdmanis R, Schneyer J. 2019. The curious case of tainted milk from a Maine dairy farm — Reuters. www.reuters.com/article/business/environment/the-curious-case-of-tainted-milk-from-a-maine-dairy-farmidUSKCN1R01AI/#:~:text=The%/>20chemicals%20on%20Stone's%20farm%20likely%20came,by%20Maine's%20Department%20of%20Environmental%20Protection%20(DEP) (Assessed on December 2, 2024)

[12]

Luppi C. 2019. PFAS-contaminated milk discovered on Maine farm. https://cleanwater.org/2019/03/19/breaking-pfas-contaminated-milk-discovered-maine-farm#:~:text=Maine%20state%20officials%20first%20detected%20a%20problem,levels%20as%20high%20as%201%2C420%20parts%20per (Retrieved December 2, 2024)

[13]

Sanders JP, Andrade NA, Menzie CA, Amos CB, Gilmour CC, et al. 2018. Persistent reductions in the bioavailability of PCBs at a tidally inundated Phragmites australis marsh amended with activated carbon. Environmental Toxicology and Chemistry 37:2496−2505

doi: 10.1002/etc.4186
[14]

Mahinroosta R, Senevirathna L. 2020. A review of the emerging treatment technologies for PFAS contaminated soils. Journal of Environmental Management 255:109896

doi: 10.1016/j.jenvman.2019.109896
[15]

Bui TH, Zuverza-Mena N, Dimkpa CO, Nason SL, Thomas S, et al. 2024. PFAS remediation in soil: an evaluation of carbon-based materials for contaminant sequestration. Environmental Pollution 344:123335

doi: 10.1016/J.ENVPOL.2024.123335
[16]

Liu N, Wu C, Lyu G, Li M. 2021. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA). Science of The Total Environment 798:149191

doi: 10.1016/j.scitotenv.2021.149191
[17]

Abdelhafez AA, Abbas MHH, Li J. 2017. Biochar: the black diamond for soil sustainability, contamination control and agricultural production. In Engineered Applications of Biochar, ed. Huang WJ. UK: InTech doi: 10.5772/intechopen.68803

[18]

Wang Z, Alinezhad A, Nason S, Xiao F, Pignatello JJ. 2023. Enhancement of per- and polyfluoroalkyl substances removal from water by pyrogenic carbons: tailoring carbon surface chemistry and pore properties. Water Research 229:119467

doi: 10.1016/j.watres.2022.119467
[19]

Silvani L, Cornelissen G, Botnen Smebye A, Zhang Y, Okkenhaug G, et al. 2019. Can biochar and designer biochar be used to remediate per- and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils? Science of The Total Environment 694:133693

doi: 10.1016/j.scitotenv.2019.133693
[20]

Sormo E, Silvani L, Bjerkli N, Hagemann N, Zimmerman AR, et al. 2021. Stabilization of PFAS-contaminated soil with activated biochar. Science of The Total Environment 763:144034

doi: 10.1016/j.scitotenv.2020.144034
[21]

Zhang W, Jiang T, Liang Y. 2022. Stabilization of per- and polyfluoroalkyl substances (PFAS) in sewage sludge using different sorbents. Journal of Hazardous Materials Advances 6:100089

doi: 10.1016/J.HAZADV.2022.100089
[22]

Zhang W, Liang Y. 2022. Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization. Environmental Pollution 308:119724

doi: 10.1016/j.envpol.2022.119724
[23]

Nason SL, Thomas S, Stanley C, Silliboy R, Blumenthal M, et al. 2024. A comprehensive trial on PFAS remediation: hemp phytoextraction and PFAS degradation in harvested plants. Environmental Science Advances 3:304−313

doi: 10.1039/D3VA00340J
[24]

Albalasmeh AA, Quzaih MZ, Gharaibeh MA, Rusan M, Mohawesh OE, et al. 2024. Significance of pyrolytic temperature, application rate and incubation period of biochar in improving hydro-physical properties of calcareous sandy loam soil. Scientific Reports 14:7012

doi: 10.1038/s41598-024-57755-y
[25]

Alghamdi AG, Aljohani BH, Aly AA. 2021. Impacts of olive waste-derived biochar on hydro-physical properties of sandy soil. Sustainability 13:5493

doi: 10.3390/su13105493
[26]

Brusseau ML, Anderson RH, Guo B. 2020. PFAS concentrations in soils: background levels versus contaminated sites. Science of The Total Environment 740:140017

doi: 10.1016/j.scitotenv.2020.140017
[27]

Zhao SX, Ta N, Wang XD. 2017. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10:1293

doi: 10.3390/EN10091293
[28]

Xu T, Ji H, Gu Y, Tong T, Xia Y, et al. 2020. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite. Chemical Engineering Journal 388:124230

doi: 10.1016/j.cej.2020.124230
[29]

Janu R, Mrlik V, Ribitsch D, Hofman J, Sedláček P, et al. 2021. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion 4:36−46

doi: 10.1016/J.CRCON.2021.01.003
[30]

Mochidzuki K, Soutric F, Tadokoro K, Antal MJ, Tóth M, et al. 2003. Electrical and physical properties of carbonized charcoals. Industrial & Engineering Chemistry Research 42:5140−5151

doi: 10.1021/ie030358e
[31]

Chatterjee R, Sajjadi B, Chen WY, Mattern DL, Hammer N, et al. 2020. Effect of pyrolysis temperature on PhysicoChemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Frontiers in Energy Research 8:85

doi: 10.3389/FENRG.2020.00085
[32]

Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, et al. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19−33

doi: 10.1016/j.chemosphere.2013.10.071
[33]

Cao X, Harris W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology 101:5222−5228

doi: 10.1016/J.BIORTECH.2010.02.052
[34]

Martins AF, de L Cardoso A, Stahl JA, Diniz J. 2007. Low temperature conversion of rice husks, eucalyptus sawdust and peach stones for the production of carbon-like adsorbent. Bioresource Technology 98:1095−1100

doi: 10.1016/J.BIORTECH.2006.04.024
[35]

Chen B, Chen Z. 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127−133

doi: 10.1016/J.CHEMOSPHERE.2009.02.004
[36]

Zhao L, Cao X, Mašek O, Zimmerman A. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256–257:1−9

doi: 10.1016/j.jhazmat.2013.04.015
[37]

McCleaf P, Englund S, Östlund A, Lindegren K, Wiberg K, et al. 2017. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Research 120:77−87

doi: 10.1016/j.watres.2017.04.057
[38]

Wu Y, Qi L, Chen G. 2022. A mechanical investigation of perfluorooctane acid adsorption by engineered biochar. Journal of Cleaner Production 340:130742

doi: 10.1016/J.JCLEPRO.2022.130742
[39]

Campos-Pereira H, Kleja DB, Sjöstedt C, Ahrens L, Klysubun W, et al. 2020. The adsorption of per- and polyfluoroalkyl substances (PFASs) onto ferrihydrite is governed by surface charge. Environmental Science & Technology 54:15722−15730

doi: 10.1021/acs.est.0c01646
[40]

Feng H, Lin Y, Sun Y, Cao H, Fu J, et al. 2017. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface. Water Research 114:144−150

doi: 10.1016/J.WATRES.2017.02.024
[41]

Ordonez D, Podder A, Valencia A, Sadmani AHMA, Reinhart D, et al. 2022. Continuous fixed-bed column adsorption of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from canal water using zero-valent Iron-based filtration media. Separation and Purification Technology 299:121800

doi: 10.1016/j.seppur.2022.121800
[42]

Parenky AC, de Souza NG, Asgari P, Jeon J, Nadagouda MN, et al. 2020. Removal of perfluorooctanesulfonic acid in water by combining zerovalent iron particles with common oxidants. Environmental Engineering Science 37:472−481

doi: 10.1089/ees.2019.0406
[43]

Gao X, Chorover J. 2012. Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environmental Chemistry 9:148−157

doi: 10.1071/EN11119
[44]

Liu K, Zhang S, Hu X, Zhang K, Roy A, et al. 2015. Understanding the adsorption of PFOA on MIL-101 (Cr)-based anionic-exchange metal–organic frameworks: comparing DFT calculations with aqueous sorption experiments. Environmental Science & Technology 49:8657−8665

doi: 10.1021/ACS.EST.5B00802
[45]

Wang M, Orr AA, Jakubowski JM, Bird KE, Casey CM, et al. 2021. Enhanced adsorption of per- and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays. Water Research 188:116534

doi: 10.1016/J.WATRES.2020.116534
[46]

Bräunig J, Baduel C, Barnes CM, Mueller JF. 2021. Sorbent assisted immobilisation of perfluoroalkyl acids in soils–effect on leaching and bioavailability. Journal of Hazardous Materials 412:125171

doi: 10.1016/j.jhazmat.2021.125171
[47]

Xu B, Qiu W, Du J, Wan Z, Zhou JL, et al. 2022. Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants. iScience 25:104061

doi: 10.1016/j.isci.2022.104061
[48]

Stahl T, Riebe RA, Falk S, Failing K, Brunn H. 2013. Long-term lysimeter experiment to investigate the leaching of perfluoroalkyl substances (PFASs) and the carry-over from soil to plants: results of a pilot study. Journal of Agricultural and Food Chemistry 61:1784−1793

doi: 10.1021/jf305003h
[49]

Lechner M, Knapp H. 2011. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry 59:11011−11018

doi: 10.1021/jf201355y
[50]

Zhang DQ, Wang M, He Q, Niu X, Liang Y. 2020. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: from soil adsorption and plant uptake to effects on microbial community. Environmental Pollution 257:113575

doi: 10.1016/j.envpol.2019.113575
[51]

Wang D, Jiang P, Zhang H, Yuan W. 2020. Biochar production and applications in agro and forestry systems: a review. Science of The Total Environment 723:137775

doi: 10.1016/j.scitotenv.2020.137775
[52]

Li X, Jin Y, Wang X, Xu J. 2021. Modified biochar for the removal of perfluoroalkyl substances: a review. Bioresource Technology 319:124212

[53]

Stahl T, Heyn J, Thiele H, Hüther J, Failing K, et al. 2009. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Archives of Environmental Contamination and Toxicology 57:289−298

doi: 10.1007/s00244-008-9272-9
[54]

Melo TM, Schauerte M, Bluhm A, Slaný M, Paller M, et al. 2022. Ecotoxicological effects of per- and polyfluoroalkyl substances (PFAS) and of a new PFAS adsorbing organoclay to immobilize PFAS in soils on earthworms and plants. Journal of Hazardous Materials 433:128771

doi: 10.1016/j.jhazmat.2022.128771
[55]

Li Y, Zhi Y, Weed R, Broome SW, Knappe DRU, et al. 2024. Commercial compost amendments inhibit the bioavailability and plant uptake of per- and polyfluoroalkyl substances in soil-porewater-lettuce systems. Environmental International 186:108615

doi: 10.1016/j.envint.2024.108615