[1]

Lim X. 2021. Microplastics are everywhere—but are they harmful? Nature 593(7857):22−25

doi: 10.1038/d41586-021-01143-3
[2]

Stubbins A, Law KL, Muñoz SE, Bianchi TS, Zhu L. 2021. Plastics in the Earth system. Science 373(6550):51−55

doi: 10.1126/science.abb0354
[3]

Romera-Castillo C, Pinto M, Langer TM, Álvarez-Salgado XA, Herndl GJ. 2018. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nature Communications 9:1430

doi: 10.1038/s41467-018-03798-5
[4]

Lee YK, Hur J. 2020. Adsorption of microplastic-derived organic matter onto minerals. Water Research 187:116426

doi: 10.1016/j.watres.2020.116426
[5]

Lee YK, Romera-Castillo C, Hong S, Hur J. 2020. Characteristics of microplastic polymer-derived dissolved organic matter and its potential as a disinfection byproduct precursor. Water Research 175:115678

doi: 10.1016/j.watres.2020.115678
[6]

Wang Q, Gu W, Chen H, Wang S, Hao Z. 2024. Molecular properties of dissolved organic matter leached from microplastics during photoaging process. Journal of Hazardous Materials 480:136154

doi: 10.1016/j.jhazmat.2024.136154
[7]

Novotna K, Pivokonska L, Cermakova L, Prokopova M, Fialova K, et al. 2023. Continuous long-term monitoring of leaching from microplastics into ambient water–a multi-endpoint approach. Journal of Hazardous Materials 444:130424

doi: 10.1016/j.jhazmat.2022.130424
[8]

Xu Y, Ou Q, Wang X, van der Hoek JP, Liu G. 2024. Mass concentration and removal characteristics of microplastics and nanoplastics in a drinking water treatment plant. ACS ES&T Water 4(8):3348−3358

doi: 10.1021/acsestwater.4c00222
[9]

Ouyang Z, Li S, Xue J, Liao J, Xiao C, et al. 2023. Dissolved organic matter derived from biodegradable microplastic promotes photo-aging of coexisting microplastics and alters microbial metabolism. Journal of Hazardous Materials 445:130564

doi: 10.1016/j.jhazmat.2022.130564
[10]

Sun Y, Li X, Li X, Wang J. 2022. Deciphering the fingerprint of dissolved organic matter in the soil amended with biodegradable and conventional microplastics based on optical and molecular signatures. Environmental Science & Technology 56(22):15746−15759

doi: 10.1021/acs.est.2c06258
[11]

Wu X, Liu Y, Jin Y, Wang Y, Yuan M, et al. 2025. Insights into the photoaging behavior of biodegradable and nondegradable microplastics: spectroscopic and molecular characteristics of dissolved organic matter release. Journal of Hazardous Materials 483:136651

doi: 10.1016/j.jhazmat.2024.136651
[12]

Lee YK, He W, Guo H, Karanfil T, Hur J. 2023. Effects of organic additives on spectroscopic and molecular-level features of photo-induced dissolved organic matter from microplastics. Water Research 242:120272

doi: 10.1016/j.watres.2023.120272
[13]

Yu Y, Tang N, Huang Y, Lu J, Wang W, et al. 2024. Study on the photoaging process and metal ion release of plastic films with two kinds of structures in marine environment: aliphatic and aromatic polymers. Marine Pollution Bulletin 203:116474

doi: 10.1016/j.marpolbul.2024.116474
[14]

Guo S, Liu L, Wang L, Tang J. 2024. Phototransformation and photoreactivity of MPs-DOM in aqueous environment: key role of MPs structure decoded by optical and molecular signatures. Journal of Hazardous Materials 480:136331

doi: 10.1016/j.jhazmat.2024.136331
[15]

Albergamo V, Wohlleben W, Plata DL. 2024. Tracking dynamic chemical reactivity networks with high-resolution mass spectrometry: a case of microplastic-derived dissolved organic carbon. Environmental Science & Technology 58(9):4314−4325

doi: 10.1021/acs.est.3c08134
[16]

