[1]

Wang J, Lu W, Tong Y, Yang Q. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science 7:250

doi: 10.3389/fpls.2016.00250
[2]

Li J, Yi C, Zhang C, Pan F, Xie C, et al. 2021. Effects of light quality on leaf growth and photosynthetic fluorescence of Brasenia schreberi seedlings. Heliyon 7:e06082

doi: 10.1016/j.heliyon.2021.e06082
[3]

Rahman MA, Lee SH, Park HS, Min CW, Woo JH, et al. 2025. Light quality plays a crucial role in regulating germination, photosynthetic efficiency, plant development, reactive oxygen species production, antioxidant enzyme activity, and nutrient acquisition in alfalfa. International Journal of Molecular Sciences 26(1):360

doi: 10.3390/ijms26010360
[4]

de Hsie BS, Bueno AIS, Bertolucci SKV, de Carvalho AA, da Cunha SHB, et al. 2019. Study of the influence of wavelengths and intensities of LEDs on the growth, photosynthetic pigment, and volatile compounds production of Lippia rotundifolia Cham in vitro. Journal of Photochemistry and Photobiology B: Biology 198:111577

doi: 10.1016/j.jphotobiol.2019.111577
[5]

Coelho AD, de Souza CK, Bertolucci SKV, de Carvalho AA, Santos GC, et al. 2021. Wavelength and light intensity enhance growth, phytochemical contents and antioxidant activity in micropropagated plantlets of Urtica dioica L. Plant Cell, Tissue and Organ Culture (PCTOC) 145(2):59−74

doi: 10.1007/s11240-020-01992-2
[6]

Shafiq I, Hussain S, Ali RAZA M, Iqbal N, Asghar MA, et al. 2021. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture 20:4−23

doi: 10.1016/S2095-3119(20)63227-0
[7]

Shao M, Liu W, Zhou C, Wang Q, Li B. 2022. Alternation of temporally overlapped red and blue light under continuous irradiation affected yield, antioxidant capacity and nutritional quality of purple-leaf lettuce. Scientia Horticulturae 295:110864

doi: 10.1016/j.scienta.2021.110864
[8]

Wang Z, Wang W, Zhao D, Song Y, Lin X, et al. 2024. Light-induced remodeling of phytochrome B enables signal transduction by phytochrome-interacting factor. Cell 187:6235−50

doi: 10.1016/j.cell.2024.09.005
[9]

Nhut DT, Tung HT, Tanaka M. 2018. Enhanced growth and development of Cymbidium and Phalaenopsis plantlets cultured in vitro under light-emitting diodes. In Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols. Springer Protocols Handbooks, eds. Lee YI, Yeung ET. New York, NY, USA: Humana Press. pp. 209–23 doi: 10.1007/978-1-4939-7771-0_10

[10]

Sumi MJ, Jahan N, Thamid SS, Tarik MEI, Hassannejad S, et al. 2025. LED light effect on growth, pigments, and antioxidants of lettuce (Lactuca sativa L.) baby greens. BMC Plant Biology 25(1):582

doi: 10.1186/s12870-025-06621-8
[11]

Hao Y, Zeng Z, Yuan M, Li H, Guo S, et al. 2025. The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense. Cell Host & Microbe 33(1):137−50

doi: 10.1016/j.chom.2024.12.003
[12]

Ying Q, Jones-Baumgardt C, Zheng Y, Bozzo G. 2021. The proportion of blue light from light-emitting diodes alters microgreen phytochemical profiles in a species-specific manner. HortScience 56:13−20

doi: 10.21273/hortsci15371-20
[13]

Zhang LX, Chang QS, Guo QS, Hou XG, Liu L, et al. 2023. Different light-quality colored films affect growth, photosynthesis, chloroplast ultrastructure, and triterpene acid accumulation in Glechoma longituba plants. Photosynthetica 61(3):264−74

doi: 10.32615/ps.2022.046
[14]

Wei Y, Wang S, Yu D. 2023. The role of light quality in regulating early seedling development. Plants 12(14):2746

doi: 10.3390/plants12142746
[15]

Yousef AF, Ali MM, Rizwan HM, Gad AG, Liang D. 2021. Light quality and quantity affect graft union formation of tomato plants. Scientific Reports 11:9870

doi: 10.1038/s41598-021-88971-5
[16]

Yan J, Liu J, Yang S, Jiang C, Liu Y, et al. 2023. Light quality regulates plant biomass and fruit quality through a photoreceptor-dependent HY5-LHC/CYCB module in tomato. Horticulture Research 10(12):uhad219

doi: 10.1093/hr/uhad219
[17]

Zhang Y, Zhu K, Wang X, Yan J, Zhu H, et al. 2025. Manipulation of artificial light environment improves plant biomass and fruit nutritional quality in tomato. Journal of Advanced Research 75:79−93

doi: 10.1016/j.jare.2024.11.030
[18]

