[1]

Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, et al. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environmental Assessment and Management 7(4):513−541

doi: 10.1002/ieam.258
[2]

Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, et al. 2007. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicological Sciences 99(2):366−394

doi: 10.1093/toxsci/kfm128
[3]

Suman TY, Kwak IS. 2025. Current understanding of human bioaccumulation patterns and health effects of exposure to perfluorooctane sulfonate (PFOS). Journal of Hazardous Materials 487:137249

doi: 10.1016/j.jhazmat.2025.137249
[4]

Stockholm Convention. 2009. Amendments to annexes A, B and C of the Stockholm Convention on persistent organic pollutants by its decisions SC-4/10 to SC-4/18. Conference of the Parties, Geneva, Switzerland. https://chm.pops.int

[5]

Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, et al. 2004. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environmental Science & Technology 38(17):4489−4495

doi: 10.1021/es0493446
[6]

Lindstrom AB, Strynar MJ, Libelo EL. 2011. Polyfluorinated compounds: past, present, and future. Environmental Science & Technology 45(19):7954−7961

doi: 10.1021/es2011622
[7]

Abunada Z, Alazaiza MYD, Bashir MJK. 2020. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment: source, fate, risk and regulations. Water 12(12):3590

doi: 10.3390/w12123590
[8]

Brunn H, Arnold G, Körner W, Rippen G, Steinhäuser KG, et al. 2023. PFAS: forever chemicals − persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe 35:20

doi: 10.1186/s12302-023-00721-8
[9]

Maddela NR, Ramakrishnan B, Dueñas-Rivadeneira AA, Venkateswarlu K, Megharaj M. 2022. Chemicals/materials of emerging concern in farmlands: sources, crop uptake and potential human health risks. Environmental Science: Processes & Impacts 24(12):2217−2236

doi: 10.1039/d2em00322h
[10]

Li ZM, Roos A, Serfass TL, Lee C, Kannan K. 2024. Concentrations of 45 per- and polyfluoroalkyl substances in North American river otters (Lontra canadensis) from West Virginia, USA. Environmental Science & Technology 58(4):2089−2101

doi: 10.1021/acs.est.3c09467
[11]

Lu B, Wang P, Zhu Y, Hu J, Qian J, et al. 2025. Interaction between root exudates and PFOS mobility: effects on rhizosphere microbial health in wetland ecosystems. Environmental Pollution 364(1):125324

doi: 10.1016/j.envpol.2024.125324
[12]

Brase RA, Mullin EJ, Spink DC. 2021. Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects. International Journal of Molecular Sciences 22(3):995

doi: 10.3390/ijms22030995
[13]

Wee SY, Aris AZ. 2023. Revisiting the "forever chemicals", PFOA and PFOS exposure in drinking water. npj Clean Water 6:57

doi: 10.1038/s41545-023-00274-6
[14]

Ssebugere P, Sillanpää M, Matovu H, Wang Z, Schramm KW, et al. 2020. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: a critical review. Science of The Total Environment 739:139913

doi: 10.1016/j.scitotenv.2020.139913
[15]

Chokwe TB, Themba N, Mahlambi PN, Mngadi SV, Sibali LL. 2024. Poly- and per-fluoroalkyl substances (PFAS) in the African environments: progress, challenges, and future perspectives. Environmental Science and Pollution Research International 31(58):65993−66008

doi: 10.1007/s11356-024-35727-z
[16]

Bolan N, Sarkar B, Vithanage M, Singh G, Tsang DCW, et al. 2021. Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environment International 155:106600

doi: 10.1016/j.envint.2021.106600
[17]

Eze CT, Otitoloju AA, Eze OO, Ugochukwu TE, Onodugo C, et al. 2023. West African e-waste-soil assessed with a battery of cell-based bioassays. Science of The Total Environment 856(1):159068

doi: 10.1016/j.scitotenv.2022.159068
[18]

Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, et al. 2021. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and dtrategies for informing future research. Environmental Toxicology and Chemistry 40(3):606−630

doi: 10.1002/etc.4890
[19]

