[1]

Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, et al. 2007. The structure of ferrihydrite, a nanocrystalline material. Science 316:1726−1729

doi: 10.1126/science.1142525
[2]

Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, et al. 2008. Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631−1635

doi: 10.1126/science.1141134
[3]

Zhang K, Zhang S, Liao P, Zhao Y, Gan M, et al. 2023. Impact of redox fluctuations on microbe-mediated elemental sulfur disproportionation and coupled redox cycling of iron. Water Research 245:120589

doi: 10.1016/j.watres.2023.120589
[4]

Li Z, Goût TL, Hu Y. 2025. Review on formation of iron (oxyhydr)oxide nanoparticles in the environment: interactions with metals, organics and microbes. Environmental and Biogeochemical Processes 1(1):e003

doi: 10.48130/ebp-0025-0005
[5]

Li Z, Shakiba S, Deng N, Chen J, Louie SM, et al. 2020. Natural organic matter (NOM) imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles. Environmental Science & Technology 54:6761−6770

doi: 10.1021/acs.est.0c01189
[6]

Li Z, Louie SM, Zhao J, Liu J, Zhang J, et al. 2024. Deciphering the roles of molecular weight and carboxyl richness of organic matter on their adsorption onto ferrihydrite nanoparticles and the resulting aggregation. Environmental Science & Technology 58:20480−20489

doi: 10.1021/acs.est.4c06885
[7]

Liu Y, Ding Y, Sheng A, Li X, Chen J, et al. 2023. Fe(II)-catalyzed transformation of ferrihydrite with different degrees of crystallinity. Environmental Science & Technology 57:6934−6943

doi: 10.1021/acs.est.3c00555
[8]

Pan X, Huang X, Deng N. 2024. The fate of cadmium during ferrihydrite phase transformation affected by dissolved organic matter: Insights from organic–mineral interaction. Chemical Geology 670:122424

doi: 10.1016/j.chemgeo.2024.122424
[9]

Pan X, Huang X, Deng N. 2025. Short-chain carboxylic acids influencing mineralization mechanisms of ferrihydrite transformation to hematite and goethite. Environmental Science & Technology 59:12910−12919

doi: 10.1021/acs.est.5c00455
[10]

Xu W, Ni C, Deng N, Huang X. 2024. Underestimated role of hydroxyl radicals for bromate formation in persulfate-based advanced oxidation processes. Environmental Research 252:118870

doi: 10.1016/j.envres.2024.118870
[11]

Chen C, Kukkadapu R, Sparks DL. 2015. Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite: implications for carbon dynamics. Environmental Science & Technology 49:10927−10936

doi: 10.1021/acs.est.5b02448
[12]

Lin D, Cai P, Peacock CL, Wu Y, Gao C, et al. 2018. Towards a better understanding of the aggregation mechanisms of iron (hydr)oxide nanoparticles interacting with extracellular polymeric substances: role of pH and electrolyte solution. The Science of The Total Environment 645:372−379

doi: 10.1016/j.scitotenv.2018.07.136
[13]

Chekli L, Phuntsho S, Roy M, Lombi E, Donner E, et al. 2013. Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Research 47:4585−4599

doi: 10.1016/j.watres.2013.04.029
[14]

Guo Y, Tang N, Guo J, Lu L, Li N, et al. 2023. The aggregation of natural inorganic colloids in aqueous environment: a review. Chemosphere 310:136805

doi: 10.1016/j.chemosphere.2022.136805
[15]

Cismasu AC, Michel FM, Tcaciuc AP, Tyliszczak T, Brown GE Jr, et al. 2011. Composition and structural aspects of naturally occurring ferrihydrite. Comptes Rendus Geoscience 343:210−218

doi: 10.1016/j.crte.2010.11.001
[16]

Sheng A, Liu J, Li X, Luo L, Ding Y, et al. 2021. Labile Fe(III) supersaturation controls nucleation and properties of product phases from Fe(II)-catalyzed ferrihydrite transformation. Geochimica et Cosmochimica Acta 309:272−285

doi: 10.1016/j.gca.2021.06.027
[17]

Sheng A, Liu J, Li X, Qafoku O, Collins RN, et al. 2020. Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation. Geochimica et Cosmochimica Acta 272:105−120

doi: 10.1016/j.gca.2019.12.028
[18]

Illés E, Tombácz E. 2006. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science 295:115−123

doi: 10.1016/j.jcis.2005.08.003
[19]

