[1]

Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. 2015. The technology and biology of single-cell RNA sequencing. Molecular Cell 58(4):610−20

doi: 10.1016/j.molcel.2015.04.005
[2]

Han Y, Chu X, Yu H, Ma YK, Wang XJ, et al. 2017. Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells. Science Bulletin 62(19):1304−14

doi: 10.1016/j.scib.2017.09.011
[3]

Yin R, Xia K, Xu X. 2023. Spatial transcriptomics drives a new era in plant research. The Plant Journal 116(6):1571−81

doi: 10.1111/tpj.16437
[4]

Svensson V, Vento-Tormo R, Teichmann SA. 2018. Exponential scaling of single-cell RNA-seq in the past decade. Nature Protocols 13(4):599−604

doi: 10.1038/nprot.2017.149
[5]

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009. mRNA-seq whole-transcriptome analysis of a single cell. Nature Methods 6:377−82

doi: 10.1038/nmeth.1315
[6]

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nature Communications 8:14049

doi: 10.1038/ncomms14049
[7]

Chen X, Love JC, Navin NE, Pachter L, Stubbington MJT, et al. 2016. Single-cell analysis at the threshold. Nature Biotechnology 34:1111−18

doi: 10.1038/nbt.3721
[8]

Ungai-Salánki R, Gerecsei T, Fürjes P, Orgovan N, Sándor N, et al. 2016. Automated single cell isolation from suspension with computer vision. Scientific Reports 6:20375

doi: 10.1038/srep20375
[9]

Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, et al. 1996. Laser capture microdissection. Science 274:998−1001

doi: 10.1126/science.274.5289.998
[10]

Herzenberg LA, Sweet RG, Herzenberg LA. 1976. Fluorescence-activated cell sorting. Scientific American 234(3):108−17

doi: 10.1038/scientificamerican0376-108
[11]

Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, et al. 2009. Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences of the United States of America 106(34):14195−200

doi: 10.1073/pnas.0903542106
[12]

Ma J, Tran G, Wan AMD, Young EWK, Kumacheva E, et al. 2021. Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Scientific Reports 11(1):6777

doi: 10.1038/s41598-021-86087-4
[13]

Vijayakumar K, Gulati S, de Mello AJ, Edel JB. 2010. Rapid cell extraction in aqueous two-phase microdroplet systems. Chemical Science 1(4):447−52

doi: 10.1039/C0SC00229A
[14]

Rettig JR, Folch A. 2005. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry 77(17):5628−34

doi: 10.1021/ac0505977
[15]

Han X, Wang R, Zhou Y, Fei L, Sun H, et al. 2018. Mapping the mouse cell atlas by microwell-seq. Cell 172(5):1091−1107. e17

doi: 10.1016/j.cell.2018.02.001
[16]

Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, et al. 2020. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nature Biotechnology 38:708−14

doi: 10.1038/s41587-020-0497-0
[17]

Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, et al. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols 9:171−81

doi: 10.1038/nprot.2014.006
[18]

Ramsköld D, Luo S, Wang YC, Li R, Deng Q, et al. 2012. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology 30:777−82

doi: 10.1038/nbt.2282
[19]

Xin Y, Kim J, Ni M, Wei Y, Okamoto H, et al. 2016. Use of the fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proceedings of the National Academy of Sciences of the United States of America 113(12):3293−98

doi: 10.1073/pnas.1602306113
[20]

Shum EY, Walczak EM, Chang C, Christina Fan H. 2019. Quantitation of mRNA transcripts and proteins using the BD rhapsodyTM single-cell analysis system. In Single Molecule and Single Cell Sequencing, ed. Suzuki Y. Vol. 1129. Singapore: Springer. pp. 63−79 doi: 10.1007/978-981-13-6037-4_5

[21]

Fan HC, Fu GK, Fodor SPA. 2015. Combinatorial labeling of single cells for gene expression cytometry. Science 347(6222):1258367

doi: 10.1126/science.1258367
[22]

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202−14

doi: 10.1016/j.cell.2015.05.002
[23]

Crosetto N, Bienko M, van Oudenaarden A. 2015. Spatially resolved transcriptomics and beyond. Nature Reviews Genetics 16:57−66

doi: 10.1038/nrg3832
[24]

Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, et al. 2017. Spatially resolved transcriptome profiling in model plant species. Nature Plants 3(6):17061

doi: 10.1038/nplants.2017.61
[25]

Brunskill EW, Potter AS, Distasio A, Dexheimer P, Plassard A, et al. 2014. A gene expression atlas of early craniofacial development. Developmental Biology 391(2):133−46

doi: 10.1016/j.ydbio.2014.04.016
[26]

Shah S, Lubeck E, Zhou W, Cai L. 2016. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92(2):342−57

doi: 10.1016/j.neuron.2016.10.001
[27]

Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353(6294):78−82

doi: 10.1126/science.aaf2403
[28]

Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363(6434):1463−67

doi: 10.1126/science.aaw1219
[29]

Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185(10):1777−1792.e21

doi: 10.1016/j.cell.2022.04.003
[30]

Bawa G, Liu Z, Yu X, Tran LSP, Sun X. 2024. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape. Trends in Plant Science 29(2):249−65

doi: 10.1016/j.tplants.2023.10.002
[31]

Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, et al. 2021. Integrated analysis of multimodal single-cell data. Cell 184(13):3573−3587.e29

doi: 10.1016/j.cell.2021.04.048
[32]

Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. 2021. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Research 49(9):e50

doi: 10.1093/nar/gkab043
[33]

Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, et al. 2022. Robust decomposition of cell type mixtures in spatial transcriptomics. Nature Biotechnology 40:517−26

doi: 10.1038/s41587-021-00830-w
[34]

Jin S, Plikus MV, Nie Q. 2025. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. Nature Protocols 20:180−219

doi: 10.1038/s41596-024-01045-4
[35]

Bai Y, Liu H, Lyu H, Su L, Xiong J, et al. 2022. Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single-cell RNA-seq. Horticulture Research 9:uhab055

doi: 10.1093/hr/uhab055
[36]

Liu C, Leng J, Li Y, Ge T, Li J, et al. 2022. A spatiotemporal atlas of organogenesis in the development of orchid flowers. Nucleic Acids Research 50(17):9724−37

doi: 10.1093/nar/gkac773
[37]

Lyu X, Li P, Jin L, Yang F, Pucker B, et al. 2024. Tracing the evolutionary and genetic footprints of atmospheric tillandsioids transition from land to air. Nature Communications 15:9599

doi: 10.1038/s41467-024-53756-7
[38]

Sun S, Shen X, Li Y, Li Y, Wang S, et al. 2023. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. Nature Plants 9:179−90

doi: 10.1038/s41477-022-01291-y
[39]

Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, et al. 2023. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nature Chemical Biology 19:1031−41

doi: 10.1038/s41589-023-01327-0
[40]

Zhao B, Gao Y, Ma Q, Wang X, Zhu JK, et al. 2024. Global dynamics and cytokinin participation of salt gland development trajectory in recretohalophyte Limonium bicolor. Plant Physiology 195(3):2094−110

doi: 10.1093/plphys/kiae199
[41]

Wang H, Shemesh-Mayer E, Zhang J, Gao S, Zeng Z, et al. 2023. Genome resequencing reveals the evolutionary history of garlic reproduction traits. Horticulture Research 10(11):uhad208

doi: 10.1093/hr/uhad208
[42]

Gao S, Li F, Zeng Z, He Q, Mostafa HHA, et al. 2025. A single-cell transcriptomic atlas reveals the cell differentiation trajectory and the response to virus invasion in swelling clove of garlic. Horticulture Research 12(4):uhae365

doi: 10.1093/hr/uhae365
[43]

Zhao YL, Li Y, Guo DD, Chen XJ, Cao K, et al. 2025. Spatiotemporally transcriptomic analyses of floral buds reveal the high-resolution landscape of flower development and dormancy regulation in peach. Horticulture Research 12(5):uhaf029

doi: 10.1093/hr/uhaf029
[44]

Liu Q, Kang J, Du L, Liu Z, Liang H, et al. 2025. Single-cell multiome reveals root hair‐specific responses to salt stress. New Phytologist 246(6):2634−51

doi: 10.1111/nph.70160
[45]