The Environment, Health, and Safety (Enhesa). 2011. Environmental Health and Safety regulatory development in South Africa. Webinar Report. Enhesa, Brussels, Belgium. www.enhesa.com/resources/article/ehs-regulatory-developments-in-south-africa-may-have-far-reaching-effects/

[20]

Groffen T, Nkuba B, Wepener V, Bervoets L. 2021. Risks posed by per- and polyfluoroalkyl substances (PFAS) on the African continent, emphasizing aquatic ecosystems. Integrated Environmental Assessment and Management 17(4):726−732

doi: 10.1002/ieam.4404
[21]

Omisore AG. 2018. Attaining sustainable development goals in sub-Saharan Africa; The need to address environmental challenges. Environmental Development 25:138−145

doi: 10.1016/j.envdev.2017.09.002
[22]

National Council for Law Reporting (Kenya Law). 2022. Environmental management and co-ordination act (EMCA). Cap. 387. National Council for Law Reporting (Kenya Law), Kenya. https://new.kenyalaw.org/akn/ke/act/1999/8/eng@2022-12-31

[23]

Lee JC, Smaoui S, Duffill J, Marandi B, Varzakas T. 2025. Research progress in current and emerging issues of PFASs' global impact: long-term health effects and governance of food systems. Foods 14(6):958

doi: 10.3390/foods14060958
[24]

Han M, Qin C, Gao Y. 2025. Sources and transport of per- and polyfluoroalkyl substance (PFAS) in agricultural soil–plant systems. New Contaminants 1(1):e005

doi: 10.48130/newcontam-0025-0007
[25]

Supreeyasunthorn P, Boontanon SK, Boontanon N. 2016. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 51(6):472−477

doi: 10.1080/10934529.2015.1128713
[26]

Rankin K, Mabury SA, Jenkins TM, Washington JW. 2016. A North American and global survey of perfluoroalkyl substances in surface soils: distribution patterns and mode of occurrence. Chemosphere 161:333−341

doi: 10.1016/j.chemosphere.2016.06.109
[27]

Xiao F, Simcik MF, Halbach TR, Gulliver JS. 2015. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: migration and implications for human exposure. Water Research 72:64−74

doi: 10.1016/j.watres.2014.09.052
[28]

Dassuncao C. 2018. Modeling exposures to poly-and perfluoroalkyl substances (PFASs) in aquatic biota and humans. Harvard University ProQuest Dissertations & Theses. Harvard University, Cambridge, MA, USA. www.semanticscholar.org/paper/MODELING-EXPOSURES-to-POLY-and-PERFLUOROALKYL-in-Dassuncao/a59531861782d9f72bae6d9a4a066bd400b124c9?utm_source=direct_link

[29]

Ribes Ortega C, Molitorisová A, Purnhagen K. 2024. Dangerous legacy of food contact materials on the EU market: recall of products containing PFAS. European Journal of Risk Regulation 16:542−565

doi: 10.1017/err.2024.45
[30]

Zhang DQ, Wang M, He Q, Niu X, Liang Y. 2020. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: from soil adsorption and plant uptake to effects on microbial community. Environmental Pollution 257:113575

doi: 10.1016/j.envpol.2019.113575
[31]

Itangishaka AC, Twagirayezu G, Manevski K, Hirwa H, Habiyakare T, et al. 2025. Assessment of irrigation suitable land in Africa: a continental study based on geospatial multi-criteria decision analysis. In Remote Sensing and GIS Application in Forest Conservation Planning. eds. Moharir K, Pande CB. Singapore: Springer Nature Singapore. pp. 195−216 doi: 10.1007/978-981-96-1733-3_11

[32]

Ali AF, Young RJ. 2014. An assessment of groundwater contamination around a solid waste disposal site in Kano, Nigeria. WIT Transactions on Ecology and the Environment 180:317−323

doi: 10.2495/WM140271
[33]