Palomino D, Stoll S. 2013. Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems. Journal of Nanoparticle Research 15:1428

doi: 10.1007/s11051-013-1428-5
[20]

Tiller CL, O'Melia CR. 1993. Natural organic matter and colloidal stability: models and measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects 73:89−102

doi: 10.1016/0927-7757(93)80009-4
[21]

Chekli L, Phuntsho S, Tijing LD, Zhou JL, Kim JH, et al. 2014. Stability of Fe-oxide nanoparticles coated with natural organic matter under relevant environmental conditions. Water Science & Technology 70:2040−2046

doi: 10.2166/wst.2014.454
[22]

Vindedahl AM, Strehlau JH, Arnold WA, Penn RL. 2016. Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity. Environmental Science: Nano 3:494−505

doi: 10.1039/c5en00215j
[23]

Liu J, Louie SM, Zhao J, Gao X, Hu Y, et al. 2022. Aggregation of varied organic-coated magnetite nanoparticles: adsorbed mass and thickness of coatings and interactions with natural organic matter. Science of The Total Environment 831:154976

doi: 10.1016/j.scitotenv.2022.154976
[24]

Liu J, Zhao J, Louie SM, Gao X, Zhang P, et al. 2023. Comparative study on effects of pH, electrolytes, and humic acid on the stability of acetic and polyacrylic acid coated magnetite nanoparticles. Chemosphere 319:137992

doi: 10.1016/j.chemosphere.2023.137992
[25]

Wu A, Zhao X, Yang C, Wang J, Wang X, et al. 2022. A comparative study on aggregation and sedimentation of natural goethite and artificial Fe3O4 nanoparticles in synthetic and natural waters based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory and molecular dynamics simulations. Journal of Hazardous Materials 435:128876

doi: 10.1016/j.jhazmat.2022.128876
[26]

Xia Q, Jin Q, Chen Y, Zhang L, Li X, et al. 2022. Combined effects of Fe(III)-bearing nontronite and organic ligands on biogenic U(IV) oxidation. Environmental Science & Technology 56:1983−1993

doi: 10.1021/acs.est.1c04946
[27]

Henneberry YK, Kraus TEC, Nico PS, Horwath WR. 2012. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Organic Geochemistry 48:81−89

doi: 10.1016/j.orggeochem.2012.04.005
[28]

ThomasArrigo LK, Byrne JM, Kappler A, Kretzschmar R. 2018. Impact of organic matter on iron(II)-catalyzed mineral transformations in ferrihydrite–organic matter coprecipitates. Environmental Science & Technology 52:12316−12326

doi: 10.1021/acs.est.8b03206
[29]

Zhao Y, Moore OW, Xiao KQ, Curti L, Fariña AO, et al. 2022. The role and fate of organic carbon during aging of ferrihydrite. Geochimica et Cosmochimica Acta 335:339−355

doi: 10.1016/j.gca.2022.07.003
[30]

Liu F, Lu Y, Shi Z. 2024. Nanoscale mechanisms of carboxyl carbon preservation during Fe(II)-induced ferrihydrite transformation. Geochimica et Cosmochimica Acta 373:1−16

doi: 10.1016/j.gca.2024.03.027
[31]

ThomasArrigo LK, Kaegi R, Kretzschmar R. 2019. Ferrihydrite growth and transformation in the presence of ferrous iron and model organic ligands. Environmental Science & Technology 53:13636−13647

doi: 10.1021/acs.est.9b03952
[32]

Wu A, Yang C, Zhao X, Wang J, Liang W, et al. 2024. Heteroaggregation and sedimentation of natural goethite and artificial Fe3O4 nanoparticles with polystyrene nanoplastics in water. Carbon Research 3:38

doi: 10.1007/s44246-024-00107-2
[33]

Liu W, Worms IAM, Jakšić Ž, Slaveykova VI. 2022. Aquatic organisms modulate the bioreactivity of engineered nanoparticles: focus on biomolecular corona. Frontiers in Toxicology 4:933186

doi: 10.3389/ftox.2022.933186
[34]

Li W, Liu D, Wu J, Kim C, Fortner JD. 2014. Aqueous aggregation and surface deposition processes of engineered superparamagnetic iron oxide nanoparticles for environmental applications. Environmental Science & Technology 48:11892−11900

doi: 10.1021/es502174p
[35]

