[1]

Qin H, King GJ, Borpatragohain P, Zou J. 2023. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. Plant Communications 4:100565

doi: 10.1016/j.xplc.2023.100565
[2]

Miao H, Xia C, Yu S, Wang J, Zhao Y, et al. 2023. Enhancing health-promoting isothiocyanates in Chinese kale sprouts via manipulating BoESP. Horticulture Research 10:uhad029

doi: 10.1093/hr/uhad029
[3]

Fenwick GR, Heaney RK, Mullin WJ, VanEtten CH. 1983. Glucosinolates and their breakdown products in food and food plants. C R C Critical Reviews in Food Science and Nutrition 18:123−201

doi: 10.1080/10408398209527361
[4]

Griffiths DW, Birch ANE, Hillman JR. 1998. Antinutritional compounds in the Brasi Analysis, biosynthesis, chemistry and dietary effects. The Journal of Horticultural Science and Biotechnology 73:1−18

doi: 10.1080/14620316.1998.11510937
[5]

Arouisse B, Thoen MPM, Kruijer W, Kunst JF, Jongsma MA, et al. 2024. Bivariate GWA mapping reveals associations between aliphatic glucosinolates and plant responses to thrips and heat stress. The Plant Journal 120:674−86

doi: 10.1111/tpj.17009
[6]

Augustine R, Bisht NC. 2017. Regulation of glucosinolate metabolism: from model plant Arabidopsis thaliana to Brassica crops. In Glucosinolates, eds. Mérillon JM, Ramawat KG. Cham: Springer International Publishing. pp. 163−99 doi: 10.1007/978-3-319-25462-3_3 163-199

[7]

Salehin M, Li B, Tang M, Katz E, Song L, et al. 2019. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications 10:4021

doi: 10.1038/s41467-019-12002-1
[8]

Yin X, Yang D, Zhao Y, Yang X, Zhou Z, et al. 2023. Differences in pseudogene evolution contributed to the contrasting flavors of turnip and Chiifu, two Brassica rapa subspecies. Plant Communications 4:100427

doi: 10.1016/j.xplc.2022.100427
[9]

Engel E, Baty C, le Corre D, Souchon I, Martin N. 2002. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. Journal of Agricultural and Food Chemistry 50:6459−67

doi: 10.1021/jf025579u
[10]

Kitainda V, Jez JM. 2021. Structural studies of aliphatic glucosinolate chain-elongation enzymes. Antioxidants 10:1500

doi: 10.3390/antiox10091500
[11]

Kumar R, Lee SG, Augustine R, Reichelt M, Vassão DG, et al. 2019. Molecular basis of the evolution of methylthioalkylmalate synthase and the diversity of methionine-derived glucosinolates. The Plant Cell 31:1633−47

doi: 10.1105/tpc.19.00046
[12]

Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA. 2020. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana. Journal of Agricultural and Food Chemistry 68:7281−97

doi: 10.1021/acs.jafc.0c01916
[13]

Liu S, Bartnikas LM, Volko SM, Ausubel FM, Tang D. 2016. Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance. Frontiers in Plant Science 7:227

doi: 10.3389/fpls.2016.00227
[14]

Liu G, He H, Wang P, Zhao X, Ren F. 2023. Glucoraphanin accumulation via glucoraphanin synthesis promotion during broccoli germination. Foods 13:41

doi: 10.3390/foods13010041
[15]

Sønderby IE, Geu-Flores F, Halkier BA. 2010. Biosynthesis of glucosinolates − gene discovery and beyond. Trends in Plant Science 15:283−90

doi: 10.1016/j.tplants.2010.02.005
[16]

Mitreiter S, Gigolashvili T. 2021. Regulation of glucosinolate biosynthesis. Journal of Experimental Botany 72:70−91

doi: 10.1093/jxb/eraa479
[17]

Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4:447−56

doi: 10.1016/S1369-5266(00)00199-0
[18]

Burow M, Atwell S, Francisco M, Kerwin RE, Halkier BA, et al. 2015. The glucosinolate biosynthetic gene AOP2 mediates feed-back regulation of jasmonic acid signaling in Arabidopsis. Molecular Plant 8:1201−12

doi: 10.1016/j.molp.2015.03.001
[19]

Zhou X, Zhang H, Xie Z, Liu Y, Wang P, et al. 2023. Natural variation and artificial selection at the BnaC2. MYB28 locus modulate Brassica napus seed glucosinolate. Plant Physiology 191:352−68

doi: 10.1093/plphys/kiac463
[20]

Zhang Y, Yang Z, He Y, Liu D, Liu Y, et al. 2024. Structural variation reshapes population gene expression and trait variation in 2,105 Brassica napus accessions. Nature Genetics 56:2538−50

doi: 10.1038/s41588-024-01957-7
[21]

Feng J, Primomo V, Li Z, Zhang Y, Jan CC, et al. 2009. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 52:401−7

doi: 10.1139/G09-016
[22]

Wang T, Guo Y, Wu Z, Xia S, Hua S, et al. 2020. Genetic characterization of a new radish introgression line carrying the restorer gene for Ogura CMS in Brassica napus. PLoS One 15:e0236273

doi: 10.1371/journal.pone.0236273
[23]

Huang W, Gao GY, Wu JF, Liu LL, Zhang DW, et al. 2022. Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea. Acta Agronomica Sinica 48:1169−80

doi: 10.3724/SP.J.1006.2022.14058
[24]