Lambrechts D, Hector M. 2016. Environmental organised crime: the dirty business of hazardous waste disposal and limited state capacity in Africa. Politikon 43(2):251−268

doi: 10.1080/02589346.2016.1201727
[34]

Liu Z, Lu Y, Song X, Jones K, Sweetman AJ, et al. 2019. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: implication for planting optimization and food safety. Environment International 127:671−684

doi: 10.1016/j.envint.2019.04.008
[35]

Wania F, Mackay D. 1996. The global fractionation of persistent organic pollutants. Technical report 10/96. Norwegian Institute for Air Research (NILU), Kjeller, Norway. https://www.osti.gov/etdeweb/servletsl/purl/572612

[36]

Navarro DA, Kabiri SS, Bowles K, Knight ER, Braeunig J, et al. 2024. Review on methods for assessing and predicting leaching of PFAS from solid matrices. Current Pollution Reports 10:628−647

doi: 10.1007/s40726-024-00326-6
[37]

Chirikona F, Quinete N, Gonzalez J, Mutua G, Kimosop S, et al. 2022. Occurrence and distribution of per- and polyfluoroalkyl substances from multi-industry sources to water, sediments and plants along Nairobi River Basin, Kenya. International Journal of Environmental Research and Public Health 19(15):8980

doi: 10.3390/ijerph19158980
[38]

Groffen T, Wepener V, Malherbe W, Bervoets L. 2018. Distribution of perfluorinated compounds (PFASs) in the aquatic environment of the industrially polluted Vaal River, South Africa. Science of The Total Environment 627:1334−1344

doi: 10.1016/j.scitotenv.2018.02.023
[39]

Strynar MJ, Lindstrom AB, Nakayama SF, Egeghy PP, Helfant LJ. 2012. Pilot scale application of a method for the analysis of perfluorinated compounds in surface soils. Chemosphere 86(3):252−257

doi: 10.1016/j.chemosphere.2011.09.036
[40]

Liu S, Lu Y, Xie S, Wang T, Jones KC, et al. 2015. Exploring the fate, transport and risk of perfluorooctane sulfonate (PFOS) in a coastal region of China using a multimedia model. Environment International 85:15−26

doi: 10.1016/j.envint.2015.08.007
[41]

Brusseau ML, Anderson RH, Guo B. 2020. PFAS concentrations in soils: Background levels versus contaminated sites. Science of The Total Environment 740:140017

doi: 10.1016/j.scitotenv.2020.140017
[42]

Wang Y, Munir U, Huang Q. 2023. Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: sources, fate, and remediation. Soil & Environmental Health 1(1):100004

doi: 10.1016/j.seh.2023.100004
[43]

Dalahmeh S, Tirgani S, Komakech AJ, Niwagaba CB, Ahrens L. 2018. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Science of The Total Environment 631–632:660−667

doi: 10.1016/j.scitotenv.2018.03.024
[44]

Ibor OR, Andem AB, Eni G, Arong GA, Adeougn AO, et al. 2020. Contaminant levels and endocrine disruptive effects in Clarias gariepinus exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. Aquatic Toxicology 219:105375

doi: 10.1016/j.aquatox.2019.105375
[45]

Umejuru EC, Street R, Edokpayi JN. 2024. A comprehensive review of the occurrence, distribution, characteristics and fate of per- and polyfluoroalkyl substances in the African continent. Chemistry Africa 7(8):4089−4103

doi: 10.1007/s42250-024-01048-4
[46]

Shahsavari E, Rouch D, Khudur LS, Thomas D, Aburto-Medina A, et al. 2021. Challenges and current status of the biological treatment of PFAS-contaminated soils. Frontiers in Bioengineering and Biotechnology 8:602040

doi: 10.3389/fbioe.2020.602040
[47]

European Soil Data Centre (ESDAC). 2014. Soil Atlas of Africa. European Commission, Brussels, Belgium. https://esdac.jrc.ec.europa.eu/content/soil-map-soil-atlas-africa

[48]

