| [1] |
Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. 2015. The technology and biology of single-cell RNA sequencing. |
| [2] |
Han Y, Chu X, Yu H, Ma YK, Wang XJ, et al. 2017. Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells. |
| [3] |
Yin R, Xia K, Xu X. 2023. Spatial transcriptomics drives a new era in plant research. |
| [4] |
Svensson V, Vento-Tormo R, Teichmann SA. 2018. Exponential scaling of single-cell RNA-seq in the past decade. |
| [5] |
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009. mRNA-seq whole-transcriptome analysis of a single cell. |
| [6] |
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, et al. 2017. Massively parallel digital transcriptional profiling of single cells. |
| [7] |
Chen X, Love JC, Navin NE, Pachter L, Stubbington MJT, et al. 2016. Single-cell analysis at the threshold. |
| [8] |
Ungai-Salánki R, Gerecsei T, Fürjes P, Orgovan N, Sándor N, et al. 2016. Automated single cell isolation from suspension with computer vision. |
| [9] |
Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, et al. 1996. Laser capture microdissection. |
| [10] |
Herzenberg LA, Sweet RG, Herzenberg LA. 1976. Fluorescence-activated cell sorting. |
| [11] |
Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, et al. 2009. Droplet microfluidic technology for single-cell high-throughput screening. |
| [12] |
Ma J, Tran G, Wan AMD, Young EWK, Kumacheva E, et al. 2021. Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. |
| [13] |
Vijayakumar K, Gulati S, de Mello AJ, Edel JB. 2010. Rapid cell extraction in aqueous two-phase microdroplet systems. |
| [14] |
Rettig JR, Folch A. 2005. Large-scale single-cell trapping and imaging using microwell arrays. |
| [15] |
Han X, Wang R, Zhou Y, Fei L, Sun H, et al. 2018. Mapping the mouse cell atlas by microwell-seq. |
| [16] |
Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, et al. 2020. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. |
| [17] |
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, et al. 2014. Full-length RNA-seq from single cells using Smart-seq2. |
| [18] |
Ramsköld D, Luo S, Wang YC, Li R, Deng Q, et al. 2012. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. |
| [19] |
Xin Y, Kim J, Ni M, Wei Y, Okamoto H, et al. 2016. Use of the fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. |
| [20] |
Shum EY, Walczak EM, Chang C, Christina Fan H. 2019. Quantitation of mRNA transcripts and proteins using the BD rhapsodyTM single-cell analysis system. In Single Molecule and Single Cell Sequencing, ed. Suzuki Y. Vol. 1129. Singapore: Springer. pp. 63−79 doi: 10.1007/978-981-13-6037-4_5 |
| [21] |
Fan HC, Fu GK, Fodor SPA. 2015. Combinatorial labeling of single cells for gene expression cytometry. |
| [22] |
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. |
| [23] |
Crosetto N, Bienko M, van Oudenaarden A. 2015. Spatially resolved transcriptomics and beyond. |
| [24] |
Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, et al. 2017. Spatially resolved transcriptome profiling in model plant species. |
| [25] |
Brunskill EW, Potter AS, Distasio A, Dexheimer P, Plassard A, et al. 2014. A gene expression atlas of early craniofacial development. |
| [26] |
Shah S, Lubeck E, Zhou W, Cai L. 2016. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. |
| [27] |
Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. |
| [28] |
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. |
| [29] |
Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. |
| [30] |
Bawa G, Liu Z, Yu X, Tran LSP, Sun X. 2024. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape. |
| [31] |
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, et al. 2021. Integrated analysis of multimodal single-cell data. |
| [32] |
Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. 2021. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. |
| [33] |
Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, et al. 2022. Robust decomposition of cell type mixtures in spatial transcriptomics. |
| [34] |
Jin S, Plikus MV, Nie Q. 2025. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. |
| [35] |
Bai Y, Liu H, Lyu H, Su L, Xiong J, et al. 2022. Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single-cell RNA-seq. |
| [36] |
Liu C, Leng J, Li Y, Ge T, Li J, et al. 2022. A spatiotemporal atlas of organogenesis in the development of orchid flowers. |
| [37] |
Lyu X, Li P, Jin L, Yang F, Pucker B, et al. 2024. Tracing the evolutionary and genetic footprints of atmospheric tillandsioids transition from land to air. |
| [38] |
Sun S, Shen X, Li Y, Li Y, Wang S, et al. 2023. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. |
