[1]

Xie L, Cao X, Xu J, Zhang R. 2021. UAV-enabled wireless power transfer: a tutorial overview. IEEE Transactions on Green Communications and Networking 5:2042−64

doi: 10.1109/TGCN.2021.3093718
[2]

Cheah WC, Watson SA, Lennox B. 2019. Limitations of wireless power transfer technologies for mobile robots. Wireless Power Transfer 6:175−89

doi: 10.1017/wpt.2019.8
[3]

Zhou J, Guo K, Chen Z, Sun H, Hu S. 2020. Design considerations for contact-less underwater power delivery: a systematic review and critical analysis. Wireless Power Transfer 7:76−85

doi: 10.1017/wpt.2020.3
[4]

Shafiq Z, Li T, Xia J, Li S, Yang X, et al. 2024. Addressing EMI and EMF challenges in EV wireless charging with the alternating voltage phase coil. Actuators 13:324

doi: 10.3390/act13090324
[5]

Xiao Y, Wang Z, Shen L, Yao G, Wang G, et al. 2025. Control of the neutral point voltage balance in the hybrid three-level active neutral-point clamped inverter. IEEE Transactions on Power Electronics 40:6685−99

doi: 10.1109/TPEL.2025.3531516
[6]

Zhang Z, Pang H, Georgiadis A, Cecati C. 2019. Wireless power transfer—an overview. IEEE Transactions on Industrial Electronics 66:1044−58

doi: 10.1109/TIE.2018.2835378
[7]

Van Mulders J, Delabie D, Lecluyse C, Buyle C, Callebaut G, et al. 2022. Wireless power transfer: systems, circuits, standards, and use cases. Sensors 22:5573

doi: 10.3390/s22155573
[8]

Wang Y, Sun Z, Guan Y, Xu D. 2023. Overview of megahertz wireless power transfer. Proceedings of the IEEE 111:528−54

doi: 10.1109/JPROC.2023.3265689
[9]

Li W, Wang Q, Kang J, Wang Y. 2020. Energy-concentrating optimization based on energy distribution characteristics of MCR WPT systems with SS/PS compensation. IEEE Transactions on Industrial Electronics 67:10410−20

doi: 10.1109/TIE.2019.2958282
[10]

Chowdary KVVSR, Kumar K, Banerjee S, Kumar RR. 2020. Comparative analysis between high-order compensation and SS-compensation for dynamic wireless power transfer system. 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16−19 December, 2020. USA: IEEE. pp. 1−6 doi: 10.1109/pedes49360.2020.9379646

[11]

Venkatesan M, Narayanamoorthi R, AboRas KM, Emara A. 2024. Efficient bidirectional wireless power transfer system control using dual phase shift PWM technique for electric vehicle applications. IEEE Access 12:27739−55

doi: 10.1109/access.2024.3367437
[12]

Li S, Yu X, Yuan Y, Lu S, Li T. 2023. A novel high-voltage power supply with MHz WPT techniques: achieving high-efficiency, high-isolation, and high-power-density. IEEE Transactions on Power Electronics 38:14794−805

doi: 10.1109/TPEL.2023.3305054
[13]

Song S, Zhang W, Jin Z, Geng Q. 2020. Analysis of S-S resonance compensation circuit of electric vehicle wireless power transfer system. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October−1 November, 2020. USA: IEEE. pp. 619−22 doi: 10.1109/ei250167.2020.9347234

[14]

Bhavsingh B, Mangu B, Babu GS. 2022. Design and analysis of a high-efficiency dual side S-S compensation topology of inductive power transfer for EV battery charging system. 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), Hyderabad, India, 4−6 August, 2022. USA: IEEE. pp. 1−6 doi: 10.1109/SeFeT55524.2022.9908627

[15]

Xia J, Li S, Li T, Dai W, Liu Z, et al. 2025. An efficiency optimization method for doubled-sided LCC compensated inductive power transfer systems based on circuit parameter matching. IEEE Transactions on Power Electronics 40:6260−71

doi: 10.1109/TPEL.2024.3510730
[16]

Li T, Li S, Liu Z, Fang Y, Xiao Z, et al. 2024. Enhancing V2G applications: analysis and optimization of a CC/CV bidirectional IPT system with wide range ZVS. IEEE Transactions on Transportation Electrification 10:10182−96

doi: 10.1109/TTE.2024.3369079
[17]

Liu X, Wang Y, Chen H, Mai J, Xu D. 2022. A bidirectional WPT system using double-sided LCC compensation topology and full-bridge active rectifier. 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China, 28−31 October, 2022. USA: IEEE. pp. 1−7 doi: 10.1109/ITECAsia-Pacific56316.2022.9942062

[18]

Zhang Y, Yan Z, Liang Z, Li S, Mi CC. 2020. A high-power wireless charging system using LCL-N topology to achieve a compact and low-cost receiver. IEEE Transactions on Power Electronics 35:131−37

doi: 10.1109/TPEL.2019.2914363
[19]

Li Y, Sun P, Liang Y, Wu X, Sun J, et al. 2025. Research on rectifier fault diagnosis and self-protecting for inductive power transfer system with constant-current output. IEEE Transactions on Power Electronics 40:3750−69

doi: 10.1109/TPEL.2024.3484767
[20]