Dewitte O, Jones A, Spaargaren O, Breuning-Madsen H, Brossard M, et al. 2013. Harmonisation of the soil map of Africa at the continental scale. Geoderma 211–212:138−53

doi: 10.1016/j.geoderma.2013.07.007
[49]

Jones A, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, et al. 2013. Soil Atlas of Africa. Publications Office of the European Union, Brussels, Belgium. https://publications.jrc.ec.europa.eu/repository/handle/JRC74612

[50]

Pan MM, Li Q, Xu L. 2020. Efficient adsorption of perfluoroalkyl acids by the quaternized hierarchically porous polystyrene-divinylbenzene. Chemical Engineering Journal 386:123990

doi: 10.1016/j.cej.2019.123990
[51]

Scher DP, Kelly JE, Huset CA, Barry KM, Hoffbeck RW, et al. 2018. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 196:548−555

doi: 10.1016/j.chemosphere.2017.12.179
[52]

Interstate Technology Regulatory Council (ITRC). 2018. Per- and polyfluoroalkyl substances (PFAS). TIT Council and Regulatory, Washington, DC, USA. https://static1.squarespace.com/static/5c5503db4d546e22f6d2feb2/t/5c7f4630e5e5f035147f1726/1551844916111/ITRC+PFAS+Fact+Sheet+1.pdf

[53]

Kookana RS, Navarro DA, Kabiri S, McLaughlin MJ. 2023. Key properties governing sorption–desorption behaviour of poly-and perfluoroalkyl substances in saturated and unsaturated soils: a review. Soil Research 61(2):107−125

doi: 10.1071/SR22183
[54]

Stougaard RN, Shea PJ, Martin AR. 1990. Effect of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr. Weed Science 38(1):67−73

doi: 10.1017/S0043174500056137
[55]

Li Y, Lv B, Chen Z, Xue J, Wu L, et al. 2024. PFOA and PFOS induces mineralization of soil organic carbon by accelerating the consumption of dissolved organic carbon. Carbon Research 3:16

doi: 10.1007/s44246-023-00088-8
[56]

Uwayezu JN, Yeung LWY, Bäckström M. 2022. Sorption of perfluorooctane sulfonic acid including its isomers to soils: effects of pH, natural organic matter and Na2SO4. Frontiers in Environmental Chemistry 3:905170

doi: 10.3389/fenvc.2022.905170
[57]

Navarro DA, Kabiri S, Ho J, Bowles KC, Davis G, et al. 2023. Stabilisation of PFAS in soils: long-term effectiveness of carbon-based soil amendments. Environmental Pollution 323:121249

doi: 10.1016/j.envpol.2023.121249
[58]

Morillo E, Undabeytia T, Cabrera A, Villaverde J, Maqueda C. 2004. Effect of soil type on adsorption-desorption, mobility, and activity of the herbicide norflurazon. Journal of Agricultural and Food Chemistry 52(4):884−890

doi: 10.1021/jf035026z
[59]

Li X, Wang Z, Ge Y, Sun H, Zhang L. 2023. Comparative stress response assessment of PFOS and its alternatives, F-53B and OBS, in wheat: an insight of toxic mechanisms and relative magnitudes. Ecotoxicology and Environmental Safety 263:115333

doi: 10.1016/j.ecoenv.2023.115333
[60]

Sharifan H, Bagheri M, Wang D, Burken JG, Higgins CP, et al. 2021. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. Science of The Total Environment 771:145427

doi: 10.1016/j.scitotenv.2021.145427
[61]

Wallis I, Hutson J, Davis G, Kookana R, Rayner J, et al. 2022. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Water Research 225:119096

doi: 10.1016/j.watres.2022.119096
[62]

Ehsan MN, Riza M, Pervez MN, Li CW, Zorpas AA, et al. 2024. PFAS contamination in soil and sediment: contribution of sources and environmental impacts on soil biota. Case Studies in Chemical and Environmental Engineering 9:100643

doi: 10.1016/j.cscee.2024.100643
[63]

