[1]

Hu C, Zhang L, Gong J. 2019. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science 12:2620−2645

doi: 10.1039/c9ee01202h
[2]

Lin Y, Tian Z, Zhang L, Ma J, Jiang Z, et al. 2019. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nature Communications 10:162

doi: 10.1038/s41467-018-08144-3
[3]

Ghosh S, Basu RN. 2018. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale 10:11241−11280

doi: 10.1039/c8nr01032c
[4]

Li H, Zi X, Wu J, Wang X, Zhu L, et al. 2025. Plasmon-induced local electric field improved hydrogen evolution reaction on Ag/Mo2C nanosheets. Nano Research 18:94907146

doi: 10.26599/nr.2025.94907146
[5]

Nai J, Xu X, Xie Q, Lu G, Wang Y, et al. 2022. Construction of Ni(CN)2/NiSe2 heterostructures by stepwise topochemical pathways for efficient electrocatalytic oxygen evolution. Advanced Materials 34:e2104405

doi: 10.1002/adma.202104405
[6]

Zhai P, Wang C, Zhao Y, Zhang Y, Gao J, et al. 2023. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nature Communications 14:1873

doi: 10.1038/s41467-023-37091-x
[7]

Yu M, Budiyanto E, Tüysüz H. 2022. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angewandte Chemie 61:e202103824

doi: 10.1002/anie.202103824
[8]

Zhu K, Zhu X, Yang W. 2019. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angewandte Chemie International Edition 58:1252−1265

doi: 10.1002/anie.201802923
[9]

Hu F, Zhu S, Chen S, Li Y, Ma L, et al. 2017. Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Advanced Materials 29:1606570

doi: 10.1002/adma.201606570
[10]

Zhang L, Xiao J, Wang H, Shao M. 2017. Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catalysis 7:7855−65

doi: 10.1021/acscatal.7b02718
[11]

Wang J, Kong H, Zhang J, Hao Y, Shao Z, et al. 2021. Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science 116:100717

doi: 10.1016/j.pmatsci.2020.100717
[12]

Wang H, Li X, Jiang Y, Li M, Xiao Q, et al. 2022. A universal single-atom coating strategy based on tannic acid chemistry for multifunctional heterogeneous catalysis. Angewandte Chemie 134:e202200465

doi: 10.1002/ange.202200465
[13]

Lin X, Liu J, Qiu X, Liu B, Wang X, et al. 2023. Ru−FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting. Angewandte Chemie International Edition 62:e202306333

doi: 10.1002/anie.202306333
[14]

Qi Y, Xiao X, Mei Y, Xiong L, Chen L, et al. 2022. Modulation of Brønsted and lewis acid centers for NixCo3−xO4 spinel catalysts: towards efficient catalytic conversion of lignin. Advanced Functional Materials 32:2111615

doi: 10.1002/adfm.202111615
[15]

Qi Y, Liu B, Qiu X, Zeng X, Luo Z, et al. 2023. Simultaneous oxidative cleavage of lignin and reduction of furfural via efficient electrocatalysis by P-doped CoMoO4. Advanced Materials 35:2208284

doi: 10.1002/adma.202208284
[16]

Zeng X, Qi Y, Lin X, Li S, Qin Y. 2024. Ni modulates the coordination environment of cations in Fe3O4 to efficiently catalyze lignin depolymerization. Chemical Engineering Science 288:119798

doi: 10.1016/j.ces.2024.119798
[17]

Moreno A, Sipponen MH. 2020. Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons 7:2237−2257

doi: 10.1039/d0mh00798f
[18]

Sun SC, Xu Y, Wen JL, Yuan TQ, Sun RC. 2022. Recent advances in lignin-based carbon fibers (LCFs): precursors, fabrications, properties, and applications. Green Chemistry 24:5709−5738

doi: 10.1039/d2gc01503j
[19]

Jia G, Innocent MT, Yu Y, Hu Z, Wang X, et al. 2023. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization. International Journal of Biological Macromolecules 226:646−659

doi: 10.1016/j.ijbiomac.2022.12.053
[20]