Mao S, Wang J, Wu Q, Liang M, Yuan Y, et al. 2020. Effect of selenium−sulfur interaction on the anabolism of sulforaphane in broccoli. Phytochemistry 179:112499

doi: 10.1016/j.phytochem.2020.112499
[25]

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. 2012. The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 40:D1202−D1210

doi: 10.1093/nar/gkr1090
[26]

Liu Z, Li N, Yu T, Wang Z, Wang J, et al. 2022. The Brassicaceae genome resource (TBGR): a comprehensive genome platform for Brassicaceae plants. Plant Physiology 190:226−37

doi: 10.1093/plphys/kiac266
[27]

Zhang X, Liu T, Wang J, Wang P, Qiu Y, et al. 2021. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Molecular Plant 14:2032−55

doi: 10.1016/j.molp.2021.08.005
[28]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[29]

Zhang D, Gao F, Jakovli I, Zou H, Zhang J, et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20:348−55

doi: 10.1111/1755-0998.13096
[30]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[31]

Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, et al. 2007. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2:e1322

doi: 10.1371/journal.pone.0001322
[32]

Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, et al. 2019. Genetic architecture of glucosinolate variation in Brassica napus. Journal of Plant Physiology 240:152988

doi: 10.1016/j.jplph.2019.06.001
[33]

Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF. 1987. Allocating resources to reproduction and defense. BioScience 37:58−67

doi: 10.2307/1310178
[34]

Malhotra B, Kumar P, Bisht NC. 2023. Defense versus growth trade‐offs: insights from glucosinolates and their catabolites. Plant, Cell & Environment 46:2964−84

doi: 10.1111/pce.14462
[35]

Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, et al. 2021. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutrition Reviews 79:1204−24

doi: 10.1093/nutrit/nuaa129
[36]

Wu Q, Mao S, Huang H, Liu J, Chen X, et al. 2024. Chromosome-scale reference genome of broccoli (Brassica oleracea var. italica Plenck) provides insights into glucosinolate biosynthesis. Horticulture Research 11:uhae063

doi: 10.1093/hr/uhae063
[37]

Mao S, Wang J, Guo Z, Huang H, Wang S, et al. 2025. Improving sulforaphane content in broccoli sprouts by applying Se: transcriptome profiling and coexpression network analysis provide insights into the mechanistic response. Physiologia Plantarum 177:e70037

doi: 10.1111/ppl.70037
[38]

Mocniak LE, Elkin KR, Dillard SL, Bryant RB, Soder KJ. 2023. Building comprehensive glucosinolate profiles for brassica varieties. Talanta 251:123814

doi: 10.1016/j.talanta.2022.123814
[39]

Kaiser AE, Baniasadi M, Giansiracusa D, Giansiracusa M, Garcia M, et al. 2021. Sulforaphane: a broccoli bioactive phytocompound with cancer preventive potential. Cancers 13:4796

doi: 10.3390/cancers13194796
[40]

Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, et al. 2022. Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Communications Biology 5:242

doi: 10.1038/s42003-022-03189-z
[41]

Uddin MS, Al Mamun A, Jakaria M, Thangapandiyan S, Ahmad J, et al. 2020. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Science of The Total Environment 707:135624

doi: 10.1016/j.scitotenv.2019.135624
[42]

Liu S, Huang H, Yi X, Zhang Y, Yang Q, et al. 2020. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. Plant Biotechnology Journal 18:1472−84

doi: 10.1111/pbi.13314
[43]

Bell L, Oloyede OO, Lignou S, Wagstaff C, Methven L. 2018. Taste and flavor perceptions of glucosinolates, isothiocyanates, and related compounds. Molecular Nutrition & Food Research 62:1700990

doi: 10.1002/mnfr.201700990
[44]

Jørgensen ME, Nour-Eldin HH, Halkier BA. 2015. Transport of defense compounds from source to sink: lessons learned from glucosinolates. Trends in Plant Science 20:508−14

doi: 10.1016/j.tplants.2015.04.006
[45]

Xu D, Sanden NCH, Hansen LL, Belew ZM, Madsen SR, et al. 2023. Export of defensive glucosinolates is key for their accumulation in seeds. Nature 617:132−38

doi: 10.1038/s41586-023-05969-x
[46]

He Y, Yang Z, Tang M, Yang QY, Zhang Y, et al. 2022. Enhancing canola breeding by editing a glucosinolate transporter gene lacking natural variation. Plant Physiology 188:1848−51

doi: 10.1093/plphys/kiac021
[47]

Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, et al. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 104:6478−83

doi: 10.1073/pnas.0611629104
[48]

Liu Y, Zhou X, Yan M, Wang P, Wang H, et al. 2020. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.). Theoretical and Applied Genetics 133:479−90

doi: 10.1007/s00122-019-03479-x
[49]

Sun F, Fan G, Hu Q, Zhou Y, Guan M, et al. 2017. The high‐quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. The Plant Journal 92:452−68

doi: 10.1111/tpj.13669
[50]

Lu G, Harper AL, Trick M, Morgan C, Fraser F, et al. 2014. Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus. DNA Research 21:613−25

doi: 10.1093/dnares/dsu024
[51]

Harper AL, Trick M, Higgins J, Fraser F, Clissold L, et al. 2012. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature Biotechnology 30:798−802

doi: 10.1038/nbt.2302
[52]

Long Y, Wang J, Wang Y, Zhang J, Wang J, et al. 2016. Comparative analysis of MYB28 homologs and development of a MYB28-specific marker in Brassica napus L. Molecular Breeding 36:126

doi: 10.1007/s11032-016-0551-2