Sun X, Feng D, Liu M, Qin R, Li Y, et al. 2022. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biology 23:262

doi: 10.1186/s13059-022-02834-4
[46]

Guo X, Liang J, Lin R, Zhang L, Zhang Z, et al. 2022. Single-cell transcriptome reveals differentiation between adaxial and abaxial mesophyll cells in Brassica rapa. Plant Biotechnology Journal 20(12):2233−35

doi: 10.1111/pbi.13919
[47]

Guo X, Yuan J, Zhang Y, Wu J, Wang X. 2025. Developmental landscape and asymmetric gene expression in the leaf vasculature of Brassica rapa revealed by single-cell transcriptome. Horticulture Research 12(6):uhaf060

doi: 10.1093/hr/uhaf060
[48]

Zhang Z, Cai X, Liang J, Liu J, Guo J, et al. 2025. Time-resolved single-cell atlas identifies the spatiotemporal transcription dynamics in vernalization response in Brassica rapa. Cell Reports 44(5):115725

doi: 10.1016/j.celrep.2025.115725
[49]

Wang Q, Wu Y, Peng A, Cui J, Zhao M, et al. 2022. Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves. Plant Biotechnology Journal 20(11):2089−106

doi: 10.1111/pbi.13891
[50]

Lin S, Zhang Y, Zhang S, Wei Y, Han M, et al. 2024. Root-specific theanine metabolism and regulation at the single-cell level in tea plants (Camellia sinensis). eLife 13:RP95891

doi: 10.7554/eLife.95891
[51]

Wang S, Zhang C, Li Y, Li R, Du K, et al. 2024. ScRNA-seq reveals the spatiotemporal distribution of camptothecin pathway and transposon activity in Camptotheca acuminata shoot apexes and leaves. Physiologia Plantarum 176(5):e14508

doi: 10.1111/ppl.14508
[52]

Dong Z, Liu X, Guo X, Liu X, Wang B, et al. 2025. Developmental innovation of inferior ovaries and flower sex orchestrated by KNOX1 in cucurbits. Nature Plants 11:861−77

doi: 10.1038/s41477-025-01950-w
[53]

Wang J, Zhou Y, Zhang M, Li X, Liu T, et al. 2025. Resolving floral development dynamics using genome and single-cell temporal transcriptome of Dendrobium devonianum. Plant Biotechnology Journal 23(8):2997−3011

doi: 10.1111/pbi.70094
[54]

Zhang S, Zhu C, Zhang X, Liu M, Xue X, et al. 2023. Single-cell RNA sequencing analysis of the embryogenic callus clarifies the spatiotemporal developmental trajectories of the early somatic embryo in Dimocarpus longan. The Plant Journal 115(5):1277−97

doi: 10.1111/tpj.16319
[55]

Liu A, Qu C, Ling W, Wang T, Zhang Y, et al. 2025. A model for the adaptation of Euryale ferox leaves to aquatic environments through EfCGT1-controlled flavonoid C-glycoside-specific accumulation in epidermis cells. Plant Biotechnology Journal 23(8):3333−48

doi: 10.1111/pbi.70155
[56]

Li X, Li B, Gu S, Pang X, Mason P, et al. 2024. Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence. Nature Communications 15:3108

doi: 10.1038/s41467-024-47329-x
[57]

Shen C, Huang BF, Liao Q, Chen KF, Xin JL, et al. 2025. Uncovering differences in cadmium accumulation capacity of different Ipomoea aquatica cultivars at the level of root cell types. Horticulture Research 12(6):uhaf077

doi: 10.1093/hr/uhaf077
[58]

Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, et al. 2023. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biology 24:3

doi: 10.1186/s13059-022-02845-1
[59]

Yang MC, Wu ZC, Chen RY, Abbas F, Hu GB, et al. 2023. Single-nucleus RNA sequencing and mRNA hybridization indicate key bud events and LcFT1 and LcTFL1-2 mRNA transportability during floral transition in litchi. Journal of Experimental Botany 74(12):3613−29

doi: 10.1093/jxb/erad103
[60]

