[1]

Nam JH, Kim BH, Shafioul ASM, Jin M, Cho CW. 2025. A comprehensive review of oral disintegrating film products, and their quality assessment and development. Journal of Pharmaceutical Investigation 55:351−73

doi: 10.1007/s40005-024-00714-6
[2]

Yir-Erong B, Bayor MT, Ayensu I, Gbedema SY, Boateng JS. 2019. Oral thin films as a remedy for noncompliance in pediatric and geriatric patients. Therapeutic Delivery 10(7):443−64

doi: 10.4155/tde-2019-0032
[3]

Lai KL, Fang Y, Han H, Li Q, Zhang S, et al. 2018. Orally-dissolving film for sublingual and buccal delivery of ropinirole. Colloids and Surfaces B: Biointerfaces 163:9−18

doi: 10.1016/j.colsurfb.2017.12.015
[4]

Camps G, Mars M, De Graaf C, Smeets PAM. 2017. A tale of gastric layering and sieving: gastric emptying of a liquid meal with water blended in or consumed separately. Physiology & Behavior 176:26−30

doi: 10.1016/j.physbeh.2017.03.029
[5]

Muñoz-Núñez M, Laguna L, Tárrega A. 2023. What is the food like that people choke on? A study on food bolus physical properties under different in vitro oral capacities. Food Research International 165:112474

doi: 10.1016/j.foodres.2023.112474
[6]

Canadell-Heredia R, Suñé-Pou M, Nardi-Ricart A, Pérez-Lozano P, Suñé-Negre J, et al. 2022. Formulation and development of paediatric orally disintegrating carbamazepine tablets. Saudi Pharmaceutical Journal 30(11):1612−22

doi: 10.1016/j.jsps.2022.09.004
[7]

Mahboob MBH, Riaz T, Jamshaid M, Bashir I, Zulfiqar S. 2016. Oral films: a comprehensive review. International Current Pharmaceutical Journal 5(12):111−17

doi: 10.3329/icpj.v5i12.30413
[8]

Sevi̇nç Özakar R, Özakar E. 2021. Current overview of oral thin films. Turkish Journal of Pharmaceutical Sciences 18(1):111−21

doi: 10.4274/tjps.galenos.2020.76390
[9]

Muruganantham S, Kandasamy R, Alagarsamy S. 2021. Nanoparticle-loaded oral fast-dissolving film: new realistic approach of prospective generation in drug delivery - a review. Critical Reviews™ in Therapeutic Drug Carrier Systems 38(1):1−35

doi: 10.1615/CritRevTherDrugCarrierSyst.2020034002
[10]

Liu C, Chang D, Zhang X, Sui H, Kong Y, et al. 2017. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech 18(8):2957−64

doi: 10.1208/s12249-017-0777-2
[11]

Palezi SC, Fernandes SS, Martins VG. 2023. Oral disintegration films: applications and production methods. Journal of Food Science and Technology 60(10):2539−48

doi: 10.1007/s13197-022-05589-9
[12]

Cupone IE, Dellera E, Marra F, Giori AM. 2020. Development and characterization of an orodispersible film for vitamin D3 supplementation. Molecules 25(24):5851

doi: 10.3390/molecules25245851
[13]

Pacheco MS, Barbieri D, Da Silva CF, De Moraes MA. 2021. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. International Journal of Biological Macromolecules 178:504−13

doi: 10.1016/j.ijbiomac.2021.02.180
[14]

Shin HJ, Chang JH, Han JA. 2023. Physicochemical and in-vitro release characteristics of vitamin C-loaded antioxidant orally disintegrating films with different catechin levels. Food Bioscience 53:102733

doi: 10.1016/j.fbio.2023.102733
[15]

Tedesco MP, Monaco-Lourenço CA, Carvalho RA. 2017. Characterization of oral disintegrating film of peanut skin extract—Potential route for buccal delivery of phenolic compounds. International Journal of Biological Macromolecules 97:418−25

doi: 10.1016/j.ijbiomac.2017.01.044
[16]

