| [1] |
Liedtke WB. 2017. Deconstructing mammalian thermoregulation. |
| [2] |
Nicholls DG. 2006. The physiological regulation of uncoupling proteins. |
| [3] |
Divakaruni AS, Brand MD. 2011. The regulation and physiology of mitochondrial proton leak. |
| [4] |
Dieckmann S, Strohmeyer A, Willershäuser M, Maurer SF, Wurst W, et al. 2022. Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1. |
| [5] |
Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, et al. 1997. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. |
| [6] |
Sun Q, Cui X, Yin D, Li J, Li J, et al. 2025. Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation. |
| [7] |
Cohen P, Kajimura S. 2021. The cellular and functional complexity of thermogenic fat. |
| [8] |
Simcox J, Geoghegan G, Maschek JA, Bensard CL, Pasquali M, et al. 2017. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. |
| [9] |
Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, et al. 2017. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. |
| [10] |
Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, et al. 2015. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. |
| [11] |
Liu X, He A, Lu D, Hu D, Tan M, et al. 2025. Peroxisomal metabolism of branched fatty acids regulates energy homeostasis. |
| [12] |
Chouchani ET, Kazak L, Spiegelman BM. 2019. New advances in adaptive thermogenesis: UCP1 and beyond. |
| [13] |
Wallace M, Green CR, Roberts LS, Lee YM, McCarville JL, et al. 2018. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. |
| [14] |
Liu H, Liu JY, Wu X, Zhang JT. 2010. Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. International Journal of Biochemistry and Molecular Biology 1:69−89 |
| [15] |
Hillebrand M, Gersting SW, Lotz-Havla AS, Schäfer A, Rosewich H, et al. 2012. Identification of a new fatty acid synthesis-transport machinery at the peroxisomal membrane. |
| [16] |
Tawbeh A, Gondcaille C, Trompier D, Savary S. 2021. Peroxisomal ABC transporters: an update. International Journal of Molecular Sciences 22:6093 |
| [17] |
Rajbhandari P, Neelakantan TV, Hosny N, Stockwell BR. 2024. Spatial pharmacology using mass spectrometry imaging. |
| [18] |
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. 2023. The physiological functions of human peroxisomes. |
| [19] |
Vilarinho S, Sari S, Mazzacuva F, Bilgüvar K, Esendagli-Yilmaz G, et al. 2016. ACOX2 deficiency: a disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. |
| [20] |
Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. |
| [21] |
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, et al. 2012. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. |