Cheng Z, Mu C, Li X, Cheng W, Cai M, et al. 2023. Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of moso bamboo (Phyllostachys edulis). Horticulture Research 10(8):uhad122

doi: 10.1093/hr/uhad122
[61]

Guo Y, Chen X, Li J, Wang Q, Zhang S, et al. 2024. Single-cell RNA sequencing reveals a high-resolution cell atlas of petals in Prunus mume at different flowering development stages. Horticulture Research 11(9):uhae189

doi: 10.1093/hr/uhae189
[62]

Li X, Siman Y, Zhao Y, Peng L, Wu H, et al. 2025. Single-cell transcriptomic analyses reveal cellular and molecular patterns of rose petal responses to gray mold infection. Horticulture Research 12(9):uhaf152

doi: 10.1093/hr/uhaf152
[63]

Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, et al. 2022. A conserved superlocus regulates above- and belowground root initiation. Science 375(6584):eabf4368

doi: 10.1126/science.abf4368
[64]

Song X, Guo P, Xia K, Wang M, Liu Y, et al. 2023. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Proceedings of the National Academy of Sciences of the United States of America 120(38):e2310163120

doi: 10.1073/pnas.2310163120
[65]

Yue H, Chen G, Zhang Z, Guo Z, Zhang Z, et al. 2024. Single-cell transcriptome landscape elucidates the cellular and developmental responses to tomato chlorosis virus infection in tomato leaf. Plant, Cell & Environment 47(7):2658−72

doi: 10.1111/pce.14906
[66]

You C, Yang H, Zhao Y, Wang X, Wei S, et al. 2025. Spatiotemporal transcriptomic atlas reveals the regulatory mechanisms underlying early inflorescence development and sex differentiation in spinach. Advanced Science 12:e07818

doi: 10.1002/advs.202507818
[67]

Zhan X, Qiu T, Zhang H, Hou K, Liang X, et al. 2023. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. Plant Communications 4(5):100630

doi: 10.1016/j.xplc.2023.100630
[68]

Yu C, Hou K, Zhang H, Liang X, Chen C, et al. 2023. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. The Plant Journal 115(5):1243−60

doi: 10.1111/tpj.16315
[69]

Grones C, Eekhout T, Shi D, Neumann M, Berg LS, et al. 2024. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. The Plant Cell 36(4):812−28

doi: 10.1093/plcell/koae003
[70]

Zhang J, Ahmad M, Gao H. 2023. Application of single-cell multi-omics approaches in horticulture research. Molecular Horticulture 3:18

doi: 10.1186/s43897-023-00067-y
[71]

Rhaman MS, Ali M, Ye W, Li B. 2024. Opportunities and challenges in advancing plant research with single-cell omics. Genomics, Proteomics & Bioinformatics 22(2):qzae026

doi: 10.1093/gpbjnl/qzae026
[72]

Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. 2016. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biology 17:72

doi: 10.1186/s13059-016-0944-x
[73]

Cui Y, Su Y, Bian J, Han X, Guo H, et al. 2024. Single-nucleus RNA and ATAC sequencing analyses provide molecular insights into early pod development of peanut fruit. Plant Communications 5(8):100979

doi: 10.1016/j.xplc.2024.100979
[74]

Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, et al. 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nature Communications 12:3334

doi: 10.1038/s41467-021-23675-y
[75]

Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Molecular Plant 14(3):372−83

doi: 10.1016/j.molp.2021.01.001
[76]

Li Y, Ma H, Wu Y, Ma Y, Yang J, et al. 2024. Single-cell transcriptome atlas and regulatory dynamics in developing cotton anthers. Advanced Science 11(3):2304017

doi: 10.1002/advs.202304017
[77]

Liu H, Guo Z, Gangurde SS, Garg V, Deng Q, et al. 2024. A single-nucleus resolution atlas of transcriptome and chromatin accessibility for peanut (Arachis hypogaea L.) leaves. Advanced Biology 8(1):2300410

doi: 10.1002/adbi.202300410
[78]

Liu Q, Ma W, Chen R, Li S, Wang Q, et al. 2024. Multiome in the same cell reveals the impact of osmotic stress on Arabidopsis root tip development at single‐cell level. Advanced Science 11(24):2308384

doi: 10.1002/advs.202308384
[79]