Morris KA, Li X, Langston DB, Davis RF, Timper P, et al. 2018. Fluensulfone sorption and mobility as affected by soil type. Pest Management Science 74(2):430−437

doi: 10.1002/ps.4724
[64]

Felizeter S, McLachlan MS, de Voogt P. 2012. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environmental Science & Technology 46(21):11735−11743

doi: 10.1021/es302398u
[65]

Felizeter S, McLachlan MS, De Voogt P. 2014. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops. Journal of Agricultural and Food Chemistry 62(15):3334−3342

doi: 10.1021/jf500674j
[66]

Tan Z, Rong Q, Wang W, Jiang H, Yu L, et al. 2024. Strategies for regulating the bioavailability and mobility of Se and Cd in Cd-contaminated seleniferous soils: coupling the bioavailable Se: Cd molar ratio with soil properties. Agronomy 14(12):2941

doi: 10.3390/agronomy14122941
[67]

Holly MA, Gunn KM, Keymer D, Sanford JR. 2024. Evaluation of per- and polyfluoroalkyl substances leaching from biosolids and mitigation potential of biochar through undisturbed soil columns. ACS ES&T Water 4(2):413−426

doi: 10.1021/acsestwater.3c00414
[68]

Blaine AC, Rich CD, Hundal LS, Lau C, Mills MA, et al. 2013. Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: field and greenhouse studies. Environmental Science & Technology 47(24):14062−14069

doi: 10.1021/es403094q
[69]

Lechner M, Knapp H. 2011. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis sativus). Journal of Agricultural and Food Chemistry 59(20):11011−11018

doi: 10.1021/jf201355y
[70]

Zhao S, Fang S, Zhu L, Liu L, Liu Z, et al. 2014. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil. Environmental Pollution 184:495−501

doi: 10.1016/j.envpol.2013.09.032
[71]

Essumang DK, Eshun A, Hogarh JN, Bentum JK, Adjei JK, et al. 2017. Perfluoroalkyl acids (PFAAs) in the Pra and Kakum River basins and associated tap water in Ghana. Science of The Total Environment 579:729−735

doi: 10.1016/j.scitotenv.2016.11.035
[72]

Orata F, Quinete N, Werres F, Wilken RD. 2009. Determination of perfluorooctanoic acid and perfluorooctane sulfonate in Lake Victoria Gulf water. Bulletin of Environmental Contamination and Toxicology 82(2):218−222

doi: 10.1007/s00128-008-9543-1
[73]

Chirikona F, Filipovic M, Ooko S, Orata F. 2015. Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya. Environmental Monitoring and Assessment 187(5):238

doi: 10.1007/s10661-015-4425-6
[74]

Mudumbi BJN, Ntwampe SKO, Muganza FM, Okonkwo JO. 2014. Perfluorooctanoate and perfluorooctane sulfonate in South African river water. Water Science and Technology 69(1):185−194

doi: 10.2166/wst.2013.566
[75]

Ahrens L. 2011. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. Journal of Environmental Monitoring 13(1):20−31

doi: 10.1039/c0em00373e
[76]

Mei W, Sun H, Song M, Jiang L, Li Y, et al. 2021. Per- and polyfluoroalkyl substances (PFASs) in the soil–plant system: sorption, root uptake, and translocation. Environment International 156:106642

doi: 10.1016/j.envint.2021.106642
[77]

Wang TT, Ying GG, Shi WJ, Zhao JL, Liu YS, et al. 2020. Uptake and translocation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: tissue- and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS). Environmental Science & Technology 54(10):6009−6020

doi: 10.1021/acs.est.9b05160
[78]

Blaine AC, Rich CD, Sedlacko EM, Hundal LS, Kumar K, et al. 2014. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environmental Science & Technology 48(14):7858−7865

doi: 10.1021/es500016s
[79]

Wen B, Li L, Zhang H, Ma Y, Shan XQ, et al. 2014. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environmental Pollution 184:547−554

doi: 10.1016/j.envpol.2013.09.040
[80]

