[1]

Carter DO, Yellowlees D, Tibbett M. 2007. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12−24

doi: 10.1007/s00114-006-0159-1
[2]

Perotti MA, Braig HR. 2009. Phoretic mites associated with animal and human decomposition. Experimental and Applied Acarology 49:85−124

doi: 10.1007/s10493-009-9280-0
[3]

Dalal J, Sharma S, Bhardwaj T, Dhattarwal SK, Verma K. 2020. Seasonal study of the decomposition pattern and insects on a submerged pig cadaver. Journal of Forensic and Legal Medicine 74:102023

doi: 10.1016/j.jflm.2020.102023
[4]

Pechal JL, Benbow ME. 2016. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environmental Microbiology 18:1511−1522

doi: 10.1111/1462-2920.13187
[5]

Röglin A, Szentiks CA, Dreßler J, Ondruschka B, Schwarz M. 2022. Entomological identification of the post-mortem colonization of wolf cadavers in different decomposition stages. Science & Justice 62:520−529

doi: 10.1016/j.scijus.2022.07.004
[6]

Zhou R, Yu Q, Li T, Long M, Wang Y, et al. 2021. Carcass decomposition influences the metabolic profiles and enriches noxious metabolites in different water types by widely targeted metabolomics. Chemosphere 269:129400

doi: 10.1016/j.chemosphere.2020.129400
[7]

Guo JJ, Fu XL, Cai JF. 2019. Research progress of aquatic corpse decomposition and postmortem submersion interval estimation. Journal of Forensic Medicine 35:459−466

doi: 10.12116/j.issn.1004-5619.2019.04.016
[8]

Yu Q, Zhou R, Wang Y, Su W, Yang J, et al. 2021. Carcass decay deteriorates water quality and modifies the nirS denitrifying communities in different degradation stages. Science of The Total Environment 785:147185

doi: 10.1016/j.scitotenv.2021.147185
[9]

Hilal MG, Zhou R, Yu Q, Wang Y, Feng T, et al. 2022. Successions of rare and abundant microbial subcommunities during fish carcass decomposition in a microcosm under the influence of variable factors. FEMS Microbiology Letters 369:fnac037

doi: 10.1093/femsle/fnac037
[10]

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237−240

doi: 10.1126/science.281.5374.237
[11]

Gruber N, Clement D, Carter BR, Feely RA, van Heuven S, et al. 2019. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:1193−1199

doi: 10.1126/science.aau5153
[12]

Peura S, Sinclair L, Bertilsson S, Eiler A. 2015. Metagenomic insights into strategies of aerobic and anaerobic carbon and nitrogen transformation in boreal lakes. Scientific Reports 5:12102

doi: 10.1038/srep12102
[13]

Sabine CL, Feely RA, Gruber N, Key RM, Lee K, et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367−371

doi: 10.1126/science.1097403
[14]

Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, et al. 2022. Microbial metabolites in the marine carbon cycle. Nature Microbiology 7:508−523

doi: 10.1038/s41564-022-01090-3
[15]

Emerson JB, Thomas BC, Alvarez W, Banfield JF. 2016. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environmental Microbiology 18:1686−1703

doi: 10.1111/1462-2920.12817
[16]

Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature 515:505−511

doi: 10.1038/nature13855
[17]

Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, et al. 2016. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. The ISME Journal 10:2593−2604

doi: 10.1038/ismej.2016.65
[18]

Cheaib B, Le Boulch M, Mercier PL, Derome N. 2018. Taxon-function decoupling as an adaptive signature of lake microbial metacommunities under a chronic polymetallic pollution gradient. Frontiers in Microbiology 9:869

doi: 10.3389/fmicb.2018.00869
[19]

Louca S, Parfrey LW, Doebeli M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272−1277

doi: 10.1126/science.aaf4507
[20]

Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, et al. 2018. Function and functional redundancy in microbial systems. Nature Ecology & Evolution 2:936−943

doi: 10.1038/s41559-018-0519-1
[21]

Bei Q, Yang T, Ren C, Guan E, Dai Y, et al. 2023. Soil pH determines arsenic-related functional gene and bacterial diversity in natural forests on the Taibai Mountain. Environmental Research 220:115181

doi: 10.1016/J.ENVRES.2022.115181
[22]

