[1]

Liedtke WB. 2017. Deconstructing mammalian thermoregulation. Proceedings of the National Academy of Sciences of the United States of America 114:1765−1767

doi: 10.1073/pnas.1620579114
[2]

Nicholls DG. 2006. The physiological regulation of uncoupling proteins. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1757:459−466

doi: 10.1016/j.bbabio.2006.02.005
[3]

Divakaruni AS, Brand MD. 2011. The regulation and physiology of mitochondrial proton leak. Physiology 26:192−205

doi: 10.1152/physiol.00046.2010
[4]

Dieckmann S, Strohmeyer A, Willershäuser M, Maurer SF, Wurst W, et al. 2022. Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1. American Journal Physiology-Endocrinology and Metabolism 322:E85−E100

doi: 10.1152/ajpendo.00278.2021
[5]

Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, et al. 1997. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90−94

doi: 10.1038/387090a0
[6]

Sun Q, Cui X, Yin D, Li J, Li J, et al. 2025. Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation. Journal of Physiology and Biochemistry 81:521−537

doi: 10.1007/s13105-025-01090-x
[7]

Cohen P, Kajimura S. 2021. The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology 22:393−409

doi: 10.1038/s41580-021-00350-0
[8]

Simcox J, Geoghegan G, Maschek JA, Bensard CL, Pasquali M, et al. 2017. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metabolism 26:509−522.e6

doi: 10.1016/j.cmet.2017.08.006
[9]

Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, et al. 2017. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Medicine 23:1454−1465

doi: 10.1038/nm.4429
[10]

Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, et al. 2015. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163:643−655

doi: 10.1016/j.cell.2015.09.035
[11]

Liu X, He A, Lu D, Hu D, Tan M, et al. 2025. Peroxisomal metabolism of branched fatty acids regulates energy homeostasis. Nature 646:1223−1231

doi: 10.1038/s41586-025-09517-7
[12]

Chouchani ET, Kazak L, Spiegelman BM. 2019. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metabolism 29:27−37

doi: 10.1016/j.cmet.2018.11.002
[13]

Wallace M, Green CR, Roberts LS, Lee YM, McCarville JL, et al. 2018. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nature Chemical Biology 14:1021−1031

doi: 10.1038/s41589-018-0132-2
[14]

Liu H, Liu JY, Wu X, Zhang JT. 2010. Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. International Journal of Biochemistry and Molecular Biology 1:69−89

[15]

Hillebrand M, Gersting SW, Lotz-Havla AS, Schäfer A, Rosewich H, et al. 2012. Identification of a new fatty acid synthesis-transport machinery at the peroxisomal membrane. Journal of Biological Chemistry 287:210−221

doi: 10.1074/jbc.M111.272732
[16]

Tawbeh A, Gondcaille C, Trompier D, Savary S. 2021. Peroxisomal ABC transporters: an update. International Journal of Molecular Sciences 22:6093

[17]

Rajbhandari P, Neelakantan TV, Hosny N, Stockwell BR. 2024. Spatial pharmacology using mass spectrometry imaging. Trends in Pharmacological Sciences 45:67−80

doi: 10.1016/j.tips.2023.11.003
[18]

Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. 2023. The physiological functions of human peroxisomes. Physiological Reviews 103:957−1024

doi: 10.1152/physrev.00051.2021
[19]

Vilarinho S, Sari S, Mazzacuva F, Bilgüvar K, Esendagli-Yilmaz G, et al. 2016. ACOX2 deficiency: a disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America 113:11289−11293

doi: 10.1073/pnas.1613228113
[20]

Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829−839

doi: 10.1016/S0092-8674(00)81410-5
[21]

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, et al. 2012. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463−468

doi: 10.1038/nature10777