Cooper RE, Wegner CE, Kügler S, Poulin RX, Ueberschaar N, et al. 2020. Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms. The ISME Journal 14:2675−2690

doi: 10.1038/s41396-020-0718-z
[36]

Lowry GV, Hill RJ, Harper S, Rawle AF, Hendren CO, et al. 2016. Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano 3:953−965

doi: 10.1039/C6EN00136J
[37]

Baalousha M. 2009. Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Science of The Total Environment 407:2093−2101

doi: 10.1016/j.scitotenv.2008.11.022
[38]

Wang H, Zhao X, Han X, Tang Z, Song F, et al. 2018. Colloidal stability of Fe3O4 magnetic nanoparticles differentially impacted by dissolved organic matter and cations in synthetic and naturally occurred environmental waters. Environmental Pollution 241:912−921

doi: 10.1016/j.envpol.2018.06.029
[39]

Philippe A, Schaumann GE. 2014. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environmental Science & Technology 48:8946−8962

doi: 10.1021/es502342r
[40]

Li Z, Lowry GV, Fan J, Liu F, Chen J. 2018. High molecular weight components of natural organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite. Science of The Total Environment 628−629:177−185

doi: 10.1016/j.scitotenv.2018.02.038
[41]

Chen KL, Mylon SE, Elimelech M. 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental Science & Technology 40:1516−1523

doi: 10.1021/es0518068
[42]

Junaid M, Wang J. 2021. Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: a special reference to eco-corona formation and associated impacts. Water Research 201:117319

doi: 10.1016/j.watres.2021.117319
[43]

Mitzel MR, Tufenkji N. 2014. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environmental Science & Technology 48:2715−2723

doi: 10.1021/es404598v
[44]

Dong F, Zhou Y. 2020. Distinct mechanisms in the heteroaggregation of silver nanoparticles with mineral and microbial colloids. Water Research 170:115332

doi: 10.1016/j.watres.2019.115332
[45]

Liang X, Radosevich M, Löffler F, Schaeffer SM, Zhuang J. 2019. Impact of microbial iron oxide reduction on the transport of diffusible tracers and non-diffusible nanoparticles in soils. Chemosphere 220:391−402

doi: 10.1016/j.chemosphere.2018.12.165
[46]

Cornell RM, Schwertmann U. 1997. The iron oxides: structure, properties, reactions, occurrences and uses. Corrosion Reviews 15:533−559

doi: 10.1515/CORRREV.1997.15.3-4.533
[47]

Schwertmann U, Friedl J, Stanjek H, Schulze DG. 2000. The effect of clay minerals on the formation of goethite and hematite from ferrihydrite after 16 years' ageing at 25 °C and pH 4–7. Clay Minerals 35:613−623

doi: 10.1180/000985500547034
[48]

Schwertmann U, Stanjek H, Becher HH. 2004. Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25 °C. Clay Minerals 39:433−438

doi: 10.1180/0009855043940145
[49]

Namayandeh A, Borkiewicz OJ, Sassi M, Rosso KM, Michel FM. 2024. Formation and transformation of iron oxy-hydroxide precursor clusters to ferrihydrite. Environmental Science: Nano 11:3966−3978

doi: 10.1039/d3en00930k
[50]

Pedersen HD, Postma D, Jakobsen R, Larsen O. 2005. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica Acta 69:3967−3977

doi: 10.1016/j.gca.2005.03.016
[51]

Liu J, Sheng A, Li X, Arai Y, Ding Y, et al. 2022. Understanding the importance of labile Fe(III) during Fe(II)-catalyzed transformation of metastable iron oxyhydroxides. Environmental Science & Technology 56:3801−3811

doi: 10.1021/acs.est.1c08044
[52]

Boland DD, Collins RN, Miller CJ, Glover CJ, Waite TD. 2014. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environmental Science & Technology 48:5477−5485

doi: 10.1021/es4043275
[53]

Suter D, Banwart S, Stumm W. 1991. Dissolution of hydrous iron(III) oxides by reductive mechanisms. Langmuir 7:809−813

doi: 10.1021/la00052a033
[54]

Williams AGB, Scherer MM. 2004. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environmental Science & Technology 38:4782−4790

doi: 10.1021/es049373g
[55]