| [39] |
Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, et al. 2023. Single-cell multi-omics in the medicinal plant Catharanthus roseus. |
| [40] |
Zhao B, Gao Y, Ma Q, Wang X, Zhu JK, et al. 2024. Global dynamics and cytokinin participation of salt gland development trajectory in recretohalophyte Limonium bicolor. |
| [41] |
Wang H, Shemesh-Mayer E, Zhang J, Gao S, Zeng Z, et al. 2023. Genome resequencing reveals the evolutionary history of garlic reproduction traits. |
| [42] |
Gao S, Li F, Zeng Z, He Q, Mostafa HHA, et al. 2025. A single-cell transcriptomic atlas reveals the cell differentiation trajectory and the response to virus invasion in swelling clove of garlic. |
| [43] |
Zhao YL, Li Y, Guo DD, Chen XJ, Cao K, et al. 2025. Spatiotemporally transcriptomic analyses of floral buds reveal the high-resolution landscape of flower development and dormancy regulation in peach. |
| [44] |
Liu Q, Kang J, Du L, Liu Z, Liang H, et al. 2025. Single-cell multiome reveals root hair‐specific responses to salt stress. |
| [45] |
Sun X, Feng D, Liu M, Qin R, Li Y, et al. 2022. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. |
| [46] |
Guo X, Liang J, Lin R, Zhang L, Zhang Z, et al. 2022. Single-cell transcriptome reveals differentiation between adaxial and abaxial mesophyll cells in Brassica rapa. |
| [47] |
Guo X, Yuan J, Zhang Y, Wu J, Wang X. 2025. Developmental landscape and asymmetric gene expression in the leaf vasculature of Brassica rapa revealed by single-cell transcriptome. |
| [48] |
Zhang Z, Cai X, Liang J, Liu J, Guo J, et al. 2025. Time-resolved single-cell atlas identifies the spatiotemporal transcription dynamics in vernalization response in Brassica rapa. |
| [49] |
Wang Q, Wu Y, Peng A, Cui J, Zhao M, et al. 2022. Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves. |
| [50] |
Lin S, Zhang Y, Zhang S, Wei Y, Han M, et al. 2024. Root-specific theanine metabolism and regulation at the single-cell level in tea plants (Camellia sinensis). |
| [51] |
Wang S, Zhang C, Li Y, Li R, Du K, et al. 2024. ScRNA-seq reveals the spatiotemporal distribution of camptothecin pathway and transposon activity in Camptotheca acuminata shoot apexes and leaves. |
| [52] |
Dong Z, Liu X, Guo X, Liu X, Wang B, et al. 2025. Developmental innovation of inferior ovaries and flower sex orchestrated by KNOX1 in cucurbits. |
| [53] |
Wang J, Zhou Y, Zhang M, Li X, Liu T, et al. 2025. Resolving floral development dynamics using genome and single-cell temporal transcriptome of Dendrobium devonianum. |
| [54] |
Zhang S, Zhu C, Zhang X, Liu M, Xue X, et al. 2023. Single-cell RNA sequencing analysis of the embryogenic callus clarifies the spatiotemporal developmental trajectories of the early somatic embryo in Dimocarpus longan. |
| [55] |
Liu A, Qu C, Ling W, Wang T, Zhang Y, et al. 2025. A model for the adaptation of Euryale ferox leaves to aquatic environments through EfCGT1-controlled flavonoid C-glycoside-specific accumulation in epidermis cells. |
| [56] |
Li X, Li B, Gu S, Pang X, Mason P, et al. 2024. Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence. |
| [57] |
Shen C, Huang BF, Liao Q, Chen KF, Xin JL, et al. 2025. Uncovering differences in cadmium accumulation capacity of different Ipomoea aquatica cultivars at the level of root cell types. |
| [58] |
Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, et al. 2023. Single-cell transcriptomics unveils xylem cell development and evolution. |
| [59] |
Yang MC, Wu ZC, Chen RY, Abbas F, Hu GB, et al. 2023. Single-nucleus RNA sequencing and mRNA hybridization indicate key bud events and LcFT1 and LcTFL1-2 mRNA transportability during floral transition in litchi. |
| [60] |
Cheng Z, Mu C, Li X, Cheng W, Cai M, et al. 2023. Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of moso bamboo (Phyllostachys edulis). |
| [61] |
Guo Y, Chen X, Li J, Wang Q, Zhang S, et al. 2024. Single-cell RNA sequencing reveals a high-resolution cell atlas of petals in Prunus mume at different flowering development stages. |
| [62] |
Li X, Siman Y, Zhao Y, Peng L, Wu H, et al. 2025. Single-cell transcriptomic analyses reveal cellular and molecular patterns of rose petal responses to gray mold infection. |
| [63] |
Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, et al. 2022. A conserved superlocus regulates above- and belowground root initiation. |
| [64] |
Song X, Guo P, Xia K, Wang M, Liu Y, et al. 2023. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. |
| [65] |
Yue H, Chen G, Zhang Z, Guo Z, Zhang Z, et al. 2024. Single-cell transcriptome landscape elucidates the cellular and developmental responses to tomato chlorosis virus infection in tomato leaf. |