Pasquaretta C, Gómez-Moracho T, Heeb P, Lihoreau M. 2018. Exploring interactions between the gut microbiota and social behavior through nutrition. Genes 9:534

doi: 10.3390/genes9110534
[23]

Fenchel T, Finlay B. 2008. Oxygen and the spatial structure of microbial communities. Biological Reviews of the Cambridge Philosophical Society 83:553−569

doi: 10.1111/j.1469-185X.2008.00054.x
[24]

Vargas S, Leiva L, Wörheide G. 2021. Short-term exposure to high-temperature water causes a shift in the microbiome of the common aquarium sponge Lendenfeldia chondrodes. Microbial Ecology 81:213−222

doi: 10.1007/s00248-020-01556-z
[25]

Zhang CJ, Delgado-Baquerizo M, Drake JE, Reich PB, Tjoelker MG, et al. 2018. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. Environmental Microbiology Reports 10:167−178

doi: 10.1111/1758-2229.12613
[26]

Atwoli L, Baqui AH, Benfield T, Bosurgi R, Godlee F, et al. 2022. Call for emergency action to limit global temperature increases, restore biodiversity and protect health. BMJ Leader 6:1−3

doi: 10.1136/LEADER-2021-000548
[27]

Girardin CAJ, Jenkins S, Seddon N, Allen M, Lewis SL, et al. 2021. Nature-based solutions can help cool the planet − if we act now. Nature 593:191−194

doi: 10.1038/D41586-021-01241-2
[28]

Pinkerton KE, Felt E, Riden HE. 2019. Editorial: Extreme weather resulting from global warming is an emerging threat to farmworker health and safety. Journal of Agricultural Safety and Health 25:189−190

doi: 10.13031/jash.13555
[29]

Guan Y, Lu H, Jiang Y, Tian P, Qiu L, et al. 2021. Changes in global climate heterogeneity under the 21st century global warming. Ecological Indicators 130:108075

doi: 10.1016/J.ECOLIND.2021.108075
[30]

Golledge NR, Keller ED, Gomez N, Naughten KA, Bernales J, et al. 2019. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566:65−72

doi: 10.1038/s41586-019-0889-9
[31]

Wang X, Li X, Hu Y, Lv J, Sun J, et al. 2010. Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing'an Mountains, Northeastern China. Journal of Environmental Sciences 22:1057−1066

doi: 10.1016/S1001-0742(09)60217-5
[32]

Kirschbaum MUF. 2000. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21−51

doi: 10.1023/A:1006238902976
[33]

Zhou R, Li W, Zhang Y, Peng M, Wang C, et al. 2018. Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan Province, SW China. Forests 9:227

doi: 10.3390/f9050227
[34]

Elshafei AM. 2022. General overview of climate change and global warming: their effect on microorganisms. International Journal of Environment and Climate Change 12:1378−1387

doi: 10.9734/IJECC/2022/V12I1131116
[35]

Chen Y, Liu F, Kang L, Zhang D, Kou D, et al. 2021. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology 27:3218−3229

doi: 10.1111/gcb.15487
[36]

Singh BK, Bardgett RD, Smith P, Reay DS. 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8:779−790

doi: 10.1038/nrmicro2439
[37]

Yang J, Yu Q, Su W, Wang S, Wang X, et al. 2023. Metagenomics reveals that temperature predicts a small proportion of antibiotic resistomes and mobile genetic elements in polluted water. Environmental Pollution 317:120793

doi: 10.1016/J.ENVPOL.2022.120793
[38]

Dai Z, Zang H, Chen J, Fu Y, Wang X, et al. 2021. Metagenomic insights into soil microbial communities involved in carbon cycling along an elevation climosequences. Environmental Microbiology 23:4631−4645

doi: 10.1111/1462-2920.15655
[39]

Zhong Y, Yan W, Wang R, Wang W, Shangguan Z. 2018. Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession. Soil Biology and Biochemistry 123:207−217

doi: 10.1016/j.soilbio.2018.05.017
[40]

Prasanth CN, Viswanathan R, Malathi P, Sundar AR. 2022. Carbohydrate active enzymes (CAZy) regulate cellulolytic and pectinolytic enzymes in Colletotrichum falcatum causing red rot in sugarcane. 3 Biotech 12:48

doi: 10.1007/s13205-022-03113-6
[41]

