[1]

Lindstrom AB, Strynar MJ, Libelo EL. 2011. Polyfluorinated compounds: past, present, and future. Environmental Science & Technology 45:7954−7961

doi: 10.1021/es2011622
[2]

Li P, Zhi D, Zhang X, Zhu H, Li Z, et al. 2019. Research progress on the removal of hazardous perfluorochemicals: a review. Journal of Environmental Management 250:109488

doi: 10.1016/j.jenvman.2019.109488
[3]

Route WT, Russell RE, Lindstrom AB, Strynar MJ, Key RL. 2014. Spatial and temporal patterns in concentrations of perfluorinated compounds in bald eagle nestlings in the upper Midwestern United States. Environmental Science & Technology 48:9957−9957

doi: 10.1021/es503206c
[4]

Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, et al. 2020. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts 22:2345−2373

doi: 10.1039/d0em00291g
[5]

Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, et al. 2022. Per- and polyfluoroalkyl substances in the environment. Science 375:512

doi: 10.1126/science.abg9065
[6]

Xie S, Wang T, Liu S, Jones KC, Sweetman AJ, et al. 2013. Industrial source identification and emission estimation of perfluorooctane sulfonate in China. Environment International 52:1−8

doi: 10.1016/j.envint.2012.11.004
[7]

Ghisi R, Vamerali T, Manzetti S. 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environmental Research 169:326−341

doi: 10.1016/j.envres.2018.10.023
[8]

Lau C, Butenhoff JL, Rogers JM. 2004. The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicology and Applied Pharmacology 198:231−241

doi: 10.1016/j.taap.2003.11.031
[9]

Lee YC, Lo SL, Chiueh PT, Chang DG. 2009. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Research 43:2811−2816

doi: 10.1016/j.watres.2009.03.052
[10]

Mitchell SM, Ahmad M, Teel AL, Watts RJ. 2014. Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions. Environmental Science & Technology Letters 1:117−121

doi: 10.1021/ez4000862
[11]

Bai L, Jiang Y, Xia D, Wei Z, Spinney R, et al. 2022. Mechanistic understanding of superoxide radical-mediated degradation of perfluorocarboxylic acids. Environmental Science & Technology 56:624−633

doi: 10.1021/acs.est.1c06356
[12]

Trojanowicz M, Bojanowska-Czajka A, Bartosiewicz I, Kulisa K. 2018. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – a review of recent advances. Chemical Engineering Journal 336:170−199

doi: 10.1016/j.cej.2017.10.153
[13]

Wang X, Si D, Li Y, Chen N, Fang G, et al. 2023. Alcohols radicals can efficiently reduce recalcitrant perfluorooctanoic acid. Water Research 245:120557

doi: 10.1016/j.watres.2023.120557
[14]

Liu Z, Bentel MJ, Yu Y, Ren C, Gao J, et al. 2021. Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction. Environmental Science & Technology 55:7052−7062

doi: 10.1021/acs.est.1c00353
[15]

Wang Y, Zhang P, Pan G, Chen H. 2008. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light. Journal of Hazardous Materials 160:181−186

doi: 10.1016/j.jhazmat.2008.02.105
[16]

Cheng JH, Liang XY, Yang SW, Hu YY. 2014. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by VUV/Fe3+ system. Chemical Engineering Journal 239:242−249

doi: 10.1016/j.cej.2013.11.023
[17]

Liu Y, Fan X, Quan X, Fan Y, Chen S, et al. 2019. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond. Environmental Science & Technology 53:5195−5201

doi: 10.1021/acs.est.8b06130
[18]

Song Z, Tang H, Wang N, Zhu L. 2013. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system. Journal of Hazardous Materials 262:332−338

doi: 10.1016/j.jhazmat.2013.08.059
[19]

Xiao W, Zhang J, Wu J. 2023. Recent advances in reactions involving carbon dioxide radical anion. ACS Catalysis 13:15991−16011

doi: 10.1021/acscatal.3c04125
[20]

Liu X, Zhong J, Fang L, Wang L, Ye M, et al. 2016. Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical. Chemical Engineering Journal 303:56−63

doi: 10.1016/j.cej.2016.05.130
[21]