Xu B, Qiu W, Du J, Wan Z, Zhou JL, et al. 2022. Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants. iScience 25(4):104061

doi: 10.1016/j.isci.2022.104061
[81]

Gobelius L. 2016. Uptake of per- and polyfluoroalkyl substances by plants. Degree project. Swedish Unidersity of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden. https://core.ac.uk/reader/78374950

[82]

Zhou J, Yang Z, Liu Q, Liu Y, Liu M, et al. 2020. Insights into uptake, translocation, and transformation mechanisms of perfluorophosphinates and perfluorophosphonates in wheat (Triticum aestivum L.). Environmental Science & Technology 54(1):276−285

doi: 10.1021/acs.est.9b05656
[83]

Kim JH, Kroh G, Chou HA, Yang SH, Frese A, et al. 2024. Perfluorooctanesulfonic acid alters the plant's phosphate transport gene network and exhibits antagonistic effects on the phosphate uptake. Environmental Science & Technology 58(12):5405−5418

doi: 10.1021/acs.est.3c10930
[84]

Song M, Jiang L, Zhang D, Huang Z, Wang S, et al. 2021. Uptake, acropetal translocation, and enantioselectivity of perfluorooctane sulfonate in maize coexisting with copper. Journal of Agricultural and Food Chemistry 69(7):2062−2068

doi: 10.1021/acs.jafc.0c06525
[85]

Wen B, Wu Y, Zhang H, Liu Y, Hu X, et al. 2016. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environmental Pollution 216:682−688

doi: 10.1016/j.envpol.2016.06.032
[86]

Lesmeister L, Lange FT, Breuer J, Biegel-Engler A, Giese E, et al. 2021. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants − a review. Science of The Total Environment 766:142640

doi: 10.1016/j.scitotenv.2020.142640
[87]

Bizkarguenaga E, Zabaleta I, Mijangos L, Iparraguirre A, Fernández LA, et al. 2016. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil. Science of The Total Environment 571:444−451

doi: 10.1016/j.scitotenv.2016.07.010
[88]

Xu J, Cui Q, Ren H, Liu S, Liu Z, et al. 2024. Differential uptake and translocation of perfluoroalkyl substances by vegetable roots and leaves: insight into critical influencing factors. Science of The Total Environment 949:175205

doi: 10.1016/j.scitotenv.2024.175205
[89]

Stahl T, Heyn J, Thiele H, Hüther J, Failing K, et al. 2009. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Archives of Environmental Contamination and Toxicology 57(2):289−298

doi: 10.1007/s00244-008-9272-9
[90]

Krippner J, Falk S, Brunn H, Georgii S, Schubert S, et al. 2015. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Journal of Agricultural and Food Chemistry 63(14):3646−3653

doi: 10.1021/acs.jafc.5b00012
[91]

Strable J, Scanlon MJ. 2009. Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harbor protocols 2009:pdb.emo132

doi: 10.1101/pdb.emo132
[92]

Ghisi R, Vamerali T, Manzetti S. 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environmental Research 169:326−341

doi: 10.1016/j.envres.2018.10.023
[93]

Cai Y, Wang Q, Zhou B, Yuan R, Wang F, et al. 2021. A review of responses of terrestrial organisms to perfluorinated compounds. Science of The Total Environment 793:148565

doi: 10.1016/j.scitotenv.2021.148565
[94]

Xu B, Yang G, Lehmann A, Riedel S, Rillig MC. 2023. Effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on soil structure and function. Soil Ecology Letters 5(1):108−117

doi: 10.1007/s42832-022-0143-5
[95]

Cao L, Xu W, Wan Z, Li G, Zhang F. 2022. Occurrence of PFASs and its effect on soil bacteria at a fire-training area using PFOS-restricted aqueous film-forming foams. iScience 25(4):104084

doi: 10.1016/j.isci.2022.104084
[96]