Liu J, Wu L, Chen D, Xu Q, Chen L, et al. 2024. Regulation engineering of lignin-derived N-doped carbon-supported FeNi alloy particles towards efficient electrocatalytic oxygen evolution. Chemical Engineering Science 285:119596

doi: 10.1016/j.ces.2023.119596
[21]

Yan L, Liu H, Yang Y, Dai L, Si C. 2025. Lignin-derived carbon fibers: a green path from biomass to advanced materials. Carbon Energy 7:e662

doi: 10.1002/cey2.662
[22]

Zhang X, Dong S, Wu W, Yang J, Li J, et al. 2020. Influence of Lignin units on the properties of Lignin/PAN-derived carbon fibers. Journal of Applied Polymer Science 137:49274

doi: 10.1002/app.49274
[23]

Qu W, Yang J, Sun X, Bai X, Jin H, et al. 2021. Towards producing high-quality lignin-based carbon fibers: a review of crucial factors affecting lignin properties and conversion techniques. International Journal of Biological Macromolecules 189:768−784

doi: 10.1016/j.ijbiomac.2021.08.187
[24]

García-Mateos FJ, Cordero-Lanzac T, Berenguer R, Morallón E, Cazorla-Amorós D, et al. 2017. Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation. Applied Catalysis B: Environmental 211:18−30

doi: 10.1016/j.apcatb.2017.04.008
[25]

Qu X, Yang Y, Dong L, Li Z, Feng Y, et al. 2024. Enzymolytic lignin derived Fe–N codoped porous carbon materials as catalysts for oxygen reduction reactions. Biomass and Bioenergy 184:107173

doi: 10.1016/j.biombioe.2024.107173
[26]

Lin X, Liu J, Wu L, Chen L, Qi Y, et al. 2022. In situ coupling of lignin-derived carbon-encapsulated CoFe-CoxN heterojunction for oxygen evolution reaction. AIChE Journal 68:e17785

doi: 10.1002/aic.17785
[27]

Zhang J, Liu J, Ran J, Lin X, Wang H, et al. 2025. Oxidative ammonolysis modified lignin-derived nitrogen-doped carbon-supported Co/Fe composites as bifunctional electrocatalyst for Zn-air batteries. Chinese Chemical Letters 36:110403

doi: 10.1016/j.cclet.2024.110403
[28]

Jia G, Yu Y, Wang X, Jia C, Hu Z, et al. 2023. Highly conductive and porous lignin-derived carbon fibers. Materials Horizons 10:5847−5858

doi: 10.1039/D3MH01027A
[29]

Chatterjee S, Saito T. 2025. Lignin-derived advanced carbon materials. ChemSusChem 8(23):3941−3958

doi: 10.1002/cssc.201500692
[30]

Jia G, Zhou Z, Wang Q, Innocent MT, Wang S, et al. 2022. Effect of pre-oxidation temperature and heating rate on the microstructure of lignin carbon fibers. International Journal of Biological Macromolecules 216:388−396

doi: 10.1016/j.ijbiomac.2022.06.191
[31]

Wu H, Liu B, Qi Y, Qiu X, Chen L, et al. 2024. High-conductivity lignin-derived carbon fiber-embedded CuFe2O4 catalysts for electrooxidation of HMF into FDCA. ACS Catalysis 14(21):16127−16139

doi: 10.1021/acscatal.4c04227
[32]

Davis EM, Bergmann A, Kuhlenbeck H, Roldan Cuenya B. 2024. Facet dependence of the oxygen evolution reaction on Co3O4, CoFe2O4, and Fe3O4 epitaxial film electrocatalysts. Journal of the American Chemical Society 146:13770−13782

doi: 10.1021/jacs.3c13595
[33]

Zhang H, Jiang Z, Wu C, Xi S, Song J, et al. 2025. Fe-redox-oriented electrochemical activation strategy enabling enhancement for efficient oxygen evolution reaction. Chem Catalysis 5:101196

doi: 10.1016/j.checat.2024.101196
[34]