Trumpler K, Wu BS, Addo PW, MacPherson S, Lefsrud M. 2024. Plant growth optimization using amber light supplemented with different blue light spectra. Horticulturae 10(10):1097

doi: 10.3390/horticulturae10101097
[19]

Zhao W, Liu W, Meng X, Jin N, Jin L, et al. 2025. Effects of spatial setting of LED light source on yield, quality, and water-use efficiency in greenhouse tomato. BMC Plant Biology 25:720

doi: 10.1186/s12870-025-06756-8
[20]

Nissim-Levi A, Kitron M, Nishri Y, Ovadia R, Forer I, et al. 2019. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium. Scientia Horticulturae 254:77−83

doi: 10.1016/j.scienta.2019.04.080
[21]

Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology 69:209−36

doi: 10.1146/annurev-arplant-042817-040322
[22]

Mittler R. 2017. ROS are good. Trends in Plant Science 22:11−19

doi: 10.1016/j.tplants.2016.08.002
[23]

Foyer CH, Hanke G. 2022. ROS production and signalling in chloroplasts: cornerstones and evolving concepts. The Plant Journal 111(3):642−61

doi: 10.1111/tpj.15856
[24]

Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23(2):104−19

doi: 10.1038/s41576-021-00413-0
[25]

Ding S, Jiang R, Lu Q, Wen X, Lu C. 2016. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857(6):665−77

doi: 10.1016/j.bbabio.2016.02.011
[26]

Shen W, Zhao H, Zhang S, Liu M, Liu C, et al. 2017. The establish of high frequency and regeneration system for philodendron 'Red Congo'. Genomics and Applied Biology 36(12):5244−49

doi: 10.13417/j.gab.036.005244
[27]

Xu P, Liu J, Zhang L. 2020. Effect of sucrose concentration on morphology and stomatal characteristics of Philodendron 'Con-go' test-tube seedlings. Molecular Plant Breeding 18(10):3382−87

doi: 10.13271/j.mpb.018.003382
[28]

Song Y, Shang W, Ma D, Wang Z, He SL, et al. 2022. Effect on the growth and photosynthetic characteristics of Anthurium andreanum ('pink Champion', 'Alabama') under hydroponic culture by different LED light spectra. Horticulturae 8:389

doi: 10.3390/horticulturae8050389
[29]

Song Y, Shang W, Wang Z, He S, Shi LY, et al. 2022. Effects of different light-emitting diode qualities on the growth and photosynthetic characteristics of Spathiphyllum floribundum. Canadian Journal of Plant Science 102:911−25

doi: 10.1139/cjps-2022-0026
[30]

Holm G. 2009. Chlorophyll mutation in barley. Hereditas 55:79−120

doi: 10.1111/j.1601-5223.1966.tb02038.x
[31]

Wu ZX, Xu NW, Yang M, Li XL, Han JL, et al. 2022. Responses of photosynthesis, antioxidant enzymes, and related gene expression to nicosulfuron stress in sweet maize (Zea mays L.). Environmental Science and Pollution Research 29(25):37248−65

doi: 10.1007/s11356-022-18641-0
[32]

Ryssov-Nielsen H. 1975. Measurement of the inhibition of respiration in activated sludge by a modified determination of the ttc dehydrogenase activity. Water Research 9:1179−85

doi: 10.1016/0043-1354(75)90118-9
[33]

Trevors JT, Knowles R. 1984. Electron transport system activity in soil, sediment, and pure cultures. CRC Critical Reviews in Microbiology 11:83−100

doi: 10.3109/10408418409105473
[34]

Clegg KM. 1956. The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture 7:40−44

doi: 10.1002/jsfa.2740070108
[35]

Zhao SJ, Liu HS, Dong XC. 1998. Experiment Guide of Plant Physiology. Beijing, China: Agricultural Science and Technology Press. pp. 98–99

[36]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[37]

He S, He D, Xu C, Zhao L, Chen Y. 2017. Effect of different LED light qualities on growth characteristics of tomato seedlings. Transactions of the Chinese Society for Agricultural Machinery 48(12):319−26

doi: 10.6041/j.issn.1000-1298.2017.12.039
[38]

Wang H, Gu M, Cui J, Shi K, Zhou Y, et al. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology 96:30−37

doi: 10.1016/j.jphotobiol.2009.03.010
[39]

Meng L, Xu Y, Song W, Wang C, Liu X, et al. 2015. Effects of red and blue monochromatic lights on growth, development and physiological characters of hydroponic tobacco seedlings. Acta Tabacaria Sinica 21(5):55−61

doi: 10.16472/j.chinatobacco.2015.001
[40]

Shang W, Wang Z, He S, Meng X, Song Y. 2017. Effect of light quality ratio and intensity of red/blue light on growth of Hemerocallis middendorfii plantlets in vitro. Journal of Northwest A & F University (Natural Science Edition) 45:90−96

doi: 10.13207/j.cnki.jnwafu.2017.07.010
[41]