Cai Y, Chen H, Yuan R, Wang F, Chen Z, et al. 2020. Metagenomic analysis of soil microbial community under PFOA and PFOS stress. Environmental Research 188:109838

doi: 10.1016/j.envres.2020.109838
[97]

He W, Megharaj M, Naidu R. 2016. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil. Environmental Monitoring and Assessment 188(7):424

doi: 10.1007/s10661-016-5416-y
[98]

Lu B, Qian J, Wang P, Wang C, Hu J, et al. 2020. Effect of perfluorooctanesulfonate (PFOS) on the rhizosphere soil nitrogen cycling of two riparian plants. Science of The Total Environment 741:140494

doi: 10.1016/j.scitotenv.2020.140494
[99]

Li J, Sun J, Li P. 2022. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: a critical review. Environment International 158:106891

doi: 10.1016/j.envint.2021.106891
[100]

Zhang W, Lin KF, Yang SS, Zhang M. 2013. Enzyme activities in perfluorooctanoic acid (PFOA)-polluted soils. Pedosphere 23(1):120−127

doi: 10.1016/S1002-0160(12)60087-3
[101]

Li R, Tang T, Qiao W, Huang J. 2020. Toxic effect of perfluorooctane sulfonate on plants in vertical-flow constructed wetlands. Journal of Environmental Sciences (China) 92:176−186

doi: 10.1016/j.jes.2020.02.018
[102]

Guo W, Xing Y, Luo X, Li F, Ren M, et al. 2023. Reactive oxygen species: a crosslink between plant and human eukaryotic cell systems. International Journal of Molecular Sciences 24(17):13052

doi: 10.3390/ijms241713052
[103]

Ofoegbu PC. 2021. Physiological, biochemical, and metabolic responses of wheat (Triticum aestivum) exposed to perfluorooctanesulfonic acid (PFOS). Master's thesis. Missouri State University, Springfield, MO, USA. https://bearworks.missouristate.edu/theses/3682

[104]

Jiang T, Zhang W, Liang Y. 2022. Uptake of individual and mixed per- and polyfluoroalkyl substances (PFAS) by soybean and their effects on functional genes related to nitrification, denitrification, and nitrogen fixation. Science of The Total Environment 838(4):156640

doi: 10.1016/j.scitotenv.2022.156640
[105]

Rico CM, Wagner DC, Ofoegbu PC, Kirwa NJ, Clubb P, et al. 2024. Toxicity assessment of perfluorooctanesulfonic acid (PFOS) on a spontaneous plant, velvetleaf (Abutilon theophrasti), via metabolomics. Science of The Total Environment 907:167894

doi: 10.1016/j.scitotenv.2023.167894
[106]

Eze CG, Okeke ES, Nwankwo CE, Nyaruaba R, Anand U, et al. 2024. Emerging contaminants in food matrices: an overview of the occurrence, pathways, impacts and detection techniques of per- and polyfluoroalkyl substances. Toxicology Reports 12:436−447

doi: 10.1016/j.toxrep.2024.03.012
[107]

Li H, Dong Q, Zhang M, Gong T, Zan R, et al. 2023. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: a review. Environmental Pollution 327:121579

doi: 10.1016/j.envpol.2023.121579
[108]

Qu B, Zhao H, Zhou J. 2010. Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant. Chemosphere 79(5):555−560

doi: 10.1016/j.chemosphere.2010.02.012
[109]

Shittu AR, Iwaloye OF, Ojewole AE, Rabiu AG, Amechi MO, et al. 2023. The effects of per- and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation. Archives of Industrial Hygiene and Toxicology 74(3):167−178

doi: 10.2478/aiht-2023-74-3708
[110]

Huang S, Smorada C, Jaffe PR. 2024. Impact of PFAS contamination on nitrogen cycling microbial communities in sediment and soil ecosystems. AGU Fall Meeting 2024, Washington, DC, USA, 9−13 December 2024. American Geophysical Union. https://ui.adsabs.harvard.edu/abs/2024AGUFMB51E.1575H/abstract