Kelly SM, Munoz-Munoz J, van Sinderen D. 2021. Plant glycan metabolism by bifidobacteria. Frontiers in Microbiology 12:609418

doi: 10.3389/fmicb.2021.609418
[42]

Wang X, Wan-Yan R, Yang J, Su W, Yu Q, et al. 2022. Corpse decomposition of freshwater economic fish leads to similar resistomes and the enrichment of high-risk antibiotic resistance genes in different water types. Journal of Environmental Management 320:115944

doi: 10.1016/j.jenvman.2022.115944
[43]

Liu J, Dong W, Zhao J, Wu J, Xia J, et al. 2022. Gut microbiota profiling variated during colorectal cancer development in mouse. BMC Genomics 23:848

doi: 10.1186/s12864-022-09008-3
[44]

Bao J, Li P, Guo Y, Zheng Y, Smolinski M, et al. 2022. Caffeine is negatively associated with depression in patients aged 20 and older. Frontiers in Psychiatry 13:1037579

doi: 10.3389/fpsyt.2022.1037579
[45]

Pan W, Han Y, Hu H, He Y. 2022. The non-linear link between remnant cholesterol and diabetic retinopathy: a cross-sectional study in patients with type 2 diabetic mellitus. BMC Endocrine Disorders 22:326

doi: 10.1186/s12902-022-01239-5
[46]

Wang C, Wang H, Zhou Y, Zhang S, Huang M. 2022. Evaluation of the clinical value of shear wave elastography for early detection and diagnosis of diabetic peripheral neuropathy: a controlled preliminary prospective clinical study. BMC Musculoskeletal Disorders 23:1120

doi: 10.1186/s12891-022-06085-z
[47]

Koester LR, Hayman K, Anderson CJ, Tibbs-Cortes BW, Daniels KM, et al. 2022. Influence of a sodium-saccharin sweetener on the rumen content and rumen epithelium microbiota in dairy cattle during heat stress. Journal of Animal Science 101:skac403

doi: 10.1093/jas/skac403
[48]

Mao W, Ding J, Li Y, Huang R, Wang B. 2022. Inhibition of cell survival and invasion by tanshinone IIA via FTH1: a key therapeutic target and biomarker in head and neck squamous cell carcinoma. Experimental and Therapeutic Medicine 24:521

doi: 10.3892/etm.2022.11449
[49]

Gönçer-Demiral D, İnce-Yenilmez M. 2022. Network analysis of international export pattern. Social Network Analysis and Mining 12:156

doi: 10.1007/s13278-022-00984-8
[50]

Bastian M, Heymann S, Jacomy M. 2009. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media 3:361−362

doi: 10.1609/icwsm.v3i1.13937
[51]

Wang C, Pan X, Yu W, Ye X, Erdenebileg E, et al. 2023. Aridity and decreasing soil heterogeneity reduce microbial network complexity and stability in the semi-arid grasslands. Ecological Indicators 151:110342

doi: 10.1016/j.ecolind.2023.110342
[52]

Lian H, Zhang C, Liu Y, Li W, Fu T, et al. 2022. In vitro gene expression responses of bovine rumen epithelial cells to different pH stresses. Animals 12:2621

doi: 10.3390/ani12192621
[53]

Wang Q, Zhang Q, Han Y, Zhang D, Zhang CC, et al. 2022. Carbon cycle in the microbial ecosystems of biological soil crusts. Soil Biology and Biochemistry 171:108729

doi: 10.1016/J.SOILBIO.2022.108729
[54]

Lipson DA. 2007. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiology Ecology 59:418−427

doi: 10.1111/j.1574-6941.2006.00240.x
[55]

Mandakovic D, Rojas C, Maldonado J, Latorre M, Travisany D, et al. 2018. Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Scientific Reports 8:5875

doi: 10.1038/s41598-018-23931-0
[56]

Rabbani G, Ahmad E, Ahmad A, Khan RH. 2023. Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins. International Journal of Biological Macromolecules 225:822−839

doi: 10.1016/j.ijbiomac.2022.11.146
[57]

Labban A, Shibl AA, Calleja ML, Hong PY, Máran XAG. 2023. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus strain to varying temperatures. Environmental Microbiology 25:1007−1021

doi: 10.1111/1462-2920.16326
[58]