Bodini RB, Guimarães JDGL, Monaco-Lourenço CA, Aparecida De Carvalho R. 2019. Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films. Journal of Drug Delivery Science and Technology 51:403−10

doi: 10.1016/j.jddst.2019.03.028
[17]

Carrillo Cabrera Y, Camacho Montes H, Matínez Pérez C, Betancourt Galindo R, Espinosa Neira R, et al. 2024. Multivitamin complex-loaded electrospun polyvinyl alcohol core/shell structure fibers for transdermal delivery system: in-silico and experimental studies. Journal of Drug Delivery Science and Technology 92:105292

doi: 10.1016/j.jddst.2023.105292
[18]

Baykara T, Taylan G. 2021. Coaxial electrospinning of PVA/Nigella seed oil nanofibers: processing and morphological characterization. Materials Science and Engineering: B 265:115012

doi: 10.1016/j.mseb.2020.115012
[19]

Kamali H, Farzadnia P, Movaffagh J, Abbaspour M. 2022. Optimization of curcumin nanofibers as fast dissolving oral films prepared by emulsion electrospinning via central composite design. Journal of Drug Delivery Science and Technology 75:103714

doi: 10.1016/j.jddst.2022.103714
[20]

Mirzaeei S, Pourfarzi S, Saeedi M, Taghe S, Nokhodchi A. 2024. Development of a PVA/PCL/CS-based nanofibrous membrane for guided tissue regeneration and controlled delivery of doxycycline hydrochloride in management of periodontitis: in vivo evaluation in rats. AAPS PharmSciTech 25(1):27

doi: 10.1208/s12249-024-02735-8
[21]

Ali Shah K, Gao B, Kamal R, Razzaq A, Qi S, et al. 2022. Development and characterizations of pullulan and maltodextrin-based oral fast-dissolving films employing a box–behnken experimental design. Materials 15(10):3591

doi: 10.3390/ma15103591
[22]

Li X, Zhao S, Chen L, Zhou Q, Qiu J, et al. 2023. High-level production of pullulan from high concentration of glucose by mutagenesis and adaptive laboratory evolution of Aureobasidium pullulans. Carbohydrate Polymers 302:120426

doi: 10.1016/j.carbpol.2022.120426
[23]

Rezaee F, Ganji F. 2018. Formulation, characterization, and optimization of captopril fast-dissolving oral films. AAPS PharmSciTech 19(5):2203−12

doi: 10.1208/s12249-018-1027-y
[24]

Qin ZY, Jia XW, Liu Q, Kong BH, Wang H. 2019. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. International Journal of Biological Macromolecules 137:224−31

doi: 10.1016/j.ijbiomac.2019.06.224
[25]

Lavanya M, Jeyakumar S, Veerappa VG, Pushpadhas HA, Ramesha KP, et al. 2024. Fabrication and characterization of progesterone loaded pullulan nanofibers for controlled release. Journal of Drug Delivery Science and Technology 91:105193

doi: 10.1016/j.jddst.2023.105193
[26]

Duan M, Sun J, Huang Y, Jiang H, Hu Y, et al. 2023. Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. Food Science and Human Wellness 12(2):614−21

doi: 10.1016/j.fshw.2022.07.064
[27]

Lan W, He L, Liu Y. 2018. Preparation and properties of sodium carboxymethyl cellulose/sodium alginate/chitosan composite film. Coatings 8(8):291

doi: 10.3390/coatings8080291
[28]

Singh H, Singla YP, Narang RS, Pandita D, Singh S, et al. 2018. Frovatriptan loaded hydroxy propyl methyl cellulose/treated chitosan based composite fast dissolving sublingual films for management of migraine. Journal of Drug Delivery Science and Technology 47:230−39

doi: 10.1016/j.jddst.2018.06.018
[29]