Xia Q, Zhang L, Dong H, Li Z, Zhang Y, et al. 2020. Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China. Geochimica et Cosmochimica Acta 279:88−106

doi: 10.1016/j.gca.2020.03.044
[56]

Latta D, Rosso KM, Scherer MM. 2023. Tracking initial Fe(II)-driven ferrihydrite transformations: a Mössbauer spectroscopy and isotope investigation. ACS Earth and Space Chemistry 7:1814−1824

doi: 10.1021/acsearthspacechem.2c00291
[57]

Qafoku O, Kovarik L, Bowden ME, Nakouzi E, Sheng A, et al. 2020. Nanoscale observations of Fe(II)-induced ferrihydrite transformation. Environmental Science: Nano 7:2953−2967

doi: 10.1039/d0en00730g
[58]

Hansel CM, Benner SG, Fendorf S. 2005. Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environmental Science & Technology 39:7147−7153

doi: 10.1021/es050666z
[59]

Wang Y, Morin G, Ona-Nguema G, Brown GE Jr. 2014. Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite. Environmental Science & Technology 48:14282−14290

doi: 10.1021/es5033629
[60]

Usman M, Byrne JM, Chaudhary A, Orsetti S, Hanna K, et al. 2018. Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals. Chemical Reviews 118(7):3251−3304

doi: 10.1021/acs.chemrev.7b00224
[61]

Das S, Hendry MJ, Essilfie-Dughan J. 2011. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environmental Science & Technology 45:268−275

doi: 10.1021/es101903y
[62]

Yee N, Shaw S, Benning LG, Nguyen TH. 2006. The rate of ferrihydrite transformation to goethite via the Fe (II) pathway. American Mineralogist 91:92−96

doi: 10.2138/am.2006.1860
[63]

Liu H, Guo H, Li P, Wei Y. 2008. The transformation of ferrihydrite in the presence of trace Fe(II): the effect of the anionic media. Journal of Solid State Chemistry 181:2666−2671

doi: 10.1016/j.jssc.2008.06.052
[64]

Dong Y, Wang J, Ma C, Thompson A, Liu C, et al. 2024. The influence of seawater on Fe(II)-catalyzed ferrihydrite transformation and its subsequent consequences for C dynamics. Environmental Science & Technology 58:19277−19288

doi: 10.1021/acs.est.4c05300
[65]

Childs CW. 1992. Ferrihydrite: a review of structure, properties and occurrence in relation to soils. Journal of Plant Nutrition and Soil Science 155:441−448

doi: 10.1002/jpln.19921550515
[66]

Wu C, Wang S, Peng W, Yin H, Zhou W, et al. 2024. Fe(II)-catalyzed phase transformation of Cd(II)-bearing ferrihydrite-kaolinite associations under anoxic conditions: new insights to role of kaolinite and fate of Cd(II). Journal of Hazardous Materials 468:133798

doi: 10.1016/j.jhazmat.2024.133798
[67]

Sun T, Paige CR, Snodgrass WJ. 1996. The effect of cadmium on the transformation of ferrihydrite into crystalline products at pH 8. Water, Air, and Soil Pollution 91:307−325

doi: 10.1007/bf00666266
[68]

Zhao X, Yuan Z, Wang S, Pan Y, Chen N, et al. 2022. Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: implications for cadmium mobility and fate under anaerobic conditions. Science of The Total Environment 848:157719

doi: 10.1016/j.scitotenv.2022.157719
[69]

Hu S, Zhen L, Liu S, Liu C, Shi Z, et al. 2022. Synchronous sequestration of cadmium and fulvic acid by secondary minerals from Fe(II)-catalyzed ferrihydrite transformation. Geochimica et Cosmochimica Acta 334:83−98

doi: 10.1016/j.gca.2022.08.006
[70]

Yin M, Li X, Guo C, Zhong Q, Li X, et al. 2025. Effects of coexisting goethite or lepidocrocite on Fe(II)-induced ferrihydrite transformation pathways and Cd speciation. Science of The Total Environment 959:178321

doi: 10.1016/j.scitotenv.2024.178321
[71]

Han B, Liu J, Zhu R, Chen Q. 2024. Clay minerals inhibit the release of Cd(II) during the phase transformation of Cd(II)-ferrihydrite coprecipitates. Journal of Hazardous Materials 462:132723

doi: 10.1016/j.jhazmat.2023.132723
[72]