Linz AM, Aylward FO, Bertilsson S, McMahon KD. 2020. Time-series metatranscriptomes reveal conserved patterns between phototrophic and heterotrophic microbes in diverse freshwater systems. Limnology and Oceanography 65:S101−S112

doi: 10.1002/lno.11306
[59]

Zhou M, Zhou C, Peng Y, Jia R, Zhao W, et al. 2023. Space-for-time substitution leads to carbon emission overestimation in eutrophic lakes. Environmental Research 219:115175

doi: 10.1016/j.envres.2022.115175
[60]

Láruson ÁJ, Yeaman S, Lotterhos KE. 2020. The importance of genetic redundancy in evolution. Trends in Ecology & Evolution 35:809−822

doi: 10.1016/j.tree.2020.04.009
[61]

Wang JJ, Hu XJ, Cao YC, Su HC, Wen GL, et al. 2022. Gill tissue and intestinal flora bacterial community structure and carbon source utilization characteristics of the intestinal flora of Gnathodentex aurolineatus in reef waters of the South China Sea. Journal of Fishery Sciences of China 29:1788−1799

doi: 10.12264/jfsc2022-0160
[62]

Zhang YY, Qu LY, Chen LD. 2009. An amendment on information extraction of Biolog EcoPlateTM. Microbiology 36:1083−1091

[63]

Green VE, Klancher CA, Yamamoto S, Dalia AB. 2023. The molecular mechanism for carbon catabolite repression of the chitin response in Vibrio cholerae. PLoS Genetics 19:e1010767

doi: 10.1371/JOURNAL.PGEN.1010767
[64]

Wang T, Weiss A, Aqeel A, Wu F, Lopatkin AJ, et al. 2022. Horizontal gene transfer enables programmable gene stability in synthetic microbiota. Nature Chemical Biology 18:1245−1252

doi: 10.1038/S41589-022-01114-3
[65]

Yang M, Liu N, Wang B, Li Y, Li J, et al. 2022. Archaeal contribution to carbon-functional composition and abundance in China's coastal wetlands: not to be underestimated. Frontiers in Microbiology 13:1013408

doi: 10.3389/fmicb.2022.1013408
[66]

Chong CW, Silvaraj S, Supramaniam Y, Snape I, Tan IKP. 2018. Effect of temperature on bacterial community in petroleum hydrocarbon-contaminated and uncontaminated Antarctic soil. Polar Biology 41:1763−1775

doi: 10.1007/s00300-018-2316-3
[67]

Stauber L, Prospero S, Croll D. 2020. Comparative genomics analyses of lifestyle transitions at the origin of an invasive fungal pathogen in the genus Cryphonectria. mSphere 5:e00737-20

doi: 10.1128/mSphere.00737-20
[68]

Chuckran PF, Fofanov V, Hungate BA, Morrissey EM, Schwartz E, et al. 2021. Rapid response of nitrogen cycling gene transcription to labile carbon amendments in a soil microbial community. mSystems 6:e00161-21

doi: 10.1128/mSystems.00161-21
[69]

Hashida SN, Miyagi A, Nishiyama M, Yoshida K, Hisabori T, et al. 2018. Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis. The Plant Journal 95:947−960

doi: 10.1111/tpj.14000
[70]

Lee SY, Ryu HW, Cho KS. 2012. Effect of ammonia on the oxidation of methane by methanotrophs. Journal of Korean Society of Odor Research and Engineering 11:41−46

[71]

Claassens NJ, Sousa DZ, Dos Santos VAPM, de Vos WM, van der Oost J. 2016. Harnessing the power of microbial autotrophy. Nature Reviews Microbiology 14:692−706

doi: 10.1038/nrmicro.2016.130
[72]

Rubin-Blum M, Dubilier N, Kleiner M. 2019. Genetic evidence for two carbon fixation pathways (the Calvin-Benson-Bassham cycle and the reverse tricarboxylic acid cycle in symbiotic and free-living bacteria. mSphere 4:e00394-18

doi: 10.1128/mSphere.00394-18
[73]

Erb TJ. 2011. Carboxylases in natural and synthetic microbial pathways. Applied and Environmental Microbiology 77:8466−8477

doi: 10.1128/AEM.05702-11