Zhang L, Zhao J, Zhang Y, Li F, Jiao X, et al. 2021. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films. International Journal of Biological Macromolecules 192:444−51

doi: 10.1016/j.ijbiomac.2021.09.187
[30]

Wu C, Li J, Zhang YQ, Li X, Wang SY, et al. 2023. Cellulose dissolution, modification, and the derived hydrogel: a review. ChemSusChem 16(21):e202300518

doi: 10.1002/cssc.202300518
[31]

Silva da Costa D, Ribeiro Costa RM, Takeuchi KP, Lopes AS. 2023. Technological parameters of cassava starch/carboxymethyl cellulose blend-based films added of soy lecithin and tocopherol mix. Polymer Testing 129:108245

doi: 10.1016/j.polymertesting.2023.108245
[32]

Torres FG, Commeaux S, Troncoso OP. 2013. Starch-based biomaterials for wound-dressing applications. Starch 65(7-8):543−51

doi: 10.1002/star.201200259
[33]

Shah U, Naqash F, Gani A, Masoodi FA. 2016. Art and science behind modified starch edible films and coatings: a review. Comprehensive Reviews in Food Science and Food Safety 15(3):568−80

doi: 10.1111/1541-4337.12197
[34]

Zhao B, Du J, Zhang Y, Gu Z, Li Z, et al. 2022. Polysaccharide-coated porous starch-based oral carrier for paclitaxel: adsorption and sustained release in colon. Carbohydrate Polymers 291:119571

doi: 10.1016/j.carbpol.2022.119571
[35]

Han X, Ma P, Shen M, Wen H, Xie J. 2023. Modified porous starches loading curcumin and improving the free radical scavenging ability and release properties of curcumin. Food Research International 168:112770

doi: 10.1016/j.foodres.2023.112770
[36]

Ji Y. 2021. Synthesis of porous starch microgels for the encapsulation, delivery and stabilization of anthocyanins. Journal of Food Engineering 302:110552

doi: 10.1016/j.jfoodeng.2021.110552
[37]

Coelho SC, Rocha F, Estevinho BN. 2022. Electrospinning of microstructures incorporated with vitamin B9 for food application: characteristics and bioactivities. Polymers 14(20):4337

doi: 10.3390/polym14204337
[38]

Lin Y, He H, Huang Q, An F, Song H. 2020. Flash extraction optimization of low-temperature soluble pectin from passion fruit peel (Passiflora edulis f. flavicarpa) and its soft gelation properties. Food and Bioproducts Processing 123:409−18

[39]

Hassan E, Fadel S, Abou-Elseoud W, Mahmoud M, Hassan M. 2022. Cellulose nanofibers/pectin/pomegranate extract nanocomposite as antibacterial and antioxidant films and coating for paper. Polymers 14(21):4605

doi: 10.3390/polym14214605
[40]

Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. 2023. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydrate Polymers 315:120934

doi: 10.1016/j.carbpol.2023.120934
[41]

Castro-Muñoz R, Correa-Delgado M, Córdova-Almeida R, Lara-Nava D, Chávez-Muñoz M, et al. 2022. Natural sweeteners: sources, extraction and current uses in foods and food industries. Food Chemistry 370:130991

doi: 10.1016/j.foodchem.2021.130991
[42]

Pezik E, Gulsun T, Sahin S, Vural İ. 2021. Development and characterization of pullulan-based orally disintegrating films containing amlodipine besylate. European Journal of Pharmaceutical Sciences 156:105597

doi: 10.1016/j.ejps.2020.105597
[43]

Sowjanya JN, Rao PR. 2023. Development, optimization, and invitro evaluation of novel fast dissolving oral films (FDOF's) of Uncaria tomentosa extract to treat osteoarthritis. Heliyon 9(3):e14292

doi: 10.1016/j.heliyon.2023.e14292
[44]