Wang D, Hu X, Ye H, Wang Y, Yang Q, et al. 2023. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biology 24:49

doi: 10.1186/s13059-023-02886-0
[80]

Zhang L, He C, Lai Y, Wang Y, Kang L, et al. 2023. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biology 24:65

doi: 10.1186/s13059-023-02908-x
[81]

Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW. 2021. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nature Communications 12:2053

doi: 10.1038/s41467-021-22352-4
[82]

Potts J, Li H, Qin Y, Wu X, Hui D, et al. 2022. Using single cell type proteomics to identify Al-induced proteomes in outer layer cells and interior tissues in the apical meristem/cell division regions of tomato root-tips. Journal of Proteomics 255:104486

doi: 10.1016/j.jprot.2022.104486
[83]

Zenobi R. 2013. Single-cell metabolomics: analytical and biological perspectives. Science 342(6163):1243259

doi: 10.1126/science.1243259
[84]

Ma S, Leng Y, Li X, Meng Y, Yin Z, et al. 2023. High spatial resolution mass spectrometry imaging for spatial metabolomics: advances, challenges, and future perspectives. TrAC Trends in Analytical Chemistry 159:116902

doi: 10.1016/j.trac.2022.116902
[85]

Wang J, Yang E, Chaurand P, Raghavan V. 2021. Visualizing the distribution of strawberry plant metabolites at different maturity stages by MALDI-TOF imaging mass spectrometry. Food Chemistry 345:128838

doi: 10.1016/j.foodchem.2020.128838
[86]

Li B, Neumann EK, Ge J, Gao W, Yang H, et al. 2018. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant, Cell & Environment 41(11):2693−703

doi: 10.1111/pce.13395
[87]

Li B, Ge J, Liu W, Hu D, Li P. 2021. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging. New Phytologist 231(2):892−902

doi: 10.1111/nph.17393
[88]

Fu M, Tian L, Zheng D, Gao Y, Sun C, et al. 2024. Visualization of metabolite distribution based on matrix-assisted laser desorption/ionization–mass spectrometry imaging of tea seedlings (Camellia sinensis). Horticulture Research 11(10):uhae218

doi: 10.1093/hr/uhae218
[89]

Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants 7:1453−60

doi: 10.1038/s41477-021-01015-8
[90]

Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37

doi: 10.1038/353031a0
[91]

Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29

doi: 10.1038/nature05286
[92]

Jia H, Zhang Y, Orbović V, Xu J, White FF, et al. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15(7):817−23

doi: 10.1111/pbi.12677
[93]

Li P, Liu Q, Wei Y, Xing C, Xu Z, et al. 2024. Transcriptional landscape of cotton roots in response to salt stress at single-cell resolution. Plant Communications 5(2):100740

doi: 10.1016/j.xplc.2023.100740
[94]

Feng Y, Zhao Y, Ma Y, Liu D, Shi H. 2023. Single-cell transcriptome analyses reveal cellular and molecular responses to low nitrogen in burley tobacco leaves. Physiologia Plantarum 175(6):e14118

doi: 10.1111/ppl.14118
[95]

Chen X, Ru Y, Takahashi H, Nakazono M, Shabala S, et al. 2024. Single-cell transcriptomic analysis of pea shoot development and cell-type-specific responses to boron deficiency. The Plant Journal 117(1):302−22

doi: 10.1111/tpj.16487
[96]

Ye Q, Zhu F, Sun F, Wang TC, Wu J, et al. 2022. Differentiation trajectories and biofunctions of symbiotic and un-symbiotic fate cells in root nodules of Medicago truncatula. Molecular Plant 15(12):1852−67

doi: 10.1016/j.molp.2022.10.019
[97]

Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, et al. 2024. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. Nature Plants 10:673−88

doi: 10.1038/s41477-024-01666-3
[98]

Zheng T, Li P, Li L, Zhang Q. 2021. Research advances in and prospects of ornamental plant genomics. Horticulture Research 8:65

doi: 10.1038/s41438-021-00499-x