Zhang J, Hou X, Zhang K, Deng Y, Xiao Q, et al. 2024. Deciphering fluorescent and molecular fingerprint of dissolved organic matter leached from microplastics in water. Water Research 250:121047

doi: 10.1016/j.watres.2023.121047
[17]

Mitschke N, Vemulapalli SPB, Dittmar T. 2024. Dissolved organic matter contains ketones across a wide range of molecular formulas. Environmental Science & Technology 58(35):15587−15597

doi: 10.1021/acs.est.4c02593
[18]

Stedmon CA, Bro R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods 6:572−579

doi: 10.4319/lom.2008.6.572
[19]

MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. Science 373(6550):61−65

doi: 10.1126/science.abg5433
[20]

Ke Y, Lin L, Zhang G, Hong H, Yan C. 2024. Aging behavior and leaching characteristics of microfibers in landfill leachate: important role of surface mesh structure. Journal of Hazardous Materials 470:134092

doi: 10.1016/j.jhazmat.2024.134092
[21]

Song F, Li T, Hur J, Shi Q, Wu F, et al. 2023. Molecular-level insights into the heterogeneous variations and dynamic formation mechanism of leached dissolved organic matter during the photoaging of polystyrene microplastics. Water Research 242:120114

doi: 10.1016/j.watres.2023.12011
[22]

Stubbins A, Zhu L, Zhao S, Spencer RGM, Podgorski DC. 2023. Molecular signatures of dissolved organic matter generated from the photodissolution of microplastics in sunlit seawater. Environmental Science & Technology 57(48):20097−20106

doi: 10.1021/acs.est.1c03592
[23]

Chen Y, Qian Y, An D, Liu F, Vollertsen J, et al. 2024. Potential disinfection byproducts-related risks to drinking water? Molecular insights into the dissolved organic matter from photodegradation of polyethylene microplastics. ACS ES&T Water 4(1):217−226

doi: 10.1021/acsestwater.3c00549
[24]

Chang B, Yang T, Fan S, Zhen L, Zhong X, et al. 2025. Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS. Journal of Hazardous Materials 487:137050

doi: 10.1016/j.jhazmat.2024.137050
[25]

Lin H, Guo L. 2020. Variations in colloidal DOM composition with molecular weight within individual water samples as characterized by flow field-flow fractionation and EEM-PARAFAC analysis. Environmental Science & Technology 54(3):1657−1667

doi: 10.1021/acs.est.9b07123
[26]

He W, Hur J. 2015. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter. Water Research 83:217−226

doi: 10.1016/j.watres.2015.06.044
[27]

Lou Y, Ye ZL, Chen S, Wei Q, Zhang J, et al. 2018. Influences of dissolved organic matters on tetracyclines transport in the process of struvite recovery from swine wastewater. Water Research 134:311−326

doi: 10.1016/j.watres.2018.02.010
[28]

Derrien M, Shin KH, Hur J. 2019. Biodegradation-induced signatures in sediment pore water dissolved organic matter: Implications from artificial sediments composed of two contrasting sources. Science of The Total Environment 694:133714

doi: 10.1016/j.scitotenv.2019.133714
[29]

Cory RM, Miller MP, McKnight DM, Guerard JJ, Miller PL. 2010. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods 8(2):67−78

doi: 10.4319/lom.2010.8.67
[30]

Shang Y, Song K, Lai F, Lyu L, Liu G, et al. 2023. Remote sensing of fluorescent humification levels and its potential environmental linkages in lakes across China. Water Research 230:119540

doi: 10.1016/j.watres.2022.119540
[31]

Liu D, Gao H, Yu H, Song Y. 2022. Applying EEM-PARAFAC combined with moving-window 2DCOS and structural equation modeling to characterize binding properties of Cu(II) with DOM from different sources in an urbanized river. Water Research 227:119317

doi: 10.1016/j.watres.2022.119317
[32]

Zhang Z, Liu P, Zhang T, Li K, Wu X, et al. 2025. Deciphering the inhibition mechanisms of microplastics on the full-stage sludge anaerobic digestion via enrichment to anaerobic microbes and toxicity of released compounds. Journal of Hazardous Materials 485:136856

doi: 10.1016/j.jhazmat.2024.136856
[33]