Ben ZY, Samsudin H, Yhaya MF. 2022. Glycerol: its properties, polymer synthesis, and applications in starch based films. European Polymer Journal 175:111377

doi: 10.1016/j.eurpolymj.2022.111377
[45]

Sharma L, Singh C. 2016. Sesame protein based edible films: development and characterization. Food Hydrocolloids 61:139−47

doi: 10.1016/j.foodhyd.2016.05.007
[46]

Sun Z, Tang Z, Li X, Li X, Morrell JJ, et al. 2022. The improved properties of carboxymethyl bacterial cellulose films with thickening and plasticizing. Polymers 14(16):3286

doi: 10.3390/polym14163286
[47]

Ciannamea EM, Castillo LA, Barbosa SE, De Angelis MG. 2018. Barrier properties and mechanical strength of bio-renewable, heat-sealable films based on gelatin, glycerol and soybean oil for sustainable food packaging. Reactive and Functional Polymers 125:29−36

doi: 10.1016/j.reactfunctpolym.2018.02.001
[48]

Nabi BG, Mukhtar K, Ahmed W, Manzoor MF, Ali Nawaz Ranjha MM, et al. 2023. Natural pigments: anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Bioscience 52:102403

doi: 10.1016/j.fbio.2023.102403
[49]

Barciela P, Perez-Vazquez A, Prieto MA. 2023. Azo dyes in the food industry: features, classification, toxicity, alternatives, and regulation. Food and Chemical Toxicology 178:113935

doi: 10.1016/j.fct.2023.113935
[50]

Hernández MS, Ludueña LN, Flores SK. 2023. Citric acid, chitosan and oregano essential oil impact on physical and antimicrobial properties of cassava starch films. Carbohydrate Polymer Technologies and Applications 5:100307

doi: 10.1016/j.carpta.2023.100307
[51]

Liu J, Dong Y, Zheng X, Pei Y, Tang K. 2024. Citric acid crosslinked soluble soybean polysaccharide films for active food packaging applications. Food Chemistry 438:138009

doi: 10.1016/j.foodchem.2023.138009
[52]

Assis RQ, Rios PD, de Oliveira Rios A, Olivera FC. 2020. Biodegradable packaging of cellulose acetate incorporated with norbixin, lycopene or zeaxanthin. Industrial Crops and Products 147:112212

doi: 10.1016/j.indcrop.2020.112212
[53]

Jasvanth E, Teja D, Mounika B, Nalluri BN. 2019. Formulation and evaluation of ramipril mouth dissolving films. Journal of Applied Pharmaceutics 11(3):124−29

doi: 10.22159/ijap.2019v11i3.32361
[54]

Racaniello GF, Pistone M, Meazzini C, Lopedota A, Arduino I, et al. 2023. 3D printed mucoadhesive orodispersible films manufactured by direct powder extrusion for personalized clobetasol propionate based paediatric therapies. International Journal of Pharmaceutics 643:123214

doi: 10.1016/j.ijpharm.2023.123214
[55]

Remedio LN, dos Santos Garcia VA, Rochetti AL, Berretta AA, Yoshida CMP, et al. 2023. Hydroxypropyl methylcellulose orally disintegration films produced by tape casting with the incorporation of green propolis ethanolic extract using the printing technique. Food Hydrocolloids 135:108176

doi: 10.1016/j.foodhyd.2022.108176
[56]

Tedesco MP, dos Santos Garcia VA, Borges JG, Osiro D, Vanin FM, et al. 2021. Production of oral films based on pre-gelatinized starch, CMC and HPMC for delivery of bioactive compounds extract from acerola industrial waste. Industrial Crops and Products 170:113684

doi: 10.1016/j.indcrop.2021.113684
[57]

Cabrera-Barjas G, Becherán L, Valdés O, Giordano A, Segura-del Río R, et al. 2023. Effect of cellulose nanofibrils on vancomycin drug release from chitosan nanocomposite films. European Polymer Journal 197:112371

doi: 10.1016/j.eurpolymj.2023.112371
[58]