Gu X, Lu S, Fu X, Qiu Z, Sui Q, et al. 2017. Carbon dioxide radical anion-based UV/S2O82−/HCOOH reductive process for carbon tetrachloride degradation in aqueous solution. Separation and Purification Technology 172:211−216

doi: 10.1016/j.seppur.2016.08.019
[22]

Ding Y, Yu X, Lyu S, Zhen H, Zhao W, et al. 2024. Simultaneous degradation, dehalogenation, and detoxification of halogenated antibiotics by carbon dioxide radical anions. Engineering 37:78−86

doi: 10.1016/j.eng.2024.03.006
[23]

Cao MH, Wang BB, Yu HS, Wang LL, Yuan SH, et al. 2010. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials 179:1143−1146

doi: 10.1016/j.jhazmat.2010.02.030
[24]

Chen Z, Teng Y, Mi N, Jin X, Yang D, et al. 2021. Highly efficient hydrated electron utilization and reductive destruction of perfluoroalkyl substances induced by intermolecular interaction. Environmental Science & Technology 55:3996−4006

doi: 10.1021/acs.est.0c07927
[25]

Wang Z, Jin X, Hong R, Wang X, Chen Z, et al. 2023. New indole derivative heterogeneous system for the synergistic reduction and oxidation of various per-/polyfluoroalkyl substances: insights into the degradation/defluorination mechanism. Environmental Science & Technology 57:21459−21469

doi: 10.1021/acs.est.3c05940
[26]

Shoute LCT, Mittal JP. 1996. Formation of radical anions on the reduction of carbonyl-containing perfluoroaromatic compounds in aqueous solution: a pulse radiolysis study. Journal of Physical Chemistry 100:14022−14027

doi: 10.1021/jp960992o
[27]

Lee YC, Lo SL, Kuo J, Lin YL. 2012. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C. Chemical Engineering Journal 198–199:27−32

doi: 10.1016/j.cej.2012.05.073
[28]

Zhu C, Wang D, Zhu F, Liu S, Fang G, et al. 2021. Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: reductive radicals vs. oxidative radicals. Journal of Hazardous Materials 402:123557

doi: 10.1016/j.jhazmat.2020.123557
[29]

Zhu C, Zhu F, Dionysiou DD, Zhou D, Fang G, et al. 2018. Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process. Water Research 139:66−73

doi: 10.1016/j.watres.2018.03.069
[30]

Zhang X, Zhang R, Ren P, Zhou J, Li W, et al. 2024. Carbon dioxide radical anion mediated dehalogenation kinetics and mechanisms of halogenated alkanes. Water Research 259:121799

doi: 10.1016/j.watres.2024.121799
[31]

Zhu C, Fang G, Dionysiou DD, Liu C, Gao J, et al. 2016. Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study. Journal of Hazardous Materials 316:232−241

doi: 10.1016/j.jhazmat.2016.05.040
[32]

Bentel MJ, Liu Z, Yu Y, Gao J, Men Y, et al. 2020. Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: reaction mechanisms and system efficiencies at pH 12. Environmental Science & Technology Letters 7:351−357

doi: 10.1021/acs.estlett.0c00236
[33]

Huang M, Zhu C, Zhu F, Fang G, Zhou D. 2021. Mechanism of significant enhancement of VO2-Fenton-like reactions by oxalic acid for diethyl phthalate degradation. Separation and Purification Technology 279:119671

doi: 10.1016/j.seppur.2021.119671
[34]

Chen G, Liu H. 2020. Photochemical removal of hexavalent chromium and nitrate from ion-exchange brine waste using carbon-centered radicals. Chemical Engineering Journal 396:125136

doi: 10.1016/j.cej.2020.125136
[35]

Ren H, Hou Z, Han X, Zhou R. 2017. Highly reductive radical CO2•− deriving from a system with SO4•− and formate anion: Implication for reduction of Cr(VI) from wastewater. Chemical Engineering Journal 309:638−645

doi: 10.1016/j.cej.2016.10.071
[36]

Gonzalez MC, Le Roux GC, Rosso JA, Braun AM. 2007. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere 69:1238−1244

doi: 10.1016/j.chemosphere.2007.05.076
[37]

Berkovic AM, Gonzalez MC, Russo N, del Carmen Michelini M, Diez RP, et al. 2010. Reduction of mercury(II) by the carbon dioxide radical anion: a theoretical and experimental investigation. The Journal of Physical Chemistry A 114:12845−12850

doi: 10.1021/jp106035m
[38]