Zhao X, Yuan Z, Wang S, Zhang G, Qu S, et al. 2022. The fate of co-existent cadmium and arsenic during Fe(II)-induced transformation of As(V)/Cd(II)-bearing ferrihydrite. Chemosphere 301:134665

doi: 10.1016/j.chemosphere.2022.134665
[73]

Tokoro C, Kadokura M, Kato T. 2020. Mechanism of arsenate coprecipitation at the solid/liquid interface of ferrihydrite: a perspective review. Advanced Powder Technology 31:859−866

doi: 10.1016/j.apt.2019.12.004
[74]

Ford RG. 2002. Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. Environmental Science & Technology 36:2459−2463

doi: 10.1021/es015768d
[75]

Zhang G, Yuan Z, Lei L, Lin J, Wang X, et al. 2019. Arsenic redistribution and transformation during Fe(II)-catalyzed recrystallization of As-adsorbed ferrihydrite under anaerobic conditions. Chemical Geology 525:380−389

doi: 10.1016/j.chemgeo.2019.08.002
[76]

Stolze L, Zhang D, Guo H, Rolle M. 2019. Model-based interpretation of groundwater arsenic mobility during in situ reductive transformation of ferrihydrite. Environmental Science & Technology 53:6845−6854

doi: 10.1021/acs.est.9b00527
[77]

Pedersen HD, Postma D, Jakobsen R. 2006. Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica et Cosmochimica Acta 70:4116−4129

doi: 10.1016/j.gca.2006.06.1370
[78]

Dai C, Zuo X, Cao B, Hu Y. 2016. Homogeneous and heterogeneous (Fex, Cr1–x)(OH)3 precipitation: implications for Cr sequestration. Environmental Science & Technology 50:1741−1749

doi: 10.1021/acs.est.5b04319
[79]

Hu Y, Jiang X, Zhang S, Cai D, Zhou Z, et al. 2024. Coprecipitation of Fe/Cr hydroxides at organic–water interfaces: functional group richness and (de)protonation control amounts and compositions of coprecipitates. Environmental Science & Technology 58:8501−8509

doi: 10.1021/acs.est.4c01245
[80]

Zhang S, Cai D, Zhou Z, Shang J, Zuo X, et al. 2025. Preferential adsorption of natural organic matter onto Al2O3 regulated heterogeneous (Fe, Cr)(OH)3 coprecipitation: roles of aromaticity and acidity. Environmental Science & Technology 59:4631−4640

doi: 10.1021/acs.est.4c10334
[81]

Buerge IJ, Hug SJ. 1997. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environmental Science & Technology 31:1426−1432

doi: 10.1021/es960672i
[82]

Hu Y, Xue Q, Tang J, Fan X, Chen H. 2019. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II). Chemosphere 222:511−516

doi: 10.1016/j.chemosphere.2019.01.160
[83]

Yu G, Fu F, Ye C, Tang B. 2020. Behaviors and fate of adsorbed Cr(VI) during Fe(II)-induced transformation of ferrihydrite-humic acid co-precipitates. Journal of Hazardous Materials 392:122272

doi: 10.1016/j.jhazmat.2020.122272
[84]

Iler RK. 1980. The chemistry of silica. Solubility, polymerization, colloid and surface properties, and biochemistry. Angewandte Chemie International Edition 19:230

doi: 10.1002/anie.198002302
[85]

Schwertmann U, Schulze DG, Murad E. 1982. Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mössbauer spectroscopy. Soil Science Society of America Journal 46:869−875

doi: 10.2136/sssaj1982.03615995004600040040x
[86]

Schwertmann U, Thalmann H. 1976. The Influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Minerals 11:189−200

doi: 10.1180/claymin.1976.011.3.02
[87]

He C, Yang Z, Ning Y, Yang S, Jiang F, et al. 2023. Effects of montmorillonite on the adsorption of Fe(II) by ferrihydrite and its phase transformation at different pH. Environmental Science and Pollution Research International 30:28975−28989

doi: 10.1007/s11356-022-24309-6
[88]

Schwertmann U. 1988. Goethite and hematite formation in the presence of clay minerals and gibbsite at 25 °C. Soil Science Society of America Journal 52:288−291

doi: 10.2136/sssaj1988.03615995005200010052x
[89]

Jones AM, Kinsela AS, Collins RN, Waite TD. 2016. The reduction of 4-chloronitrobenzene by Fe(II)-Fe(III) oxide systems − correlations with reduction potential and inhibition by silicate. Journal of Hazardous Materials 320:143−149

doi: 10.1016/j.jhazmat.2016.08.031
[90]