Suryawanshi D, Wavhule P, Shinde U, Kamble M, Amin P. 2021. Development, optimization and in-vivo evaluation of cyanocobalamin loaded orodispersible films using hot-melt extrusion technology: a quality by design (QbD) approach. Journal of Drug Delivery Science and Technology 63:102559

doi: 10.1016/j.jddst.2021.102559
[59]

Paczkowska-Walendowska M, Miklaszewski A, Szymanowska D, Skalicka-Woźniak K, Cielecka-Piontek J. 2023. Hot melt extrusion as an effective process in the development of mucoadhesive tablets containing Scutellariae baicalensis radix extract and chitosan dedicated to the treatment of oral infections. International Journal of Molecular Sciences 24(6):5834

doi: 10.3390/ijms24065834
[60]

Kanaujia P, Poovizhi P, Ng WK, Tan RBH. 2019. Preparation, characterization and prevention of auto-oxidation of amorphous sirolimus by encapsulation in polymeric films using hot melt extrusion. Current Drug Delivery 16(7):663−71

doi: 10.2174/1567201816666190416123939
[61]

Shen D, Zhang M, Mujumdar AS, Li J. 2023. Advances and application of efficient physical fields in extrusion based 3D food printing technology. Trends in Food Science & Technology 131:104−17

doi: 10.1016/j.jpgs.2022.11.017
[62]

Derossi A, Corradini MG, Caporizzi R, Oral MO, Severini C. 2023. Accelerating the process development of innovative food products by prototyping through 3D printing technology. Food Bioscience 52:102417

doi: 10.1016/j.fbio.2023.102417
[63]

Elbadawi M, Nikjoo D, Gustafsson T, Gaisford S, Basit AW. 2021. Pressure-assisted microsyringe 3D printing of oral films based on pullulan and hydroxypropyl methylcellulose. International Journal of Pharmaceutics 595:120197

doi: 10.1016/j.ijpharm.2021.120197
[64]

Li R, Feng Y, Zhang H, Liu J, Wang J. 2023. Recent advances in fabricating, characterizing, and applying food-derived fibers using microfluidic spinning technology. Food Hydrocolloids 144:108947

doi: 10.1016/j.foodhyd.2023.108947
[65]

Hou L, Zhang L, Yu C, Chen J, Ye X, et al. 2023. One-pot self-assembly of core-shell nanoparticles within fibers by coaxial electrospinning for intestine-targeted delivery of curcumin. Foods 12(8):1623

doi: 10.3390/foods12081623
[66]

Ravasi E, Melocchi A, Arrigoni A, Chiappa A, Gennari CGM, et al. 2023. Electrospinning of pullulan-based orodispersible films containing sildenafil. International Journal of Pharmaceutics 643:123258

doi: 10.1016/j.ijpharm.2023.123258
[67]

Hirsch E, Pantea E, Vass P, Domján J, Molnár M, et al. 2021. Probiotic bacteria stabilized in orally dissolving nanofibers prepared by high-speed electrospinning. Food and Bioproducts Processing 128:84−94

doi: 10.1016/j.fbp.2021.04.016
[68]

Guo J, Wang T, Yan Z, Ji D, Li J, et al. 2022. Preparation and evaluation of dual drug-loaded nanofiber membranes based on coaxial electrostatic spinning technology. International Journal of Pharmaceutics 629:122410

doi: 10.1016/j.ijpharm.2022.122410
[69]

Sha H, Cui B, Yuan C, Li Y, Guo L, et al. 2022. Catechin/β-cyclodextrin complex modulates physicochemical properties of pre-gelatinized starch-based orally disintegrating films. International Journal of Biological Macromolecules 195:124−31

doi: 10.1016/j.ijbiomac.2021.11.206
[70]