Luong TN, Doan TLL, Bacirhonde PM, Park CH. 2025. A study on synthesis of an advanced electrocatalyst based on high-conductive carbon nanofibers shelled NiFe2O4 nanorods for oxygen evolution reaction. International Journal of Hydrogen Energy 99:1108−1118

doi: 10.1016/j.ijhydene.2024.12.178
[35]

Li C, Ye B, Ouyang B, Zhang T, Tang T, et al. 2025. Dual doping of N and F on Co3O4 to activate the lattice oxygen for efficient and robust oxygen evolution reaction. Advanced Materials 37:2501381

doi: 10.1002/adma.202501381
[36]

Aman S, Ahmad N, Tahir MB, Alanazi MM, Abdelmohsen SAM, et al. 2023. Understanding the spatial configurations of Sm2O3 in NiO interfaces Embedded-Loaded for Electrocatalytic OER process. Surfaces and Interfaces 38:102857

doi: 10.1016/j.surfin.2023.102857
[37]

da Silva GL, da Silva Hortêncio J, de Souza Soares JPG, de Almeida Lourenço A, Raimundo RA, et al. 2024. Phyto-assisted green synthesis of NiO nanoparticles for OER electrocatalysis. International Journal of Hydrogen Energy 80:308−321

doi: 10.1016/j.ijhydene.2024.07.160
[38]

Pawar AA, Bandal HA, Kim H. 2021. Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. Journal of Alloys and Compounds 863:158742

doi: 10.1016/j.jallcom.2021.158742
[39]

Ye L, Zhu P, Wang T, Li X, Zhuang L. 2023. High-performance flower-like and biocompatible nickel-coated Fe3O4@SiO2 magnetic nanoparticles decorated on a graphene electrocatalyst for the oxygen evolution reaction. Nanoscale Advances 5:4852−4862

doi: 10.1039/d3na00195d
[40]

Li CF, Xie LJ, Zhao JW, Gu LF, Tang HB, et al. 2022. Interfacial Fe−O−Ni−O−Fe bonding regulates the active Ni sites of Ni-MOFs via iron doping and decorating with FeOOH for super-efficient oxygen evolution. Angewandte Chemie International Edition 61:e202116934

doi: 10.1002/anie.202116934
[41]

Liu X, Park M, Kim MG, Gupta S, Wu G, et al. 2015. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc–air batteries. Angewandte Chemie International Edition 54:9654−9658

doi: 10.1002/anie.201503612
[42]

Wang Q, Shang L, Shi R, Zhang X, Zhao Y, et al. 2017. NiFe layered double hydroxide nanoparticles on co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc–air batteries. Advanced Energy Materials 7:1700467

doi: 10.1002/aenm.201700467
[43]

Xu W, Zhong W, Yang C, Zhao R, Wu J, et al. 2022. Tailoring interfacial electron redistribution of Ni/Fe3O4 electrocatalysts for superior overall water splitting. Journal of Energy Chemistry 73:330−338

doi: 10.1016/j.jechem.2022.06.042
[44]

Halder J, De P, Mandal D, Chandra A. 2023. Bricks of Co, Ni doped Fe3O4 as high performing pseudocapacitor electrode. Journal of Energy Storage 58:106391

doi: 10.1016/j.est.2022.106391
[45]

Tan Y, Zhu W, Zhang Z, Wu W, Chen R, et al. 2021. Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn–air batteries. Nano Energy 83:105813

doi: 10.1016/j.nanoen.2021.105813
[46]

Tao X, Xu H, Luo S, Wu Y, Tian C, et al. 2020. Construction of N-doped carbon nanotube encapsulated active nanoparticles in hierarchically porous carbonized wood frameworks to boost the oxygen evolution reaction. Applied Catalysis B: Environmental 279:119367

doi: 10.1016/j.apcatb.2020.119367
[47]