Shirasaki D, Fujimoto H. 2021. Novel synchronous rectification method for WPT only by DC current sensor. 2021 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), San Diego, CA, USA, 1−4 June, 2021. USA: IEEE. pp. 1−5 doi: 10.1109/wow51332.2021.9462875

[21]

Li S, Sun Z, Lu S, Liu Z, Li T, et al. 2025. A novel 16PIM energy modulation method for simultaneous wireless power and data transfer system. IEEE Transactions on Industrial Electronics 72:5268−78

doi: 10.1109/TIE.2024.3462968
[22]

Mai R, Liu Y, Li Y, Yue P, Cao G, et al. 2018. An active-rectifier-based maximum efficiency tracking method using an additional measurement coil for wireless power transfer. IEEE Transactions on Power Electronics 33:716−28

doi: 10.1109/TPEL.2017.2665040
[23]

Triviño A, Casaucao I, Castilla M. 2024. Flexible regulation of active and reactive power for a fully controllable V2G wireless charger. IEEE Transactions on Transportation Electrification 10:1070−79

doi: 10.1109/TTE.2023.3265189
[24]

Liu S, Mai R, Zhou L, Li Y, Hu J, et al. 2020. Dynamic improvement of inductive power transfer systems with maximum energy efficiency tracking using model predictive control: analysis and experimental verification. IEEE Transactions on Power Electronics 35:12752−64

doi: 10.1109/TPEL.2020.2992517
[25]

Li Y, Liu S, Zhu X, Hu J, Zhang M, et al. 2021. Extension of ZVS region of series–series WPT systems by an auxiliary variable inductor for improving efficiency. IEEE Transactions on Power Electronics 36:7513−25

doi: 10.1109/TPEL.2020.3042011
[26]

Kasper M, Burkart RM, Deboy G, Kolar JW. 2016. ZVS of power MOSFETs revisited. IEEE Transactions on Power Electronics 31:8063−67

doi: 10.1109/TPEL.2016.2574998
[27]

Wang L, Madawala UK, Zhang J, Wong MC. 2022. A new bidirectional wireless power transfer topology. IEEE Transactions on Industry Applications 58:1146−56

doi: 10.1109/TIA.2021.3097015
[28]

Jiang Y, Wang L, Wang Y, Liu J, Li X, et al. 2019. Analysis, design, and implementation of accurate ZVS angle control for EV battery charging in wireless high-power transfer. IEEE Transactions on Industrial Electronics 66:4075−85

doi: 10.1109/TIE.2018.2795523
[29]

Jiang Y, Wang L, Fang J, Zhao C, Wang K, et al. 2020. A joint control with variable ZVS angles for dynamic efficiency optimization in wireless power transfer system. IEEE Transactions on Power Electronics 35:11064−81

doi: 10.1109/TPEL.2020.2977849
[30]

Tang Y, Chen Y, Madawala UK, Thrimawithana DJ, Ma H. 2018. A new controller for bidirectional wireless power transfer systems. IEEE Transactions on Power Electronics 33:9076−87

doi: 10.1109/TPEL.2017.2785365
[31]

Hou R, Xu J, Chen D. 2017. A multivariable turn-on/turn-off switching loss scaling approach for high-voltage GaN HEMTs in a hard-switching half-bridge configuration. 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October 30−1 November, 2017. USA: IEEE. pp. 171−76 doi: 10.1109/WiPDA.2017.8170542

[32]

Hou R, Shen Y, Zhao H, Hu H, Lu J, et al. 2020. Power loss characterization and modeling for GaN-based hard-switching half-bridges considering dynamic on-state resistance. IEEE Transactions on Transportation Electrification 6:540−53

doi: 10.1109/TTE.2020.2989036
[33]

Wu J, Dai X, Gao R, Jiang J. 2021. A coupling mechanism with multidegree freedom for bidirectional multistage WPT system. IEEE Transactions on Power Electronics 36:1376−87

doi: 10.1109/TPEL.2020.3010955
[34]

Xu X, Cheng Y, Guan Y, Wang Y, Xu D. 2022. Research and design on series-compensated IPT systems based on synchronous rectification. 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, Guangdong, China, 4−7 November, 2022. USA: IEEE. pp. 968−72 doi: 10.1109/PEAC56338.2022.9959619

[35]

Oh SJ, Khan D, Jang BG, Basim M, Asif M, et al. 2021. A 15-W quadruple-mode reconfigurable bidirectional wireless power transceiver with 95% system efficiency for wireless charging applications. IEEE Transactions on Power Electronics 36:3814−27

doi: 10.1109/TPEL.2020.3024915
[36]

Liu M, Song J, Ma C. 2020. Active class E rectifier for DC output voltage regulation in megahertz wireless power transfer systems. IEEE Transactions on Industrial Electronics 67:3618−28

doi: 10.1109/TIE.2019.2920473
[37]

Wu S, Chang Z, Hou X, Wang J, Yang X. 2021. Portable wireless dimming system based on class E differential ZVS inverter and current-double synchronous rectifier. 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), Singapore, Singapore, 24−27 May, 2021. USA: IEEE. pp. 1126−31 doi: 10.1109/ecce-asia49820.2021.9479172