Soukoulis C, Behboudi-Jobbehdar S, Macnaughtan W, Parmenter C, Fisk ID. 2017. Stability of Lactobacillus rhamnosus GG incorporated in edible films: impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids 70:345−55

doi: 10.1016/j.foodhyd.2017.04.014
[71]

dos Santos Garcia VA, Borges JG, Maciel VBV, Mazalli MR, das Graças Lapa-Guimaraes J, et al. 2018. Gelatin/starch orally disintegrating films as a promising system for vitamin C delivery. Food Hydrocolloids 79:127−35

doi: 10.1016/j.foodhyd.2017.12.027
[72]

Al-Mogherah AI, Ibrahim MA, Hassan MA. 2020. Optimization and evaluation of venlafaxine hydrochloride fast dissolving oral films. Saudi Pharmaceutical Journal 28(11):1374−82

doi: 10.1016/j.jsps.2020.09.001
[73]

Borges JG, Silva AG, Cervi-Bitencourt CM, Vanin FM, Carvalho RA. 2016. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties. International Journal of Biological Macromolecules 86:907−16

doi: 10.1016/j.ijbiomac.2016.01.089
[74]

Wong C, Yuen K, Peh K. 1999. Formulation and evaluation of controlled release Eudragit buccal patches. International Journal of Pharmaceutics 178(1):11−22

doi: 10.1016/S0378-5173(98)00342-1
[75]

Wang S, Gao Z, Liu L, Li M, Zuo A, et al. 2022. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. European Journal of Pharmaceutical Sciences 168:106085

doi: 10.1016/j.ejps.2021.106085
[76]

Abdelhameed AH, Abdelhafez WA, Saleh KI, Hamad AA, Mohamed MS. 2023. Formulation and optimization of oral fast dissolving films loaded with nanosuspension to enhance the oral bioavailability of Fexofenadine HCL. Journal of Drug Delivery Science and Technology 85:104578

doi: 10.1016/j.jddst.2023.104578
[77]

Eleftheriadis GK, Monou PK, Bouropoulos N, Boetker J, Rantanen J, et al. 2020. Fabrication of mucoadhesive buccal films for local administration of ketoprofen and lidocaine hydrochloride by combining fused deposition modeling and inkjet printing. Journal of Pharmaceutical Sciences 109(9):2757−66

doi: 10.1016/j.xphs.2020.05.022
[78]

Castro PM, Sousa F, Magalhães R, Ruiz-Henestrosa VMP, Pilosof AMR, et al. 2018. Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydrate Polymers 194:411−21

doi: 10.1016/j.carbpol.2018.04.032
[79]

Nair AB, Shah J, Jacob S, Al-Dhubiab BE, Patel V, et al. 2021. Development of mucoadhesive buccal film for rizatriptan: in vitro and in vivo evaluation. Pharmaceutics 13(5):728

doi: 10.3390/pharmaceutics13050728
[80]

Pamlényi K, Regdon G Jr, Jójárt-Laczkovich O, Nemes D, Bácskay I, et al. 2023. Formulation and characterization of pramipexole containing buccal films for using in Parkinson's disease. European Journal of Pharmaceutical Sciences 187:106491

doi: 10.1016/j.ejps.2023.106491
[81]

Chen L, Liu B, Song XX, Wang Y, Zhao WY, et al. 2023. Preparation of orally disintegrated membranes from liquorice inclusion complexes. BIO Web of Conferences 59:02020

doi: 10.1051/bioconf/20235902020
[82]

Santos LS, de Araújo Andrade T, Barbosa Gomes De Carvalho YM, Santos Oliveira AM, Barros Silva Soares de Souza EP, et al. 2021. Gelatin-based mucoadhesive membranes containing inclusion complex of thymol/β-cyclodextrin for treatment of oral infections. International Journal of Polymeric Materials and Polymeric Biomaterials 70(3):184−94

doi: 10.1080/00914037.2019.1706509