| [66] |
You C, Yang H, Zhao Y, Wang X, Wei S, et al. 2025. Spatiotemporal transcriptomic atlas reveals the regulatory mechanisms underlying early inflorescence development and sex differentiation in spinach. |
| [67] |
Zhan X, Qiu T, Zhang H, Hou K, Liang X, et al. 2023. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. |
| [68] |
Yu C, Hou K, Zhang H, Liang X, Chen C, et al. 2023. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. |
| [69] |
Grones C, Eekhout T, Shi D, Neumann M, Berg LS, et al. 2024. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. |
| [70] |
Zhang J, Ahmad M, Gao H. 2023. Application of single-cell multi-omics approaches in horticulture research. |
| [71] |
Rhaman MS, Ali M, Ye W, Li B. 2024. Opportunities and challenges in advancing plant research with single-cell omics. |
| [72] |
Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. 2016. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. |
| [73] |
Cui Y, Su Y, Bian J, Han X, Guo H, et al. 2024. Single-nucleus RNA and ATAC sequencing analyses provide molecular insights into early pod development of peanut fruit. |
| [74] |
Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, et al. 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. |
| [75] |
Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. |
| [76] |
Li Y, Ma H, Wu Y, Ma Y, Yang J, et al. 2024. Single-cell transcriptome atlas and regulatory dynamics in developing cotton anthers. |
| [77] |
Liu H, Guo Z, Gangurde SS, Garg V, Deng Q, et al. 2024. A single-nucleus resolution atlas of transcriptome and chromatin accessibility for peanut (Arachis hypogaea L.) leaves. |
| [78] |
Liu Q, Ma W, Chen R, Li S, Wang Q, et al. 2024. Multiome in the same cell reveals the impact of osmotic stress on Arabidopsis root tip development at single‐cell level. |
| [79] |
Wang D, Hu X, Ye H, Wang Y, Yang Q, et al. 2023. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. |
| [80] |
Zhang L, He C, Lai Y, Wang Y, Kang L, et al. 2023. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. |
| [81] |
Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW. 2021. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. |
| [82] |
Potts J, Li H, Qin Y, Wu X, Hui D, et al. 2022. Using single cell type proteomics to identify Al-induced proteomes in outer layer cells and interior tissues in the apical meristem/cell division regions of tomato root-tips. |
| [83] |
Zenobi R. 2013. Single-cell metabolomics: analytical and biological perspectives. |
| [84] |
Ma S, Leng Y, Li X, Meng Y, Yin Z, et al. 2023. High spatial resolution mass spectrometry imaging for spatial metabolomics: advances, challenges, and future perspectives. |
| [85] |
Wang J, Yang E, Chaurand P, Raghavan V. 2021. Visualizing the distribution of strawberry plant metabolites at different maturity stages by MALDI-TOF imaging mass spectrometry. |
| [86] |
Li B, Neumann EK, Ge J, Gao W, Yang H, et al. 2018. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. |
| [87] |
Li B, Ge J, Liu W, Hu D, Li P. 2021. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging. |
| [88] |
Fu M, Tian L, Zheng D, Gao Y, Sun C, et al. 2024. Visualization of metabolite distribution based on matrix-assisted laser desorption/ionization–mass spectrometry imaging of tea seedlings (Camellia sinensis). |
| [89] |
Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. |
| [90] |
Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. |
| [91] |
Jones JDG, Dangl JL. 2006. The plant immune system. |
| [92] |
Jia H, Zhang Y, Orbović V, Xu J, White FF, et al. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. |
| [93] |
Li P, Liu Q, Wei Y, Xing C, Xu Z, et al. 2024. Transcriptional landscape of cotton roots in response to salt stress at single-cell resolution. |
| [94] |
Feng Y, Zhao Y, Ma Y, Liu D, Shi H. 2023. Single-cell transcriptome analyses reveal cellular and molecular responses to low nitrogen in burley tobacco leaves. |
| [95] |
Chen X, Ru Y, Takahashi H, Nakazono M, Shabala S, et al. 2024. Single-cell transcriptomic analysis of pea shoot development and cell-type-specific responses to boron deficiency. |
| [96] |
Ye Q, Zhu F, Sun F, Wang TC, Wu J, et al. 2022. Differentiation trajectories and biofunctions of symbiotic and un-symbiotic fate cells in root nodules of Medicago truncatula. |
| [97] |
Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, et al. 2024. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. |
| [98] |
Zheng T, Li P, Li L, Zhang Q. 2021. Research advances in and prospects of ornamental plant genomics. |