Jones AM, Collins RN, Rose J, Waite TD. 2009. The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochimica et Cosmochimica Acta 73:4409−4422

doi: 10.1016/j.gca.2009.04.025
[91]

Kinsela AS, Jones AM, Bligh MW, Pham AN, Collins RN, et al. 2016. Influence of dissolved silicate on rates of Fe(II) oxidation. Environmental Science & Technology 50:11663−11671

doi: 10.1021/acs.est.6b03015
[92]

Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, et al. 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68−71

doi: 10.1038/nature02638
[93]

Zhang J, Zhu M, Lloyd JR, Shaw S, Coker VS, et al. 2024. The mobility of Mo during microbially mediated ferrihydrite phase transformation. Environmental Science & Technology 58:21653−21661

doi: 10.1021/acs.est.4c09144
[94]

Byrne JM, Coker VS, Moise S, Wincott PL, Vaughan DJ, et al. 2013. Controlled cobalt doping in biogenic magnetite nanoparticles. Journal of the Royal Society: Interface 10:20130134

doi: 10.1098/rsif.2013.0134
[95]

Xie J, Zhao Z, Coker VS, O'Driscoll B, Cai R, et al. 2024. Bioproduction of cerium-bearing magnetite and application to improve carbon-black supported platinum catalysts. Journal of Nanobiotechnology 22:203

doi: 10.1186/s12951-024-02464-x
[96]

Xie J, Coker VS, O'Driscoll B, Cai R, Haigh SJ, et al. 2023. Microbial reduction of antimony (V)-bearing ferrihydrite by Geobacter sulfurreducens. Applied and Environmental Microbiology 89:e02175-22

doi: 10.1128/aem.02175-22
[97]

Coker VS, van der Laan G, Telling ND, Lloyd JR, Byrne JM, et al. 2020. Bacterial production of vanadium ferrite spinel (Fe, V)3O4 nanoparticles. Mineralogical Magazine 84:554−562

doi: 10.1180/mgm.2020.55
[98]

Curti L, Moore OW, Babakhani P, Xiao KQ, Woulds C, et al. 2021. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment. Communications Earth & Environment 2:229

doi: 10.1038/s43247-021-00301-9
[99]

Sheng A, Li X, Arai YJ, Ding Y, Rosso KM, et al. 2020. Citrate controls Fe(II)-catalyzed transformation of ferrihydrite by complexation of the labile Fe(III) intermediate. Environmental Science & Technology 54:7309−7319

doi: 10.1021/acs.est.0c00996
[100]

Zhou Z, Latta DE, Noor N, Thompson A, Borch T, et al. 2018. Fe(II)-catalyzed transformation of organic matter–ferrihydrite coprecipitates: a closer look using Fe isotopes. Environmental Science & Technology 52:11142−11150

doi: 10.1021/acs.est.8b03407
[101]

Chen C, Dong Y, Thompson A. 2023. Electron transfer, atom exchange, and transformation of iron minerals in soils: the influence of soil organic matter. Environmental Science & Technology 57:10696−10707

doi: 10.1021/acs.est.3c01876
[102]

Bhattacharyya A, Schmidt MP, Stavitski E, Azimzadeh B, Martínez CE, et al. 2019. Ligands representing important functional groups of natural organic matter facilitate Fe redox transformations and resulting binding environments. Geochimica et Cosmochimica Acta 251:157−175

doi: 10.1016/j.gca.2019.02.027
[103]

Cornell RM, Schneider W, Giovanoli R. 1989. Phase transformations in the ferrihydrite/cysteine system. Polyhedron 8:2829−2836

doi: 10.1016/s0277-5387(00)80544-6
[104]

Cornell RM, Schneider W. 1989. Formation of goethite from ferrihydrite at physiological pH under the influence of cysteine. Polyhedron 8:149−155

doi: 10.1016/s0277-5387(00)86496-7
[105]

Poulton SW, Krom MD, Raiswell R. 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta 68:3703−3715

doi: 10.1016/j.gca.2004.03.012
[106]

ThomasArrigo LK, Bouchet S, Kaegi R, Kretzschmar R. 2020. Organic matter influences transformation products of ferrihydrite exposed to sulfide. Environmental Science: Nano 7:3405−3418

doi: 10.3929/ethz-b-000453119
[107]