Hug SJ, Laubscher HU, James BR. 1996. Iron(III) catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions. Environmental Science & Technology 31:160−170

doi: 10.1021/es960253l
[39]

Luo P, Zhang Y, Peng Z, He Q, Zhao W, et al. 2024. Photocatalytic degradation of perfluorooctanoic acid (PFOA) from water: a mini review. Environmental Pollution 343:123212

doi: 10.1016/j.envpol.2023.123212
[40]

Liu CS, Higgins CP, Wang F, Shih K. 2012. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Separation and Purification Technology 91:46−51

doi: 10.1016/j.seppur.2011.09.047
[41]

Wang Y, Zhang P. 2011. Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. Journal of Hazardous Materials 192:1869−1875

doi: 10.1016/j.jhazmat.2011.07.026
[42]

Boczkaj G, Fernandes A. 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chemical Engineering Journal 320:608−633

doi: 10.1016/j.cej.2017.03.084
[43]

Chen Z, Li C, Gao J, Dong H, Chen Y, et al. 2020. Efficient reductive destruction of perfluoroalkyl substances under self-assembled micelle confinement. Environmental Science & Technology 54:5178−5185

doi: 10.1021/acs.est.9b06599
[44]

Grgić I, Podkrajšek B, Barzaghi P, Herrmann H. 2007. Scavenging of SO4 radical anions by mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. Atmospheric Environment 41:9187−9194

doi: 10.1016/j.atmosenv.2007.07.051
[45]

Musegades LJ, Curtin OP, Cyran JD. 2024. Determining the surface pKa of perfluorooctanoic acid. The Journal of Physical Chemistry C 128:1946−1951

doi: 10.1021/acs.jpcc.3c07235
[46]

Umeno T, Seto R, Matsumoto S, Fujihara M, Karasawa S. 2022. Basic fluorescent protonation-type pH probe sensitive to small ΔpKa of methanol and ethanol. Analytical Chemistry 94:10400−10407

doi: 10.1021/acs.analchem.2c01415
[47]

Zhu C, Zhu F, Liu C, Chen N, Zhou D, et al. 2018. Reductive hexachloroethane degradation by S2O8•– with thermal activation of persulfate under anaerobic conditions. Environmental Science & Technology 52:8548−8557

doi: 10.1021/acs.est.7b06279
[48]

Popov E, Mametkuliyev M, Santoro D, Liberti L, Eloranta J. 2010. Kinetics of UV-H2O2 advanced oxidation in the presence of alcohols: the role of carbon centered radicals. Environmental Science & Technology 44:7827−7832

doi: 10.1021/es101959y
[49]

Xu X, Pliego G, Zazo JA, Casas JA, Rodriguez JJ. 2016. Mineralization of naphtenic acids with thermally-activated persulfate: the important role of oxygen. Journal of Hazardous Materials 318:355−362

doi: 10.1016/j.jhazmat.2016.07.009
[50]

Waclawek S, Lutze HV, Grubel K, Padil VVT, Černík M, et al. 2017. Chemistry of persulfates in water and wastewater treatment: a review. Chemical Engineering Journal 330:44−62

doi: 10.1016/j.cej.2017.07.132
[51]

Wang J, Wang S. 2021. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chemical Engineering Journal 411:128392

doi: 10.1016/j.cej.2020.128392
[52]

Neta P, Huie RE, Ross AB. 1988. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data 17:1027−1284

doi: 10.1063/1.555808
[53]

Guo Y, Wang S, Chi C, Wang Y, Gao X, et al. 2024. Treatment of mature landfill leachate using chemical and electrical Fenton with novel Fe-loaded GAC heterogeneous catalysts. Journal of Water Process Engineering 60:105169

doi: 10.1016/j.jwpe.2024.105169
[54]

Fang G, Gao J, Dionysiou DD, Liu C, Zhou D. 2013. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental Science & Technology 47:4605−4611

doi: 10.1021/es400262n
[55]

Lutze HV, Bircher S, Rapp I, Kerlin N, Bakkour R, et al. 2015. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environmental Science & Technology 49:1673−1680

doi: 10.1021/es503496u