[111]

Ecke F, Skrobonja A, Malmsten J, Ahrens L. 2023. Accumulation of per- and polyfluoroalkyl substances (PFAS) in a terrestrial food web. bioRxiv 571392

doi: 10.1101/2023.12.12.571392
[112]

Vestergren R, Orata F, Berger U, Cousins IT. 2013. Bioaccumulation of perfluoroalkyl acids in dairy cows in a naturally contaminated environment. Environmental Science and Pollution Research International 20(11):7959−7969

doi: 10.1007/s11356-013-1722-x
[113]

Miranda DA, Peaslee GF, Zachritz AM, Lamberti GA. 2022. A worldwide evaluation of trophic magnification of per- and polyfluoroalkyl substances in aquatic ecosystems. Integrated Environmental Assessment and Management 18(6):1500−1512

doi: 10.1002/ieam.4579
[114]

Müller CE, De Silva AO, Small J, Williamson M, Wang X, et al. 2011. Biomagnification of perfluorinated compounds in a remote terrestrial food chain: Lichen-Caribou-Wolf. Environmental Science & Technology 45(20):8665−8673

doi: 10.1021/es201353v
[115]

Mommaerts V, Hagenaars A, Meyer J, De Coen W, Swevers L, et al. 2011. Impact of a perfluorinated organic compound PFOS on the terrestrial pollinator Bombus terrestris (Insecta, Hymenoptera). Ecotoxicology 20(2):447−456

doi: 10.1007/s10646-011-0596-2
[116]

Grandjean P, Clapp R. 2015. Perfluorinated alkyl substances: emerging insights into health risks. New Solutions 25(2):147−163

doi: 10.1177/1048291115590506
[117]

Grandjean P, Andersen EW, Budtz-Jørgensen E, Nielsen F, Mølbak K, et al. 2012. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307(4):391−397

doi: 10.1001/jama.2011.2034
[118]

United States Environmental Protection Agency (USEPA). 2024. Our current understanding of the human health and environmental risks of PFAS. USEPA, Washington, DC, USA. www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas

[119]

Zhu Y, Qin XD, Zeng XW, Paul G, Morawska L, et al. 2016. Associations of serum perfluoroalkyl acid levels with T-helper cell-specific cytokines in children: by gender and asthma status. Science of The Total Environment 559:166−173

doi: 10.1016/j.scitotenv.2016.03.187
[120]

Predieri B, Iughetti L, Guerranti C, Bruzzi P, Perra G, et al. 2015. High levels of perfluorooctane sulfonate in children at the onset of diabetes. International Journal of Endocrinology 2015:234358

doi: 10.1155/2015/234358
[121]

Organisation for Economic Co-operation and Development (OECD). 2002. Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts. ENV/JM/RD(2002)17/FINAL. OECD, Paris, France. https://one.oecd.org/document/ENV/JM/RD(2002)17/FINAL/En/pdf

[122]

Ochoa-Noriega CA, Velasco-Muñoz JF, Aznar-Sánchez JA, Mesa-Vázquez E. 2021. Overview of research on sustainable agriculture in developing countries. The case of Mexico. Sustainability 13(15):8563

doi: 10.3390/su13158563
[123]

Hanssen L, Röllin H, Odland JØ, Moe MK, Sandanger TM. 2010. Perfluorinated compounds in maternal serum and cord blood from selected areas of South Africa: results of a pilot study. Journal of Environmental Monitoring 12(6):1355−1361

doi: 10.1039/b924420d
[124]

Aborode AT, Adesola RO, Idris I, Sakariyau Adio W, Olapade S, et al. 2025. Challenges associated with PFAS detection method in Africa. Environmental Health Insights 19:1−12

doi: 10.1177/11786302241310430
[125]

Mukonza SS, Chaukura N. 2025. Bird's-eye view of per- and polyfluoroalkyl substances pollution research in the African hydrosphere. npj Clean Water 8:67

doi: 10.1038/s41545-025-00495-x