Eitel EM, Taillefert M. 2017. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species. Geochimica et Cosmochimica Acta 215:173−188

doi: 10.1016/j.gca.2017.07.016
[108]

Liu L, Yang Z, Yang W, Jiang W, Liao Q, et al. 2024. Ferrihydrite transformation impacted by coprecipitation of lignin: inhibition or facilitation? Journal of Environmental Sciences 139:23−33

doi: 10.1016/j.jes.2023.05.016
[109]

Karlsson T, Persson P. 2012. Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe(III). Chemical Geology 322:19−27

doi: 10.1016/j.chemgeo.2012.06.003
[110]

Daugherty EE, Gilbert B, Nico PS, Borch T. 2017. Complexation and redox buffering of iron(II) by dissolved organic matter. Environmental Science & Technology 51:11096−11104

doi: 10.1021/acs.est.7b03152
[111]

Liang B, Liu F, Zhong QH, Yu R, Li J, et al. 2025. Influence of humic acids on Fe(II)-catalyzed ferrihydrite transformation and the fate of Cd: insights from microscopic characterization and stable Cd isotopes. Environmental Science: Nano 2025

doi: 10.1039/D5EN00711A
[112]

Xia X, Liu J, Jin L, Wang J, Darma AI, et al. 2023. Organic matter counteracts the enhancement of Cr(III) extractability during the Fe(II)-catalyzed ferrihydrite transformation: a nanoscale- and molecular-level investigation. Environmental Science & Technology 57:13496−13505

doi: 10.1021/acs.est.3c03848
[113]

Zhao Y, Moore OW, Xiao KQ, Otero-Fariña A, Banwart SA, et al. 2023. Behavior and fate of chromium and carbon during Fe(II)-induced transformation of ferrihydrite organominerals. Environmental Science & Technology 57:17501−17510

doi: 10.1021/acs.est.3c05487
[114]

Chen R, Qu H, Guo S, Ducheyne P. 2015. The design and synthesis of a soluble composite silica xerogel and the short-time release of proteins. Journal of Materials Chemistry B 3:3141−3149

doi: 10.1039/c4tb01622j
[115]

Konhauser KO. 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews 43:91−121

doi: 10.1016/S0012-8252(97)00036-6
[116]

Geesey CG, Mutch R, Costerton JW, Green RB. 1978. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnology and Oceanography 23:1214−1223

doi: 10.4319/lo.1978.23.6.1214
[117]

Xia Q, Wang X, Zeng Q, Guo D, Zhu Z, et al. 2020. Mechanisms of enhanced antibacterial activity by reduced chitosan-intercalated nontronite. Environmental Science & Technology 54:5207−5217

doi: 10.1021/acs.est.9b07185
[118]

Konhauser KO, Fyfe WS, Ferris FG, Beveridge TJ. 1993. Metal sorption and mineral precipitation by bacteria in two Amazonian river systems: Rio Solimões and Rio Negro, Brazil. Geology 21:1103−1106

doi: 10.1130/0091-7613(1993)021<1103:MSAMPB>2.3.CO;2
[119]

Konhauser KO, Schultze-Lam S, Ferris FG, Fyfe WS, Longstaffe FJ, et al. 1994. Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Applied and Environmental Microbiology 60:549−553

doi: 10.1128/aem.60.2.549-553.1994
[120]

Ghiorse WC, Chapnick SD. 1983. Metal-depositing bacteria and the distribution of manganese and iron in swamp waters. Ecological Bulletins 35:367−376

[121]

Heldal M, Tumyr O. 1983. Gallionella from metalimnion in an eutrophic lake: morphology and X-ray energy-dispersive microanalysis of apical cells and stalks. Canadian Journal of Microbiology 29:303−308

doi: 10.1139/m83-050
[122]

Holm NG. 1987. Biogenic influences on the geochemistry of certain ferruginous sediments of hydrothermal origin. Chemical Geology 63:45−57

doi: 10.1016/0009-2541(87)90073-8
[123]

Cowen JP, Bruland KW. 1985. Metal deposits associated with bacteria: implications for Fe and Mn marine biogeochemistry. Deep Sea Research Part A. Oceanographic Research Papers 32:253−272

doi: 10.1016/0198-0149(85)90078-0
[124]