Wang Y, Li N, Fu Q, Cheng Z, Song Y, et al. 2023. Conversion and impact of dissolved organic matters in a heterogeneous catalytic peroxymonosulfate system for pollutant degradation. Water Research 241:120166

doi: 10.1016/j.watres.2023.120166
[34]

He Y, Jarvis P, Huang X, Shi B. 2024. Unraveling the characteristics of dissolved organic matter removed by aluminum species based on FT-ICR MS analysis. Water Research 255:121429

doi: 10.1016/j.watres.2024.121429
[35]

Li Q, Zhang C, Shan B. 2024. Stability of sedimentary organic matter: insights from molecular and redox analyses. Environmental Science and Ecotechnology 22:100470

doi: 10.1016/j.ese.2024.100470
[36]

Ding L, Han B, Jia R, Yang X, Liang X, et al. 2025. Molecular insights into the synergistic inhibition of microplastics-derived dissolved organic matter and anions on the transformation of ferrihydrite. Environmental Science & Technology 59(8):4104−4112

doi: 10.1021/acs.est.4c11745
[37]

Zhong X, Zhao K, Wu M, Zhang Y, Ma C, et al. 2025. Heavy metals trigger distinct molecular transformations in microplastic-versus natural-derived dissolved organic matter. Environmental Science and Ecotechnology 27:10061

doi: 10.1016/j.ese.2025.100610
[38]

Shen Y, Hu J, Zhu C, Liu S, Wang J, et al. 2025. Revealing the key impact of microplastic-derived dissolved organic matter properties on aromatic pollutant adsorption and the underlying mechanisms. ACS ES& T Water 5:3652−3562

doi: 10.1021/acsestwater.4c01144
[39]

Yan Z, Qian H, Yao J, Guo M, Zhao X, et al. 2024. Mechanistic insight into the role of typical microplastics in chlorination disinfection: precursors and adsorbents of both MP-DOM and DBPs. Journal of Hazardous Materials 462:132716

doi: 10.1016/j.jhazmat.2023.132716
[40]

Chen J, Sun T, Yang P, Peng S, Yu J, et al. 2024. Inhibitory effect of microplastics derived organic matters on humification reaction of organics in sewage sludge under alkali-hydrothermal treatment. Water Research 252:121231

doi: 10.1016/j.watres.2024.121231
[41]

Liu S, Qiu Y, He Z, Shi C, Xing B, et al. 2024. Microplastic-derived dissolved organic matter and its biogeochemical behaviors in aquatic environments: a review. Critical Reviews in Environmental Science and Technology 54(11):865−882

doi: 10.1080/10643389.2024.2303294
[42]

Yang Z, Liu P, Wang J, Ding L, Li L, et al. 2023. Microplastics-derived dissolved organic matters accelerate photodegradation of sulfamethazine in wastewater ultraviolet disinfection process. Chemical Engineering Journal 454:140301

doi: 10.1016/j.cej.2022.140301
[43]

Chen M, Xu J, Tang R, Yuan S, Min Y, et al. 2022. Roles of microplastic-derived dissolved organic matter on the photodegradation of organic micropollutants. Journal of Hazardous Materials 440:129784

doi: 10.1016/j.jhazmat.2022.129784
[44]

Huang Y, Dang F, Yin Y, Fang G, Wang Y, et al. 2022. Weathered microplastics induce silver nanoparticle formation. Environmental Science & Technology 9(2):179−185

doi: 10.1021/acs.estlett.1c00766
[45]

Zhang E, Chen Y, Li Y, Sun K, Yang Y, et al. 2024. The photo-redox of chromium regulated by microplastics (MPs) and MPs-derived dissolved organic matter (MPs-DOM) and the CO2 emission of MPs-DOM. Fundamental Research 4(6):1576−1585

doi: 10.1016/j.fmre.2022.08.009
[46]

Wang J, Tanentzap AJ, Sun Y, Shi J, Tao J, et al. 2025. Microplastic-derived dissolved organic matter regulates soil carbon respiration via microbial ecophysiological controls. Environmental Science & Technology 59(32):17334−17348

doi: 10.1021/acs.est.5c07544