Shi X, Wang Z, Man X, Liu X, Wang X. 2013. Effects of different light qualities on growth and development and photosynthetic physiological characteristics of flue-cured tobacco seedlings in flating system. Acta Tabacaria Sinica 1:43−46

doi: 10.3969/j.issn.1004-5708.2013.01.009
[42]

Qiao J, Hu W, Chen S, Cui H, Qi J, et al. 2025. Effect of LED lights on morphological construction and leaf photosynthesis of lettuce (Lactuca sativa L.). Horticulturae 11(1):43−43

doi: 10.3390/horticulturae11010043
[43]

Li Y, Xin G, Liu C, Shi Q, Yang F, et al. 2020. Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC Plant Biology 20(1):318

doi: 10.1186/s12870-020-02523-z
[44]

Murchie EH. 2017. Safety conscious or living dangerously: what is the 'right' level of plant photoprotection for fitness and productivity? Plant, Cell & Environment 40:1239−42

doi: 10.1111/pce.12965
[45]

Wang Y, Tong Y, Chu H, Chen X, Guo H, et al. 2017. Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale. Biologia 72:735−44

doi: 10.1515/biolog-2017-0081
[46]

Xu Y, Yang M, Cheng F, Liu S, Liang Y. 2020. Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biology 20:269

doi: 10.1186/s12870-020-02480-7
[47]

Zhang Y, Xiao X, Jin C, Dong J, Zhou S, et al. 2016. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sensing of Environment 183:154−69

doi: 10.1016/j.rse.2016.05.015
[48]

Zhang Y, Ye Z, Yang F, Zhang L, Nie S, et al. 2014. Effects of different light qualities on morphological and photosynthetic physiological parameters of soybean seedlings. Chinese Journal of Oil Crop Sciences 36(3):343−48

doi: 10.7505/j.issn.1007-9084.2014.03.008
[49]

Lin Y, Chen W, Huang X, Gao W, Ding F, et al. 2014. Effects of light quality on tobacco seedling growth and photosynthetic characteristics of leaves in a multilayer tray seedling system. Tobacco Science & Technology 2014(3):66−70

doi: 10.3969/j.issn.1002-0861.2014.03.015
[50]

Innes SN, Jakobsen SB, Røsåsen RB, Ali H, Solhaug KA, et al. 2025. Blue light is a key factor in regulating stomatal movement, transpiration rate and ABA metabolism under varying vapour pressure. Acta Physiologiae Plantarum 47:71

doi: 10.1007/s11738-025-03818-0
[51]

Yun F, Liu H, Deng Y, Hou X, Liao W. 2023. The role of light-regulated auxin signaling in root development. International Journal of Molecular Sciences 24(6):5253

doi: 10.3390/ijms24065253
[52]

Pu G, Liu S, Zhang Z. 2004. Effects of different light qualities on the growth and antioxidant enzyme activity of tomato seedlings. Journal of Anhui Agricultural Sciences 2004(5):971−972,975

doi: 10.13989/j.cnki.0517-6611.2004.05.065
[53]

Gao X, Li L, Guo W, Zhai Y, Wei X, et al. 2025. Intermittent blue light supplementation affected carbohydrate accumulation and sugar metabolism in red-light-grown tomato seedlings. Horticulturae 11:700

doi: 10.3390/horticulturae11060700
[54]

Gao B, Yang Z, Li W, Wang X, Ding J, et al. 2015. Effects of three different red and blue LED light ratios on growth and quality of celery. Acta Agriculturae Boreali-occidentalis Sinica 24(12):125−32

doi: 10.7606/j.issn.1004-1389.2015.12.018
[55]

Li Z, Chen Q, Xin Y, Mei Z, Gao A, et al. 2021. Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights. BMC Plant Biology 21:483

doi: 10.1186/s12870-021-03262-5
[56]

Wang Z, Liu WC, He SL, He D, Shang WQ, et al. 2018. Effect of different light quality ratios of LED red/blue light on growth and antioxidant enzyme activities of Photinia fraseri plantlets in vitro. Journal of Northwest A & F University (Natural Science Edition) 46:49−56

doi: 10.13207/j.cnki.jnwafu.2018.10.007
[57]

Wu H. 2021. Effect of LED light quality on the growth characteristics and nutritional quality of arugula. Master's Thesis. Northeast Agricultural University, Harbin, China. doi: 10.27010/d.cnki.gdbnu.2021.000201

[58]

Li J, Guo X, Zhang S, Zhang Y, Chen L, et al. 2022. Effects of light quality on growth, nutritional characteristics, and antioxidant properties of winter wheat seedlings (Triticum aestivum L.). Frontiers in Plant Science 13:978468

doi: 10.3389/fpls.2022.978468
[59]

Zorzi M, Gai F, Medana C, Aigotti R, Morello S, et al. 2020. Bioactive compounds and antioxidant capacity of small berries. Foods 9(5):623

doi: 10.3390/foods9050623