Lovley DR. 1993. Dissimilatory metal reduction. Annual Review of Microbiology 47:263−290

doi: 10.1146/annurev.mi.47.100193.001403
[125]

Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319−1321

doi: 10.1126/science.240.4857.1319
[126]

Lovley DR, Phillips EJ, Lonergan DJ. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Applied and Environmental Microbiology 55:700−706

doi: 10.1128/aem.55.3.700-706.1989
[127]

Dong H, Zeng Q, Sheng Y, Chen C, Yu G, et al. 2023. Coupled iron cycling and organic matter transformation across redox interfaces. Nature Reviews Earth & Environment 4:659−673

doi: 10.1038/s43017-023-00470-5
[128]

Shi L, Dong H, Reguera G, Beyenal H, Lu A, et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14:651−662

doi: 10.1038/nrmicro.2016.93
[129]

Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, et al. 2014. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environmental Microbiology Reports 6:776−785

doi: 10.1111/1758-2229.12204
[130]

Liang S, Ming T, Fredrickson J, Zachara J, Rosso K. 2016. Microbial redox proteins and protein complexes for extracellular respiration. In Redox Proteins in Supercomplexes and Signalosomes. eds. Louro RO, Diaz-Moreno I. Boca Raton: CRC Press. pp. 187−216 doi: 10.1201/b19087

[131]

Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, et al. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:1098−1101

doi: 10.1038/nature03661
[132]

Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, et al. 2010. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413−1415

doi: 10.1126/science.1196526
[133]

Zeng Q, Huang L, Ma J, Zhu Z, He C, et al. 2020. Bio-reduction of ferrihydrite-montmorillonite-organic matter complexes: effect of montmorillonite and fate of organic matter. Geochimica et Cosmochimica Acta 276:327−344

doi: 10.1016/j.gca.2020.03.011
[134]

Li Y, Wei G, Liang X, Zhang C, Zhu J, et al. 2020. Metal substitution-induced reducing capacity of magnetite coupled with aqueous Fe (II). ACS Earth and Space Chemistry 4:905−911

doi: 10.1021/acsearthspacechem.0c00089
[135]

Cutting RS, Coker VS, Telling ND, Kimber RL, Van Der Laan G, et al. 2012. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Environmental Science & Technology 46:12591−12599

doi: 10.1021/es204596z
[136]

Coker VS, Gault AG, Pearce CI, van der Laan G, Telling ND, et al. 2006. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environmental Science & Technology 40:7745−7750

doi: 10.1021/es060990
[137]

Newsome L, Morris K, Shaw S, Trivedi D, Lloyd JR. 2015. The stability of microbially reduced U (IV); impact of residual electron donor and sediment ageing. Chemical Geology 409:125−135

doi: 10.1016/j.chemgeo.2015.05.016
[138]

Newsome L, Morris K, Trivedi D, Atherton N, Lloyd JR. 2014. Microbial reduction of uranium(VI) in sediments of different lithologies collected from Sellafield. Applied Geochemistry 51:55−64

doi: 10.1016/j.apgeochem.2014.09.008
[139]

Eusterhues K, Hädrich A, Neidhardt J, Küsel K, Keller TF, et al. 2014. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite. Biogeosciences 11:4953−4966

doi: 10.5194/bg-11-4953-2014
[140]

Cooper RE, Eusterhues K, Wegner CE, Totsche KU, Küsel K. 2017. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia. Biogeosciences 14:5171−5188

doi: 10.5194/bg-14-5171-2017
[141]

Amstaetter K, Borch T, Kappler A. 2012. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta 85:326−341

doi: 10.1016/j.gca.2012.02.003
[142]

Poggenburg C, Mikutta R, Sander M, Schippers A, Marchanka A, et al. 2016. Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction. Chemical Geology 447:133−147

doi: 10.1016/j.chemgeo.2016.09.031
[143]

Hu S, Zhang H, Yang Y, Wang W, Zhou W, et al. 2023. Reductive sequestration of Cr(VI) and immobilization of C during the microbially mediated transformation of ferrihydrite-Cr(VI)-fulvic acid coprecipitates. Environmental Science & Technology 57:8323−8334

doi: 10.1021/acs.est.2c09803
[144]

Guyodo Y, Mostrom A, Lee Penn R, Banerjee SK. 2003. From nanodots to nanorods: oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophysical Research Letters 30:1512

doi: 10.1029/2003GL017021