Gan W, Wu L, Wang Y, Gao H, Gao L, et al. 2021. Carbonized wood decorated with cobalt-nickel binary nanoparticles as a low-cost and efficient electrode for water splitting. Advanced Functional Materials 31:2010951

doi: 10.1002/adfm.202010951
[48]

Chen Z, Zhuo H, Hu Y, Lai H, Liu L, et al. 2020. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Advanced Functional Materials 30:1910292

doi: 10.1002/adfm.201910292
[49]

Yamashita T, Hayes P. 2008. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science 254:2441−2449

doi: 10.1016/j.apsusc.2007.09.063
[50]

Jaffari GH, Rumaiz AK, Woicik JC, Shah SI. 2012. Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. Journal of Applied Physics 111:093906

doi: 10.1063/1.4704690
[51]

Ryan PTP, Jakub Z, Balajka J, Hulva J, Meier M, et al. 2018. Direct measurement of Ni incorporation into Fe3O4(001). Physical Chemistry Chemical Physics 20:16469−16476

doi: 10.1039/C8CP02516A
[52]

Zhang J, Zhang J, He F, Chen Y, Zhu J, et al. 2021. Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Letters 13:65

doi: 10.1007/s40820-020-00579-y
[53]

Su Y, Jiang H, Zhu Y, Yang X, Shen J, et al. 2014. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A 2:7281−7287

doi: 10.1039/C4TA00029C
[54]

Zhang H, Liao JJ, Chen L, Chen XY, Yu ZP, et al. 2025. Low-amount RuP2 nanocluster anchored on P, N-codoped carbon with optimized H and H2O adsorption boost hydrogen evolution in anion-exchange membrane water electrolyzer. Rare Metals 44:6268−6278

doi: 10.1007/s12598-025-03362-3
[55]

Zhang H, Chen A, Bi Z, Wang X, Liu X, et al. 2023. MOF-on-MOF-derived ultrafine Fe2P-Co2P heterostructures for high-efficiency and durable anion exchange membrane water electrolyzers. ACS Nano 17:24070−24079

doi: 10.1021/acsnano.3c09020
[56]

Balamurugan J, Austeria PM, Kim JB, Jeong ES, Huang HH, et al. 2023. Electrocatalysts for zinc–air batteries featuring single molybdenum atoms in a nitrogen-doped carbon framework. Advanced Materials 35:2302625

doi: 10.1002/adma.202302625
[57]

Chen X, Qi Y, Liu B, Qiu X, Lin X, et al. 2025. Structural optimization of the NiFe2O4 spinel catalyst aimed at efficient electrocatalytic C-O bond cleavage of lignin. Chemical Engineering Science 301:120722

doi: 10.1016/j.ces.2024.120722
[58]

Zhou L, Li J, Yin J, Zhang G, Zhang P, et al. 2024. Heterostructure catalyst coupled wood-derived carbon and cobalt-iron alloy/oxide for reversible oxygen conversion. Biochar 6:54

doi: 10.1007/s42773-024-00348-9
[59]

Hu X, Zhang S, Sun J, Yu L, Qian X, et al. 2019. 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy 56:109−17

doi: 10.1016/j.nanoen.2018.11.047
[60]

Luo N, Cai A, Pei J, Zeng X, Wang X, et al. 2025. Unveiling oxygen vacancy engineering in CoMo-based catalysts for enhanced oxygen evolution reaction activity. Advanced Functional Materials 35:2425503

doi: 10.1002/adfm.202425503
[61]

Xin S, Tang Y, Jia B, Zhang Z, Li C, et al. 2023. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Advanced Functional Materials 33:2305243

doi: 10.1002/adfm.202305243
[62]

Wang X, Xi S, Huang P, Du Y, Zhong H, et al. 2022. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611:702−708

doi: 10.1038/s41586-022-05296-7
[63]

Gao L, Cui X, Sewell CD, Li J, Lin Z. 2021. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews 50:8428−8469

doi: 10.1039/d0cs00962h